• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Question and Answering on Virtual Human Dialogue:a Review and Prediction

    2015-04-15 13:26:08LIULi

    LIU Li(劉 里)

    1 Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology,Tianjin University of Technology,Tianjin 300384,China

    2 Key Laboratory of Computer Vision and System(Tianjin University of Technology),Ministry of Education,Tianjin 300384,China

    Application of Question and Answering on Virtual Human Dialogue:a Review and Prediction

    LIU Li(劉 里)1,2*

    1 Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology,Tianjin University of Technology,Tianjin 300384,China

    2 Key Laboratory of Computer Vision and System(Tianjin University of Technology),Ministry of Education,Tianjin 300384,China

    Nowadays,virtual human(VH)is becom ing a hot research topic in virtualization.VH dialogue can be categorized as an application of natural language processing(NLP)technology,since it is relational to question and answering(QA)technologies.In order to integrate these technologies,this paper reviews some important work on VH dialogue,and predicts some research points on the view of QA technologies.

    virtual human(VH)dialogue;natural language processing (NLP);question and answering(QA);interaction

    Introduction

    Virtual human (VH) is a hot research field of virtualization.VH dialogue is the application of natural language processing(NLP)technology on the research field,since it is relational to question and answering (QA) technologies.This paper reviews the important work of VH dialogue,and proposes some research points on the view of QA technologies.

    1 Review

    Recently,some research facilities have focused on the research of VH dialogue,such as Institute for Creative Technologies(ICT)[1]and Virtual Experiences Research Group (VERG)[2].The purpose of their work is to improve the intelligence of VH.Their works are summarized as follows.

    Rossen et al.used VH to bootstrap the creation of other VHs[3].They developed a system called Roleplay Trainer Creator,which created a virtual medical student based on hundreds of interactions between real medical students and a virtual patient.Then,this virtual medical student was used to train standardized patients-human actors who role-played the patients in practice in doctor-patient encounters.By generating new VHs w ith human VH interaction logs,it showed the significant potential for interpersonal training applications w ith VH.It also displayed that the Roleplay Trainer Creator was beneficial for increasing the standardization of roleplay partners.

    Rossen et al.presented a new approach to create robust conversational models, called human-centered distributed conversationalmodeling(HDCM,shown in Fig.1)[45]which was a distributed system.In HDCM,domain experts and novices could collaborate asynchronously through a graphical user interface(GUI).Virtual people factory(VPF,shown in Fig.2)was the realization of HDCM,which was used to evaluate HDCM.The experiment showed that the VPF obviously reduced expert time in creating the speechunderstanding portion of a conversational model,and it also increased the possibility of building larger corpus than pervious methods.Finally,they released VPF to the public and obtained much languages resources from various domains.

    Sun developed a sem i-automated analytic model,called Articulate(shown in Fig.3)[6].The implementation of the model was as follows:(1)parsing user queries w ith NLP technologies,by tagging the words in queries w ith part-ofspeech labels,to obtain the root of words;(2)based on the parsing results,mapping the queries into a smaller feature space,and applying a supervised learning method in the space to predicting the class of task;(3) proposing simplified visualization language(SimVL)to pass the classification results and the specifying attributes to graph reasoner precisely;(4) finally,generating the graph.W ith respect to SimVL commands,several types of graph were generated.

    Articulate was guided by a conversational user interface to allow users to verbally describe and then manipulate what they want to see.Compared w ith many traditional visualization tools,Articulate needed less specific know ledge to generate graph,so itwas convenient.

    Artstein et al.studied the lim its of simple dialogue acts fortactical questioning dialogues[7].Tactical questioning used a simple scheme of dialogue acts, which were generated automatically from a representation of facts in〈object,attribute,value〉triples and actions in〈character,action〉pairs.They found the simple dialogue acts combined w ith some dialogue management techniques could cover over 75% of unseen utterances,and it could generate coherent interaction.They also found out even the kinds of utterances were not covered,and the simplex source of corpus was finally pointed out,then led to the result.

    Nouri et al.analyzed the influence of adding new know ledge to a conversational virtual character[8].They presented an experiment,which took a conversational character trained on a setof hand-authored,linked question-answer pairs,and let the character import the new sets of question-answer pairswhich were generated automatically from texts on different topics.The experiment showed that adding such know ledge affected the character's performance,and increased the error rate on questions that the original character was trained to answer.In return,the experiment showed the augmented character could also answer questions in the new topics.

    Raij et al.proposed virtual social perspective-taking (VSP),a new class of virtualexperience that immersed users in the experience lived by another person[9].Their exploration of VSP was driven by medical interview,and presented three principals to immerse the users:(1)providing input to user senses from the logs of target's senses;(2)instructing users to act and interact like the target;(3)reminding users that they were playing the role of the target.

    VSP elicited perspective-taking,and a new study pointed it would allow users to live and learn from the diverse experiences of others.It would help participants deeply understand others and the world,so that they could improve their behavior.

    Traditional method in VH dialogue system was to use professional human recordings or domain-specified speech synthesis.Georgila et al.performed a systematic evaluation to determ ine the best trade-off of these methods between performance and cost[10].The evaluation was on naturalness,conversation,and likability.They tested different types(indomain vs.out-of-domain),length,and content of utterances,and took into account the age and native language of raters as well as their fam iliarity w ith speech synthesis.They performed two experiments—a pilot one and the one running on Amazon's Mechanical Turk.The experiment showed that: (1) a professional human voice worked well than an amateur human voice and synthesized voices;(2)a high-quality generalpurpose voice or a good limited-domain voice could perform better than amateur human recordings;(3)both trained w ith speech recorded by actors,a high-quality general-purpose voice and a limited-domain voice had almost the same performance; (4)for out-of-domain sentences,the high-quality generalpurpose voice's rating was higher than the domain-specified voice's rating,but for in-domain sentences,the high-quality general-purpose voice's rating was lower;(5)long or negativecontent utterances did not receive lower ratings.

    Yao et al.proposed a new question generation tool for extracting question-answer pairs from text articles[11].They performed three experiments to demonstrate whether the new tool was suitable for giving domain-specific know ledge to conversational characters.The experiment showed that the new tool was convenient,effective,but w ith some degradation of the ability to answer questions about topics that the original character was trained to answer.Overall,question generation was prom ising for creating or augmenting a question answering conversational character using an existing text.

    Georgila et al.presented a new annotation scheme for cross-cultural argumentation and persuasion dialogues[12].The goal has two-fold:(1)aiming to fill the gap in the literature of cross-cultural argumentation and persuasion;(2)using this coding scheme to annotate negotiation dialogues to automatically learn argumentation and persuasion dialogue policies for different cultures.

    The scheme was based on a review of literature on crosscultural argumentation and persuasion,and adaptation of existing coding schemes on negotiation.They tested this scheme in three domains: florist-grocer domain, Saudi Arabian Standards Organization(SASO)domain(shown in Fig.4)and toy-naming domain.It proved that the scheme was general enough to be applicable to different domains w ith minor or no modifications at all.This scheme was used to efficiently learn culture-specific dialogue policies for argumentation and persuasion.

    Morbini et al.proposed a method to segment a given utterance into non-overlapping portions,each associated w ith a dialogue act[13].Compared w ith traditional methods,this method only needed labeled utterances(or utterance segments) corresponding to a single dialogue acting as training data.Experiments show the method has the benefit of significantly increased understanding of user intent,but has the drawback of complexity of the segment optimization.

    Brusk et al.studied the people's intuitive notion of gossip and its computational implement[14].They conducted two experiments.One was to identify what type of conversion could be recognized as gossip,and the other was to identify whether these conversations could fulfill three proposed elements: third person focus,pejorative evaluation and substantiating behavior.The results showed that: (1) conversations were very easily to be considered gossip if all elements were present,no intimate relationships existed between the participants,and also the person in focus was unambiguous;(2)conversations that had atmost one gossip elementwere not considered as gossip;(3)conversations that lacked one or two elements or had an ambiguous element led to inconsistent judgments.

    Abu-Jbara et al.presented Attitude M iner(shown in Fig.5),a system for m ining attitude from online discussions[15].Attitude M iner analyzed the online discussion from four levels: the word level,the sentence level,the post level,and the thread level.The discussion thread was represented as a signed network in which each discussantwas represented by a node and message between two discussants was represented as an edge.The polarity of text associated w ith the edge identified the sigh of the edge.The system predicted attitudes and identified subgroups(w ith a homogeneous and common focus among the discussants)w ith high accuracy.

    Traum etal.were concerned w ith situations in which there were at least three parties[16].They tracked the behaviors of head and examined how these behaviors influenced some aspects of a multi-layer dialogue model.They had implemented the model and tested in the Saudi Arabian Standards Organization English(SASO-EN) negotiation domain.The model was perhaps themost comprehensive implemented system involving visual recognition to supportmulti-party dialogue,because the model supported multiple virtual agents and involved head gestures w ith multifunctional meaning.In the model,head gestures could assist participate understanding the other's utterance.

    Morency et al.investigated how dialog context from an embodied conversational agent(ECA)could improve visual recognition of user gestures[1718].They presented a framework to extract information from spoken language to predict head gesture.They found a module of lexical,punctuation and tim ing features that could be used to learn how to predict user feedback.By using thismodule they were able to improve the recognition rate of the vision-only head gesture recognizer.

    2 Prediction

    Nowadays,VH application research in NLP is demanding.If we focus on studying interaction in QA technology,then apply the study result on HV dialogue,we may acquire surprising result.Based on the review of HV dialogue,the follow ing aspectswould be the further research points.

    2.1 Know ledgemodel adapted to VH dialogue

    Know ledgemodel is the foundation of interactive sentences representation and data storage.The know ledgemodel for VHs'dialogue has higher complexity,so that it can represent more know ledge points than traditional know ledgemodel of QA.The existing models(such as rational database,XML database,and RDF)have their own characteristics,but cannot represent VH's dialogue or store dialogue-relational data efficiently.The exploration on adaptive know ledge model would be the initial points of VH dialogue research.

    2.2 Research on VH's dialogue strategy

    The virtual dialogue should not only focus on NLP,but also the dialogue strategy is worth exploring.However,the problem is,many questions cannot be clearly described by just one question.For example,in medical science,doctor cannot diagnose w ith just one symptom described by a patient.VH's dialogue can take interactive QA system as reference,which is based on interaction strategy.How to define the interaction strategy,and base on the interactive strategy to retrieval know ledge base is a key problem which needs exploring.

    2.3 Interaction optim ization and know ledgebase reduction

    Interaction can bemapped into the question thatmatching the“know ledge point set”extracting from question and from know ledgebase.The similarmatching question is proved to be NP-complete problem,which means that just rely on simple interaction strategy will lead to too-high frequency.In order to conquer this weakness,it is essential to study the know ledge storage strategy,data model,search demand,and reduction method for the large data.In the condition ofmany know ledge points from questions,how to reduce the complexity of question and improve the effect of question analysis technology are also important issues.

    Above all, know ledge model, dialogue strategy,interaction optimization and know ledgebase reduction are proposed as research points from QA,and these technologies would be used in VH dialogue.

    3 Conclusions

    This paper reviews the important work of VH dialogue,and proposes some research points on the view of QA technologies.The future work is to find more suitable technologies,and deeply research the interaction QA,for probably improving the result of VH dialogue.

    [1]Institute for Creative Technologies.OfficialWeb Site of Institute for Creative Technologies[EB/OL].[2013-10-23].http://ict.usc.edu/.

    [2]Virtual Experiences Research Group.OfficialWeb Site of Virtual Experiences Research Group[EB/OL].2013-10-23.http:// verg.cise.ufl.edu/.

    [3]Rossen B,Cendan J,Lok B,et al.Using Virtual Humans to Bootstrap the Creation of Other Virtual Humans[C].Intelligent Virtual Agents 2010,Philadelphia,Pennsylvania,USA,2010: 392-398.

    [4]Rossen B,Lind S,Lok B,et al.Human-Centered Distributed Conversational Modeling:Efficient Modeling of Robust Virtual Human Conversations[C].Intelligent Virtual Agents 2009,the Netherlands,2009:474-481.

    [5]Rossen B,Lok B.A Crowdsourcing Method to Develop Virtual Human Conversational Agents[J].International Journal of Human-Computer Studies,2012,70(4):301-319.

    [6] Sun Y.Articulate:a Sem i-automated Model for Translating Natural Language Queries into Meaningful Visualizations[C].The 10th International Symposium on Smart Graphics,Banff,Canada,2010:184-195.

    [7]Artstein R,Rushforth M,Gandhe S,et al.Limits of Simple Dialogue Acts for Tactical Questioning Dialogues[C].The 7th IJCAI Workshop on Know ledge and Reasoning in Practical Dialogue Systems,Hyderabad,India,2011:1-7.

    [8]Nouri E,Artstein R,Leuski A,etal.Augmenting Conversational Characters with Generated Question-Answer Pairs[C].AAAI Fall Symposium:Question Generation,Arlington,Virginia,2011:49-52.

    [9]Raij A,Kotranza A,Lind D S,et al.Virtual Experiences for Social Perspective-Taking[C].Virtual Reality Conference2009,Lafayette,Louisiana,2009:99-102.

    [10]Georgila K,Black A W,Sagae K,et al.Practical Evaluation of Human and Synthesized Speech for Virtual Human Dialogue Systems[C].The 8th International Conference on Language Resources and Evaluation,Istanbul,2012:3519-3526.

    [11]Yao X C,Tosch E,Chen G,et al.Creating Conversational Characters Using Question Generation Tools[J].Dialogue&Discourse,2012,3(2):125-146.

    [12]Georgila K,Artstein R,Nazarian A,et al.An Annotation Scheme for Cross-cultural Argumentation and Persuasion Dialogues[C].The 12th Annual SIGdial Meeting on Discourse and Dialogue,Portland,Oregon,USA,2011:272-278.

    [13]Morbini F,Sagae K.Joint Identification and Segmentation of Domain-Specific Dialogue Acts for Conversational Dialogue Systems[C].The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies,Portland,Oregon,USA,2011:95-100.

    [14]Brusk J,Artstein R,Traum D.Don't Tell Anyone!:Two Experiments on Gossip Conversations[C].The 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue,Tokyo,Japan,2010:193-200.

    [15]Abu-Jbara A,Hassan A,Radev D.Attitude M iner:M ining Attitude from Online Discussions[C].2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstration Session,Montréal,Canada,2012:33-36.

    [16]Traum D,Morency L P.Integration of Visual Perception in Dialogue Understanding for Virtual Humans in Multi-party interaction[C].International Workshop on Interacting w ith ECAs as Virtual Characters,Toronto,Canada,2010:70.

    [17]Morency L P,Sidner C,Lee C,et al.The Role of Context in Head Gesture Recognition[C].The 21st National Conference on Artificial Intelligence,Boston,Massachusetts,2006:1650.

    [18]Morency L P,Sidner C,Lee C,et al.Head Gestures for Perceptual Interfaces: The Role of Context in Improving Recognition[J].Artificial Intelligence,2007,171(8/9):568-585.

    TP181 Document code:A

    1672-5220(2015)02-0341-04

    date:2014-10-10

    s:National Nature Science Foundations of China(Nos.61170027,61202169,and 61301140);Tianjin“131”Creative Talents Training Project,China(the 3rd level)

    * Correspondence should be addressed to LIU Li,E-mail:niceliuli@sina.com

    老熟女久久久| 97在线人人人人妻| 亚洲精品第二区| 国产精品一区www在线观看| 亚洲国产最新在线播放| videossex国产| 2021少妇久久久久久久久久久| 中文欧美无线码| 亚洲伊人久久精品综合| 在线观看三级黄色| 午夜久久久在线观看| 亚洲精品日韩在线中文字幕| 午夜av观看不卡| 成人黄色视频免费在线看| 日本与韩国留学比较| 一区二区av电影网| 日韩av免费高清视频| 在线观看美女被高潮喷水网站| 久久综合国产亚洲精品| 亚洲精品国产色婷婷电影| 久久久久人妻精品一区果冻| 一本—道久久a久久精品蜜桃钙片| 欧美bdsm另类| 亚洲av福利一区| 成人国产av品久久久| 天堂中文最新版在线下载| 满18在线观看网站| 成人亚洲精品一区在线观看| 亚洲国产精品一区二区三区在线| 欧美xxⅹ黑人| 国产亚洲av片在线观看秒播厂| 在线观看www视频免费| 另类精品久久| 丁香六月天网| 成人综合一区亚洲| 午夜影院在线不卡| 精品人妻在线不人妻| 国产毛片在线视频| 久久久久久久久久成人| 宅男免费午夜| www.av在线官网国产| videosex国产| 国产av码专区亚洲av| 欧美精品一区二区大全| 免费高清在线观看视频在线观看| 香蕉国产在线看| 亚洲av欧美aⅴ国产| 少妇高潮的动态图| 精品一区二区三卡| 夜夜爽夜夜爽视频| 国产淫语在线视频| 亚洲精品一二三| 秋霞伦理黄片| 亚洲国产精品999| 欧美日本中文国产一区发布| 日韩熟女老妇一区二区性免费视频| 欧美激情极品国产一区二区三区 | 午夜久久久在线观看| 最后的刺客免费高清国语| 亚洲国产精品国产精品| 免费观看av网站的网址| 一级a做视频免费观看| 国产精品嫩草影院av在线观看| av在线老鸭窝| 欧美精品一区二区大全| 亚洲精品国产色婷婷电影| 久久精品夜色国产| 国产精品人妻久久久久久| 免费高清在线观看视频在线观看| 综合色丁香网| 亚洲国产欧美日韩在线播放| 国产成人一区二区在线| 日韩伦理黄色片| 久久久久久久精品精品| 国产在线一区二区三区精| 成人免费观看视频高清| 黑人高潮一二区| 亚洲欧美清纯卡通| 91成人精品电影| 免费高清在线观看日韩| 少妇人妻久久综合中文| 在线 av 中文字幕| 两个人免费观看高清视频| 国产女主播在线喷水免费视频网站| 99久久中文字幕三级久久日本| 一二三四中文在线观看免费高清| 九九爱精品视频在线观看| 成年人免费黄色播放视频| 亚洲天堂av无毛| 国产精品女同一区二区软件| 18禁在线无遮挡免费观看视频| 久久韩国三级中文字幕| 免费av不卡在线播放| 国产精品.久久久| 全区人妻精品视频| 中文天堂在线官网| 精品一区二区三区四区五区乱码 | 国产高清三级在线| 精品一区二区三卡| a级片在线免费高清观看视频| 久久鲁丝午夜福利片| 亚洲第一区二区三区不卡| 人人妻人人爽人人添夜夜欢视频| 中文字幕精品免费在线观看视频 | 一二三四在线观看免费中文在 | 国产深夜福利视频在线观看| 人妻系列 视频| 内地一区二区视频在线| 欧美精品高潮呻吟av久久| 日韩欧美一区视频在线观看| 亚洲精品美女久久av网站| 免费观看在线日韩| 免费高清在线观看视频在线观看| 国产国语露脸激情在线看| 爱豆传媒免费全集在线观看| 国产高清国产精品国产三级| 99久久综合免费| 欧美成人午夜精品| 内地一区二区视频在线| 女人久久www免费人成看片| 亚洲国产精品专区欧美| 熟女人妻精品中文字幕| 伦精品一区二区三区| 免费观看a级毛片全部| 久久久久久久精品精品| 一级爰片在线观看| 最新的欧美精品一区二区| 成人影院久久| 内地一区二区视频在线| 满18在线观看网站| 亚洲国产精品成人久久小说| 国产精品99久久99久久久不卡 | √禁漫天堂资源中文www| 一区二区三区四区激情视频| 国产片特级美女逼逼视频| 日韩成人伦理影院| 日本欧美视频一区| 国产在线免费精品| 日产精品乱码卡一卡2卡三| 精品午夜福利在线看| 少妇猛男粗大的猛烈进出视频| 一边摸一边做爽爽视频免费| 日本欧美视频一区| 夫妻性生交免费视频一级片| 一区在线观看完整版| 亚洲精品国产色婷婷电影| 日本欧美国产在线视频| 成年av动漫网址| 久久毛片免费看一区二区三区| 蜜桃在线观看..| 国产av码专区亚洲av| 香蕉国产在线看| 男女高潮啪啪啪动态图| 99久国产av精品国产电影| 免费黄网站久久成人精品| 欧美日本中文国产一区发布| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站| 三级国产精品片| 精品一区二区三卡| 国产成人精品久久久久久| 极品人妻少妇av视频| 人人澡人人妻人| 一边摸一边做爽爽视频免费| av视频免费观看在线观看| 亚洲精品aⅴ在线观看| 亚洲美女视频黄频| 国产av国产精品国产| 免费日韩欧美在线观看| 18禁观看日本| 欧美日本中文国产一区发布| 1024视频免费在线观看| 美女国产视频在线观看| 亚洲精品av麻豆狂野| a 毛片基地| 亚洲国产看品久久| 亚洲av欧美aⅴ国产| 久久热在线av| 国产亚洲av片在线观看秒播厂| 天堂中文最新版在线下载| 亚洲欧洲日产国产| 亚洲精品国产av蜜桃| 精品国产露脸久久av麻豆| 久久久国产一区二区| 亚洲精品成人av观看孕妇| 免费大片黄手机在线观看| 国产成人免费观看mmmm| 亚洲精品第二区| 日韩,欧美,国产一区二区三区| www.色视频.com| 男人爽女人下面视频在线观看| 秋霞伦理黄片| 国产精品秋霞免费鲁丝片| 久久久久网色| av有码第一页| 五月玫瑰六月丁香| 亚洲精品中文字幕在线视频| 精品熟女少妇av免费看| 啦啦啦中文免费视频观看日本| 九九爱精品视频在线观看| 永久网站在线| 久久99热这里只频精品6学生| 久久人人97超碰香蕉20202| 在线天堂最新版资源| 久久久精品94久久精品| 高清毛片免费看| 天堂中文最新版在线下载| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品古装| 国产精品一区二区在线观看99| 99久久中文字幕三级久久日本| 国产精品久久久久久精品电影小说| 久久亚洲国产成人精品v| 搡女人真爽免费视频火全软件| 最近手机中文字幕大全| 99re6热这里在线精品视频| 美女国产视频在线观看| 丝袜在线中文字幕| 纵有疾风起免费观看全集完整版| av国产精品久久久久影院| 精品亚洲成a人片在线观看| 天天操日日干夜夜撸| 天堂8中文在线网| 亚洲国产精品国产精品| 大香蕉久久成人网| 亚洲欧美清纯卡通| 宅男免费午夜| 亚洲综合色惰| 妹子高潮喷水视频| 人成视频在线观看免费观看| 亚洲国产精品专区欧美| 欧美人与性动交α欧美精品济南到 | 啦啦啦中文免费视频观看日本| 91在线精品国自产拍蜜月| 国产成人aa在线观看| 亚洲国产精品国产精品| 欧美激情国产日韩精品一区| 久久免费观看电影| 精品午夜福利在线看| 毛片一级片免费看久久久久| 欧美亚洲日本最大视频资源| 久久久欧美国产精品| 男女免费视频国产| 26uuu在线亚洲综合色| 一二三四中文在线观看免费高清| 蜜桃国产av成人99| 久久免费观看电影| 热99国产精品久久久久久7| 欧美+日韩+精品| 国产精品国产三级国产av玫瑰| 水蜜桃什么品种好| 免费av不卡在线播放| 激情五月婷婷亚洲| 精品人妻一区二区三区麻豆| 汤姆久久久久久久影院中文字幕| 日本欧美国产在线视频| 国产成人精品在线电影| 亚洲国产精品一区三区| 日韩视频在线欧美| 我的女老师完整版在线观看| 国产精品久久久久久久久免| 国产永久视频网站| 大香蕉97超碰在线| 国产白丝娇喘喷水9色精品| 国产精品欧美亚洲77777| 三上悠亚av全集在线观看| 人成视频在线观看免费观看| 日韩欧美精品免费久久| 久久鲁丝午夜福利片| 国产亚洲欧美精品永久| 国产在线一区二区三区精| 丝袜人妻中文字幕| 国产片特级美女逼逼视频| 欧美变态另类bdsm刘玥| 少妇的丰满在线观看| 亚洲精品456在线播放app| 满18在线观看网站| 一二三四中文在线观看免费高清| 宅男免费午夜| 97在线视频观看| 伊人久久国产一区二区| 国产精品一国产av| 少妇人妻精品综合一区二区| 亚洲国产精品一区二区三区在线| 99久久综合免费| 亚洲性久久影院| 一级片'在线观看视频| 亚洲精品一区蜜桃| 国产一区二区在线观看日韩| 免费看av在线观看网站| 国产免费福利视频在线观看| 精品国产国语对白av| 亚洲久久久国产精品| 国产成人精品婷婷| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 人成视频在线观看免费观看| 又黄又粗又硬又大视频| 最近中文字幕2019免费版| 国产成人av激情在线播放| 日韩电影二区| 中文精品一卡2卡3卡4更新| 高清毛片免费看| 国产精品无大码| 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 亚洲 欧美一区二区三区| 午夜视频国产福利| 自拍欧美九色日韩亚洲蝌蚪91| 在线亚洲精品国产二区图片欧美| 只有这里有精品99| 最近的中文字幕免费完整| 天堂中文最新版在线下载| 国产成人免费无遮挡视频| 国产精品人妻久久久久久| 亚洲精品色激情综合| 三上悠亚av全集在线观看| 18在线观看网站| 又黄又粗又硬又大视频| 久久久久久久久久人人人人人人| av在线播放精品| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 久久精品国产鲁丝片午夜精品| 在线观看免费日韩欧美大片| a级毛色黄片| 一级片免费观看大全| 高清欧美精品videossex| 女性生殖器流出的白浆| 在线观看美女被高潮喷水网站| 日韩电影二区| 777米奇影视久久| 日韩制服丝袜自拍偷拍| 99香蕉大伊视频| 麻豆乱淫一区二区| 亚洲精品自拍成人| 水蜜桃什么品种好| 国产女主播在线喷水免费视频网站| 亚洲婷婷狠狠爱综合网| 黄色配什么色好看| 午夜免费鲁丝| 蜜桃在线观看..| 一边亲一边摸免费视频| 男女无遮挡免费网站观看| 99热网站在线观看| 十八禁高潮呻吟视频| 国产一区二区三区av在线| 欧美xxxx性猛交bbbb| 亚洲av日韩在线播放| 美女内射精品一级片tv| 少妇高潮的动态图| 免费观看无遮挡的男女| 十八禁网站网址无遮挡| 天堂8中文在线网| 久久亚洲国产成人精品v| 少妇的逼好多水| 丝袜喷水一区| 夜夜骑夜夜射夜夜干| 久久久久久久久久成人| 亚洲av电影在线观看一区二区三区| 精品一品国产午夜福利视频| 2018国产大陆天天弄谢| 精品视频人人做人人爽| 国产亚洲午夜精品一区二区久久| 另类亚洲欧美激情| 男女边吃奶边做爰视频| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 黑人巨大精品欧美一区二区蜜桃 | 高清毛片免费看| 波多野结衣一区麻豆| 热re99久久精品国产66热6| 蜜臀久久99精品久久宅男| 国产成人aa在线观看| 亚洲av欧美aⅴ国产| av女优亚洲男人天堂| 精品国产露脸久久av麻豆| 嫩草影院入口| 久久久国产精品麻豆| 人人澡人人妻人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级,二级,三级黄色视频| 国产老妇伦熟女老妇高清| 亚洲欧美精品自产自拍| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 老司机影院成人| 久久人妻熟女aⅴ| 国语对白做爰xxxⅹ性视频网站| 免费av不卡在线播放| 亚洲婷婷狠狠爱综合网| 99视频精品全部免费 在线| videossex国产| 99精国产麻豆久久婷婷| 大香蕉97超碰在线| 欧美精品人与动牲交sv欧美| 熟女人妻精品中文字幕| 久久久亚洲精品成人影院| 久久久久精品性色| 捣出白浆h1v1| 最新中文字幕久久久久| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 亚洲精品久久成人aⅴ小说| 男人添女人高潮全过程视频| 欧美精品一区二区大全| 美女福利国产在线| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| 欧美精品亚洲一区二区| 久久鲁丝午夜福利片| 国产精品三级大全| 三级国产精品片| 久久久久久久久久久免费av| 国产一区亚洲一区在线观看| 欧美国产精品va在线观看不卡| 熟女av电影| 最新中文字幕久久久久| 一级黄片播放器| videosex国产| 国产成人精品婷婷| 中文字幕制服av| 中文字幕人妻熟女乱码| 国产乱来视频区| 最近中文字幕2019免费版| 嫩草影院入口| 亚洲精品美女久久久久99蜜臀 | 精品久久久久久电影网| 日本91视频免费播放| 777米奇影视久久| h视频一区二区三区| 男女高潮啪啪啪动态图| 欧美激情国产日韩精品一区| 男男h啪啪无遮挡| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 亚洲精品日韩在线中文字幕| 女的被弄到高潮叫床怎么办| 国产成人91sexporn| 免费黄频网站在线观看国产| 一边亲一边摸免费视频| 高清视频免费观看一区二区| 日日爽夜夜爽网站| 在线天堂最新版资源| 亚洲国产色片| 在线观看免费日韩欧美大片| 亚洲精品国产av蜜桃| 少妇人妻久久综合中文| 精品国产一区二区三区四区第35| 成人18禁高潮啪啪吃奶动态图| 亚洲久久久国产精品| 国产1区2区3区精品| 黑丝袜美女国产一区| 在线 av 中文字幕| 超色免费av| 飞空精品影院首页| www.色视频.com| 日韩电影二区| 免费大片18禁| 波野结衣二区三区在线| 99久久精品国产国产毛片| 精品福利永久在线观看| 日韩一区二区三区影片| 欧美bdsm另类| 国产精品麻豆人妻色哟哟久久| 欧美另类一区| 久久鲁丝午夜福利片| 91精品国产国语对白视频| 亚洲中文av在线| 午夜福利视频精品| 制服丝袜香蕉在线| 9热在线视频观看99| 免费高清在线观看视频在线观看| 久久久久久人人人人人| 亚洲av.av天堂| 国产色婷婷99| 黑人欧美特级aaaaaa片| 欧美最新免费一区二区三区| 亚洲国产精品成人久久小说| 两性夫妻黄色片 | 日产精品乱码卡一卡2卡三| 晚上一个人看的免费电影| 99热网站在线观看| 青春草视频在线免费观看| av片东京热男人的天堂| 国产精品蜜桃在线观看| 插逼视频在线观看| 蜜臀久久99精品久久宅男| 在线观看免费高清a一片| 久久精品熟女亚洲av麻豆精品| av在线观看视频网站免费| 久久精品久久精品一区二区三区| av线在线观看网站| 大香蕉久久成人网| 欧美日韩国产mv在线观看视频| 色5月婷婷丁香| 大码成人一级视频| 七月丁香在线播放| 观看美女的网站| 国产乱人偷精品视频| 亚洲av中文av极速乱| videossex国产| 久久av网站| 中文字幕最新亚洲高清| 国产乱人偷精品视频| 亚洲熟女精品中文字幕| 最近2019中文字幕mv第一页| 亚洲在久久综合| 国产激情久久老熟女| 春色校园在线视频观看| 另类亚洲欧美激情| 久久久久久伊人网av| 超碰97精品在线观看| 欧美日本中文国产一区发布| 一级a做视频免费观看| 丝瓜视频免费看黄片| 1024视频免费在线观看| 国产精品女同一区二区软件| 日韩制服丝袜自拍偷拍| av网站免费在线观看视频| 国产在视频线精品| 成年人免费黄色播放视频| 欧美国产精品一级二级三级| 在线观看人妻少妇| 激情五月婷婷亚洲| 岛国毛片在线播放| 亚洲av免费高清在线观看| 亚洲av中文av极速乱| 久久久久久久大尺度免费视频| 91aial.com中文字幕在线观看| 欧美xxxx性猛交bbbb| 欧美精品人与动牲交sv欧美| 91精品伊人久久大香线蕉| 国产成人aa在线观看| 亚洲av日韩在线播放| 美国免费a级毛片| 亚洲第一区二区三区不卡| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 国产老妇伦熟女老妇高清| 午夜福利网站1000一区二区三区| 王馨瑶露胸无遮挡在线观看| 欧美激情 高清一区二区三区| 男女边吃奶边做爰视频| 热99久久久久精品小说推荐| 中国国产av一级| 久久精品国产亚洲av涩爱| 两个人看的免费小视频| 免费在线观看完整版高清| 两个人看的免费小视频| 人人妻人人爽人人添夜夜欢视频| 久久久精品94久久精品| 日韩在线高清观看一区二区三区| 国产精品欧美亚洲77777| 少妇的逼水好多| 精品一区在线观看国产| 秋霞伦理黄片| 中文字幕最新亚洲高清| 精品人妻在线不人妻| 色哟哟·www| 久久毛片免费看一区二区三区| 91久久精品国产一区二区三区| 两个人免费观看高清视频| 国产亚洲午夜精品一区二区久久| 精品人妻在线不人妻| 搡老乐熟女国产| 亚洲,欧美,日韩| 国精品久久久久久国模美| 亚洲经典国产精华液单| 午夜老司机福利剧场| 狠狠婷婷综合久久久久久88av| 久久精品国产综合久久久 | 久久久久视频综合| 精品一区二区三卡| 国产亚洲午夜精品一区二区久久| 国产av一区二区精品久久| 美女xxoo啪啪120秒动态图| 免费看光身美女| 黑人猛操日本美女一级片| 一区二区三区乱码不卡18| 99国产综合亚洲精品| 一本久久精品| 一级片免费观看大全| 超碰97精品在线观看| 亚洲美女视频黄频| 国产色爽女视频免费观看| 欧美精品国产亚洲| 另类亚洲欧美激情| 天堂8中文在线网| 国产精品.久久久| 人妻人人澡人人爽人人| 国产av精品麻豆| 欧美人与性动交α欧美软件 | 搡老乐熟女国产| 国产探花极品一区二区| 欧美日韩视频高清一区二区三区二| 国产午夜精品一二区理论片| 天堂8中文在线网| 国产亚洲av片在线观看秒播厂| 爱豆传媒免费全集在线观看| 日韩电影二区| 黄片播放在线免费| 国产一区二区激情短视频 | 国产色婷婷99| 精品少妇内射三级| 两性夫妻黄色片 | 边亲边吃奶的免费视频| 久久久精品区二区三区| 精品一区二区免费观看| 80岁老熟妇乱子伦牲交| av卡一久久| 午夜日本视频在线| 久久精品国产亚洲av天美| 免费av中文字幕在线|