金萍萍王亞娟 王彥 張紅梅 張烜昭 陳麗青 錢岳晟* 陳凌*(.上海市閔行區(qū)莘莊社區(qū)衛(wèi)生服務(wù)中心 上海 099;.上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院 上?!?005)
瞬時受體電位通道C3、C6在高血壓發(fā)病中的作用
金萍萍1王亞娟1王彥2張紅梅1張烜昭1陳麗青1錢岳晟2*陳凌1*
(1.上海市閔行區(qū)莘莊社區(qū)衛(wèi)生服務(wù)中心上海201199;2.上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院上海200025)
摘要高血壓是最常見的慢性病,發(fā)病機制復(fù)雜,Ca2+活動異常是其發(fā)生的重要機制之一。作為非電壓依賴的鈣離子通道,瞬時受體電位通道C亞家族(TRPC)參與細胞凋亡、血管收縮、血小板激活及心肌肥厚等多種生理病理過程,而TRPC3和TRPC6與原發(fā)性高血壓關(guān)系密切,在作用機制上與高血壓傳統(tǒng)發(fā)病機制存在區(qū)別,是目前研究中廣泛采用的研究對象。本文對TRPC3、TRPC6分子在高血壓發(fā)病中的作用及相關(guān)進展進行綜述。
關(guān)鍵詞瞬時受體電位通道高血壓鈣通道
The role of the transient receptor potential channel C3 and C6 in the development of hypertension
JIN Pingping1, WANG Yajuan1, WANG Yan2, ZHANG Hongmei1, ZHANG Xuanzhao1, CHEN Liqing1, QIAN Yuesheng2, CHEN Ling1
(1.Xinzhuang Community Health Service Center of Minhang District, Shanghai 201199, China; 2.Ruijing Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China)
ABSTRACTHypertension is the most common chronic disease, its pathogenesis is complex, and the abnormal Ca2+activity is one of the important mechanisms. As a non-voltage-dependent calcium channel, the transient receptor potential channel (TRPC) C3 and C6 participate in many physiological and pathological processes, such as the cell apoptosis, vasoconstriction, platelet activation and cardiac hypertrophy. The TRPC3 and TRPC6 are closely related to the primary hypertension; however, in the mechanism of the action, there is difference in the traditional pathogenesis of hypertension. They are widely used as the objects in the present research. This paper summarizes the roles of TRPC3 and TRPC6 and the related progress in the pathogenesis of hypertension.
KEY WORDStransient receptor potential channel; hypertension; calcium channel
高血壓是最常見的慢性病,是多種心腦血管疾病的重要病因,同時也是導(dǎo)致心血管疾病死亡的主要原因之一[1],積極防治高血壓是廣受關(guān)注的重要課題。高血壓的發(fā)病機制復(fù)雜,迄今尚未完全闡明。近年來,一種細胞膜上的非選擇性陽離子通道,瞬時受體電位通道C亞家族(transient receptor potential canonical,TRPC)與高血壓的關(guān)系已成為研究熱點。多項研究提示,TRPC與高血壓、肺動脈高壓、心室重構(gòu)等多種心血管疾病的發(fā)生及預(yù)后密切相關(guān)[2-11]。TRPC通道組織分布廣泛,受多種因素調(diào)節(jié),廣泛參與心血管病理生理過程。TRPC家族有7個亞族(TRPC 1~7),其中TRPC3和TRPC6是核心成員,研究發(fā)現(xiàn)TRPC3和TRPC6與原發(fā)性高血壓關(guān)系密切,作用機制與高血壓傳統(tǒng)發(fā)病機制存在區(qū)別。本文綜述TRPC3、TRPC6分子表達在高血壓發(fā)病中的作用。
TRPC含有700~900個氨基酸序列,有6個跨膜區(qū)(S1~S6),S4缺乏正電荷氨基酸殘基,也就是說TRPC通道是非電壓依賴性通道。S4與S6之間片段內(nèi)嵌構(gòu)成離子(鈣離子、鈉離子)通過孔道,但不同的TRPC通道對鈉離子和鈣離子的選擇比值(PCa/ PNa)有所不同,因此TRPC通道為非選擇性陽離子通道。TRPC通道的激活受多種因素調(diào)節(jié),包括機械牽張、氧化應(yīng)激及一些內(nèi)、外源性配體和細胞內(nèi)信號分子。TRPC通道被磷脂酶C偶聯(lián)膜受體激活是主要的作用機制。激動劑與G蛋白偶聯(lián)受體或酪氨酸受體結(jié)合后,激活磷脂酶C(PLC),使4,5-二磷酸磷脂酰肌醇(PIP2)水解產(chǎn)生1,4,5-三磷酸肌醇(IP3)和二酰甘油(DAG)。
TRPC3已證實在高血壓及心肌肥厚的病理生理過程中發(fā)揮重要作用。在自發(fā)性高血壓大鼠、心臟壓力負荷過高大鼠以及高血壓患者中,均能觀察到TRPC3水平升高[6,12-15]。研究表明,肌細胞靶向TRPC3過表達小鼠表現(xiàn)出心臟自發(fā)性肥大、擴張和活化T細胞核因子(nuclear factor of activated T-cells,NFAT)活性增高等特性[7];在缺血再灌注模型中,也同樣觀察到細胞凋亡進程加劇[16]。相反,在TRPC3顯性失活的心肌細胞中,心臟對過度壓力負荷或神經(jīng)激素刺激的反應(yīng)性則大大降低[17]。這表明TRPC3的活化和不適當(dāng)?shù)姆屎襁^程之間存在聯(lián)系,同時也表明對TRPC3的干預(yù)可能是一個潛在的治療靶點。
TRPC6被認為參與了萍全身性和肺血管疾病的病理生理過程。在肺組織中,該通道的激活是缺氧性血管收縮的中心環(huán)節(jié),TRPC6介導(dǎo)的收縮作用保證了肺血流從通氣較差的肺組織流入通氣較好的區(qū)域,這種效應(yīng)是一個重要的生理學(xué)代償機制[18]。TRPC3和TRPC6之間盡管有顯著的氨基酸序列同源性,然而在血管和心臟的病理生理進程中,這兩種亞型在信號轉(zhuǎn)導(dǎo)中卻履行著不同的職責(zé)。TRPC3和TRPC6均能被不同的G蛋白偶聯(lián)受體(GPCR)或TRKs激活并繼而引起PLC活化,兩者同樣也能直接被DAG激活。最初的報道表明,TRPC6通道對壓力、牽張力等機械刺激具有較高的敏感性,這種反應(yīng)性獨立于細胞膜受體的活化作用之外;TRPC3則不具備這種效應(yīng)[19]。然而,更新的研究發(fā)現(xiàn),機械刺激在血管細胞中并不能獨立地激活內(nèi)向電流,但其與偶聯(lián)受體的共存狀態(tài)卻有利于蛋白通道的活化[6]。免疫沉淀法分析顯示,TRPC3 和TRPC6之間存在一定的聯(lián)系,TRPC3通道電流的減弱往往與TRPC6的顯性失活相關(guān)[20]。但是,另一項研究卻發(fā)現(xiàn)在缺失TRPC6基因的小鼠中,TRPC3 的mRNA表達上調(diào),這提示兩者中任一基因的表達都可能對另一基因產(chǎn)生潛在的負向調(diào)控作用[21]。
2.1原發(fā)性高血壓的發(fā)生機制
傳統(tǒng)觀念認為原發(fā)性高血壓是遺傳和環(huán)境相互作用的結(jié)果,據(jù)估計遺傳作用為30%~60%,環(huán)境因素與多種基因的相互作用會使血壓傾斜分布偏移至更高水平[22]。因此,影響這兩方面的因素均參與了高血壓的發(fā)生,主要環(huán)節(jié)有:①鈉鹽的腎臟潴留。過多的鈉鹽被腎臟重吸收,循環(huán)容量增加,機體為避免心輸出量增高使組織過度灌注,全身阻力小動脈收縮增強,外周血管阻力增加。②內(nèi)皮細胞功能失調(diào)。內(nèi)皮細胞被認為是多種舒張收縮物質(zhì)的來源,對其下方的平滑肌細胞有局部的旁分泌影響[23]。③交感神經(jīng)活性亢進。交感神經(jīng)興奮患者兒茶酚胺水平升高,通過單獨或與兒茶酚胺對腎素釋放刺激的協(xié)同作用,收縮小動脈,增加心排出量或改變正常的腎臟壓力-容積關(guān)系[24]。④腎素-血管緊張素(Ang)系統(tǒng)(RAS)。腎素的所有功能均通過合成AngⅡ完成,AngⅡ與其1型受體(AT1R)結(jié)合,直接收縮小動脈,并通過刺激醛固酮分泌增加循環(huán)血容量。⑤胰島素抵抗。胰島素抵抗是2型糖尿病和高血壓發(fā)生的共同病理生理基礎(chǔ),胰島素抵抗造成繼發(fā)性高胰島素血癥,使交感神經(jīng)活性亢進,并可增加腎臟鈉鹽重吸收[25-26]。
2.2TRPC通道與高血壓的形成
作為非電壓依賴的鈣離子通道,在不同內(nèi)環(huán)境中,TRPC參與細胞凋亡、血管收縮、血小板激活及心肌肥厚等多種生理病理過程。Liu等[22]的研究提示,TRPC可能通過調(diào)節(jié)細胞內(nèi)Ca2+濃度,參與RAS激活引起的高血壓的發(fā)生和發(fā)展。
2.2.1鈣離子與高血壓
原發(fā)性高血壓患者多存在細胞膜鈣轉(zhuǎn)運缺陷,最終導(dǎo)致細胞內(nèi)游離鈣離子濃度升高。鈣離子通過興奮-收縮、興奮-代謝藕聯(lián),增高平滑肌張力和血管阻力、促血小板功能亢進和增加紅細胞剛性等,升高血壓、損傷血管,并參與血栓性并發(fā)癥的發(fā)生和發(fā)展。細胞質(zhì)游離Ca2+濃度是收縮-舒張循環(huán)的主要決定因素[27]。
平滑肌細胞的肌質(zhì)網(wǎng)不甚發(fā)達,細胞質(zhì)內(nèi)Ca2+濃度升高主要是因去極化的肌細胞膜通透性改變所致,細胞外Ca2+經(jīng)平滑肌細胞上的鈣通道進入細胞內(nèi)[28]。細胞內(nèi)外游離的Ca2+在血壓調(diào)節(jié)中起重要作用,在高血壓患者血清中,總鈣正常而離子鈣含量降低,細胞外蛋白質(zhì)與Ca2+結(jié)合亦發(fā)生異常。除體液鈣代謝紊亂外,細胞內(nèi)同樣存在鈣代謝障礙,主要表現(xiàn)為細胞內(nèi)鈣分布和依賴鈣的多種酶的活性異常,細胞內(nèi)鈣的代謝紊亂與高血壓發(fā)病有直接聯(lián)系。原發(fā)性高血壓患者的血細胞、淋巴細胞和脂肪細胞內(nèi)游離Ca2+水平明顯增高,而血小板游離Ca2+水平與血中水平呈正相關(guān)。就血管平滑肌本身而言,高血壓患者表現(xiàn)為多種鈣轉(zhuǎn)運缺陷,如細胞膜對Ca2+被動通透性增加,鈣泵最大激活能力和膜結(jié)合鈣能力下降以及Na+-Ca2+交換受抑制等[29],最終導(dǎo)致Ca2+漏流增多,電壓依賴性Ca2+通道及受體操縱性Ca2+通道開放,大量Ca2+內(nèi)流;同時因鈣泵減弱使進入細胞內(nèi)的Ca2+不能及時排出,導(dǎo)致血管平滑肌細胞內(nèi)持續(xù)高鈣水平,這可能是高血壓病發(fā)病機制的最后共同途徑。
2.2.2TRPC介導(dǎo)的Ca2+活動
有研究在原發(fā)性高血壓患者血管內(nèi)皮細胞和SHR的心臟組織中發(fā)現(xiàn)TRPC表達升高參與了高血壓病的發(fā)生、發(fā)展[15,21]。TRPC6大量而特異地表達于不同血管的平滑肌細胞和內(nèi)皮細胞,與原發(fā)性高血壓關(guān)系密切。首先,TRPC6是受體介導(dǎo)的鈣離子通道的重要組成成分,Ang II等血管活性物質(zhì)可以通過與GPCR結(jié)合,激活PLC并分解PIP2為DAG和IP3,其中DAG可激活TRPC6通道蛋白,引起Ca2+內(nèi)流。然而,TPRC6的作用機制與原發(fā)性高血壓的發(fā)病機制存在一定的區(qū)別,與傳統(tǒng)的電壓鈣通道相比,TPRC6具有較小的電導(dǎo),短暫的單通道開放時程(<1 ms)以及雙向整流等特性[30],雖然同樣能傳遞長時程的鈣離子信號,參與細胞增殖、凋亡等過程,但更直接的作用可能是引起血壓值的波動,即血壓變異性。
2.2.3TRPC與RAS
研究發(fā)現(xiàn)在Ang Ⅱ誘導(dǎo)下,自發(fā)性高血壓大鼠、哇巴因高血壓大鼠的血管收縮反應(yīng)明顯增高,腸系膜動脈平滑肌中TRPC1蛋白表達明顯增加[2-3]。Liu等[22]發(fā)現(xiàn)自發(fā)性高血壓大鼠血管平滑肌細胞中TRPC3蛋白表達增加,藥物干預(yù)后平滑肌細胞中TRPC3蛋白表達在替米沙坦組顯著降低,氨氯地平組無明顯變化。Takahashi 等[31]發(fā)現(xiàn)在人冠狀動脈平滑肌細胞中,AngⅡ可刺激TRPC1表達,而受體操縱性Ca2+通道(ROC)阻滯劑2-氨乙氧基二苯酯硼酸可抑制Ang Ⅱ誘導(dǎo)的肥大反應(yīng),用siRNA干擾靶向抑制TRPC1,可減少SOC通道鈣內(nèi)流,提示TRPC可能參與RAS介導(dǎo)的血管平滑肌收縮反應(yīng)性增強和細胞增殖肥大,從而促進高血壓的發(fā)生和發(fā)展。
2.2.4TRPC與交感神經(jīng)活性亢進
有研究發(fā)現(xiàn),α1-腎上腺素受體的激活和加壓素刺激,通過ROC激活機制,可以使血管平滑肌中TRPC6表達增強[32-33]。但Dietrich等[34]對TRPC6-/-小鼠進行研究,預(yù)期TRPC6-/-小鼠動脈環(huán)血管收縮對ROC通道激活劑1-oleoyl-2-acetylglycerol刺激無反應(yīng),結(jié)果卻誘發(fā)了更加劇烈地收縮。而用siRNA靶向抑制TRPC3基因表達,血管收縮反應(yīng)降低與野生型無明顯差別。因此推測,野生型小鼠的平滑肌細胞內(nèi),正常受體操縱性鈣內(nèi)流可能與TRPC3/6通道異聚體構(gòu)成有關(guān),這使TRPC6通道與交感神經(jīng)興奮性的關(guān)系有待進一步研究。
2.2.5TRPC在動脈粥樣硬化中的作用
有研究顯示,TRPC通道與動脈粥樣硬化有一定的相關(guān)性,其介導(dǎo)的炎癥反應(yīng)在動脈粥樣硬化中發(fā)揮作用。在人冠狀動脈內(nèi)皮細胞中,三磷酸腺苷誘導(dǎo)可增強血管細胞黏附分子-1的表達,同時伴隨TRPC3介導(dǎo)的Ca2+內(nèi)流增加;siRNA靶向抑制TRPC3基因,可顯著減少上述現(xiàn)象[35]。Foster等[36]發(fā)現(xiàn)TRPC6通道激動劑氟芬那酸使這一作用增強。另外,溶血卵磷脂還通過TRPC6-TRPC5激活機制,使胞內(nèi)Ca2+濃度增加,抑制內(nèi)皮細胞遷移,不利于損傷的內(nèi)皮細胞愈合。
TRPC通道在心血管疾病中的研究剛剛起步,卻已顯示出廣泛的病理生理意義。與傳統(tǒng)的電壓依賴性鈣通道作用機制不同,TRPC通道有可能成為新的藥物靶點。尋找TRPC通道特異性阻斷劑治療心血管疾病,將具有重要的現(xiàn)實意義和廣闊的發(fā)展前景。
參考文獻
[1]中國高血壓防治指南起草委員會. 中國高血壓防治指南[J]. 高血壓雜志, 2000, 8(2): 103-112.
[2]Chen X, Yang D, Ma S, et al. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels[J]. J Cell Mol Med, 2010, 14(10): 2483-2494.
[3]Pulina MV, Zulian A, Berra-Romani R, et al. Up-regulation of Na+ and Ca2+transporters inarterial smooth muscle from ouabain-induced hypertensive rats[J]. Am J Physiol Heart Circ Physiol, 2010, 298(1): H263-274.
[4]Yu NG, Keller SH, Remillard CV, et al. A functional singlenucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension[J]. Circulation, 2009, 119(17): 2313-2322.
[5]Lu W, Ran P, Zhang D, et al. Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potentialexpression in rat pulmonary arterial smooth muscle[J]. Am J Physiol Cell Physiol, 2010, 298(1): C114-C123.
[6]Bush EW, Hood DB, Papst PJ, et al. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling[J]. J Biol Chem, 2006, 281(44): 33487-33496.
[7]Nakayama H, Wilkin BJ, Bodi I, et al. Calcineurin-dependent cardiac hypertrophy is activated by TRPC in the adult mouse heart[J]. FASEB J, 2006, 20(10): 1660-1670.
[8]Williams IA, Allen DG. Intracellular calcium handling in ventricular myocytes from mdx mice [J]. Am J Physiol Heart Circ Physiol, 2007, 292(2): 846-855.
[9]Ward ML, Williams IA, Chu Y, et al. Stretchactivated channels in the heart: Contributions to length-dependence and to cardiomyopathy[J]. Prog Biophys Mol Biol, 2008, 97(2-3): 232-249.
[10]Kumar B, Dreja K, Shah SS, et al. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia[J]. Circ Res, 2006, 98(4): 557-563.
[11]Edwards JM, Neeb ZP, Alloosh MA, et al. Exercise training decreases store-operated Ca2+entryassociated with metabolic syndrome and coronary atherosclerosis[J]. Cardiovasc Res, 2010, 85(3): 631-640.
[12]Onohara N, Nishida M, Inoue R, et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy[J]. EMBO J, 2006, 25(22): 5305-5316.
[13]Ohba T, Watanabe H, Murakami M, et al. Upregulation of TRPC1 in the development of cardiac hypertrophy[J]. J Mol Cell Cardiol, 2007, 42(3): 498-507.
[14]Liu D, Yang D, He H, et al. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats[J]. Hypertension, 2009, 53(1): 70-76.
[15]Thilo F, Loddenkemper C, Berg E, et al. Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension[J]. Mod Pathol, 2009, 22(3): 426-430.
[16]Shan D, Marchase RB, Chatham JC. Overexpression of TRPC3 increases apoptosisbutnotnecrosisinresponseto ischemia-reperfusioninadultmouse cardiomyocytes[J]. Am J Physiol Cell Physiol, 2008, 294(3): C833-C841.
[17]Wu X, Eder P, Chang B, et al. TRPC channels are necessary mediators of pathologic cardiac hypertrophy[J]. Proc Natl Acad Sci USA, 2010, 107(15): 7000-7005.
[18]Weissmann N, Dietrich A, Fuchs B, et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange[J]. Proc Natl Acad Sci USA, 2006, 103(50): 19093-19098.
[19]Seth M, Zhang ZS, Mao L, et al.TRPC1 Channels are critical for hypertrophic signaling in the Heart [J]. Circ Res, 2009, 105(10): 1023-1030.
[20]Lin MJ, Leung GP, Zhang WM, et al. Chronic hypoxiainduced upregulation of tore-operated and receptor-operated Ca2+channels in pulmonary arterial smooth uscle cells: a novel mechanism of hypoxic pulmonary hypertension[J]. Circ Res, 2004, 95(5): 496-505.
[21]Liu FF, Ma ZY, Li DL, et al. Differential expression of TRPC channels in the left ventricle of spontaneously hypertensive rats[J]. Mol Biol Rep, 2010, 37(6): 2645-2651.
[22]Iliaou A, Lichtenstein P, Orgenstern R, et al. Repeated blood pressure measurements in a sample of Swedish twins: Heritabilities and associations with polymorphisms in the rennin-angiotensin-aldosterone system[J]. Hypertens, 2002, 20(8): 1543-1550.
[23]Carretero OA, Oparil S. Essential hypertension Part Ⅰ: definition and etiology[J]. Circulation, 2000, 101(3): 329-335.
[24]Cosentino F, Luscher TF. Effects of blood pressure and glucose on endothelial function[J]. Curr Hypertens Rep, 2001, 3(1): 79-88.
[25]Esler M, Rumantir M, Kaye D, et al. The sympathetic neurobiology of essential hypertension:disparate influences of obesity, stress, and noradrenaline transporter dysfunction?[J]. Am J Hypertens, 2001, 14(6 Pt 2): 139S-146S.
[26]Julius S, Gudbrandsson T, Jamerson K, et al. The hemodynamic link between insulin resistance and hypertension[J]. Hypertension, 1991, 9(11): 983-986.
[27]Chen J, Crossland RF, Noorani MM, et al. Inhibition of TRPC1/TRPC3 by PKG contributes toNO-mediated vasorelaxation[J]. Am J Physiol Heart Circ Physiol, 2009, 297(1): H417-H424.
[28]趙光勝. 鈣與高血壓[J]. 上海預(yù)防醫(yī)學(xué)雜志, 1999, 11(3): 100-102.
[29]Aviv A. The links between cellular Ca2+and Na+/H+exehange in the pathophysiology of essential hypertension[J]. Am J Hypertens, 1996, 9(7): 703-707.
[30]Iwamoto T, Watanabe Y, Kita S, et al. Na+/Ca2+exchange inhibitors:a new class of calcium regulators[J]. Cardlovasc Hematol Disord Drug Targets, 2007, 7(3): 188-198.
[31]Hoffmann T, Obukhov AG, Schaefer M, et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol[J]. Nature, 1999, 397(6716): 259-263.
[32]Dietrich A, Mederos YS, Gollasch M, et al. Increased vascular smooth musclecontractility in TRPC6-/-mice[J]. Mol Cell Biol, 2005, 25(16): 6980-6989.
[33]Takahashi K, Watanabe H, Murakami M, et al. Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy[J]. Atherosclerosis, 2007, 195(2): 287-296.
[34]Li M, Zacharia J, Sun X, et al. Effect of siRNA knockdown of TRPC6 and InsP3R1 in vasopressin-induced Ca2+oscillations of A7r5 vascular smooth muscle cells[J]. Pharmacol Res, 2008, 58(5-6): 308-315.
[35]Smedlund K, Vazquez G. Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2008, 28(11): 2049-2055.
[36]Foster RR, Zadeh MA, Welsh GI, et al. Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells[J]. Cell Calcium, 2009, 45(4): 384-390.
收稿日期:(2015-06-16)
*通訊作者:陳凌,E-mail:wyjuan001@163.com;錢岳晟,E-mail:qys2500@yahoo.com.cn
中圖分類號:R544.1
文獻標(biāo)識碼:A
文章編號:1006-1533(2015)24-0021-04