張 雪, 張華方, 劉 晴, 張宇微, 劉 波*
1.哈爾濱師范大學(xué)生命科學(xué)與技術(shù)學(xué)院, 哈爾濱 150025;
2.中國(guó)農(nóng)業(yè)科學(xué)院生物技術(shù)研究所, 北京 100081;
3.北京市城市排水監(jiān)測(cè)總站有限公司, 北京 100061;
4.浙江工商大學(xué)食品與生物工程學(xué)院, 杭州 310018
微生物冷休克蛋白的生理功能及其潛在應(yīng)用
張 雪1,2§, 張華方3§, 劉 晴2,4, 張宇微2, 劉 波2*
1.哈爾濱師范大學(xué)生命科學(xué)與技術(shù)學(xué)院, 哈爾濱 150025;
2.中國(guó)農(nóng)業(yè)科學(xué)院生物技術(shù)研究所, 北京 100081;
3.北京市城市排水監(jiān)測(cè)總站有限公司, 北京 100061;
4.浙江工商大學(xué)食品與生物工程學(xué)院, 杭州 310018
冷休克反應(yīng)是普遍存在于微生物體內(nèi)的一種適應(yīng)環(huán)境溫度驟降的應(yīng)答機(jī)制,而氨基酸序列高度保守的冷休克蛋白則是調(diào)控冷休克反應(yīng)的重要因子。越來(lái)越多的研究表明,冷休克蛋白除了調(diào)控冷休克反應(yīng)外,還參與調(diào)控了生物體多個(gè)性狀,如宿主正常生長(zhǎng)和分化、病原菌的侵襲力和致病性以及宿主對(duì)多種逆境(高滲透壓、抗生素)的應(yīng)答。綜述了冷休克蛋白及其來(lái)源、其參與調(diào)控的生理性狀和基于冷休克反應(yīng)及冷休克蛋白的應(yīng)用,以期為發(fā)酵條件優(yōu)化、食品儲(chǔ)藏、致病菌抑制以及作物性狀改良等方面提供有益參考。
冷休克反應(yīng);冷休克蛋白;生理功能;逆境
環(huán)境因子(如溫度、濕度、壓力等)與生物體的生理狀態(tài)甚至形態(tài)密切相關(guān),其中環(huán)境溫度急劇變化是生物體經(jīng)常面臨的脅迫,生物體隨之進(jìn)化出相應(yīng)的生存機(jī)制來(lái)解除或適應(yīng)脅迫。環(huán)境溫度大幅降低時(shí),生物經(jīng)冷休克反應(yīng)來(lái)調(diào)整蛋白表達(dá)模式以適應(yīng)低溫環(huán)境[1]。冷休克反應(yīng)(cold shock response)是微生物乃至生物中普遍存在一種適應(yīng)溫度驟降及低溫環(huán)境的生存機(jī)制,已在嗜熱菌(Thermusthermophilus[2],Thermotogamaritima[3],Thermussp. GH5[4],Thermoanaerobactertengcongensis[5])、中溫菌(Lactobacilluscasei[6],Bordetellabronchiseptica[7],Caulobactercrescentus[8],Bacillussubtilis[1])和低溫菌(Psychromonasarctica[9]和Pseudoalteromonashaloplanktis[10])等眾多微生物中發(fā)現(xiàn)了冷休克反應(yīng)現(xiàn)象。目前,對(duì)大腸桿菌(Escherichiacoli)冷應(yīng)激反應(yīng)的研究最為深入。研究表明,環(huán)境溫度由37℃降驟降至20℃以下時(shí),指數(shù)生長(zhǎng)期的Escherichiacoli呈現(xiàn)約3~6 h的冷休克反應(yīng)期;在此階段細(xì)胞生長(zhǎng)停滯、多數(shù)蛋白停止表達(dá),僅20多種蛋白仍持續(xù)表達(dá)[11,12];其中蛋白CS7.4的表達(dá)量在短時(shí)間內(nèi)提高了近200倍,被命名為冷休克蛋白CspA,并被認(rèn)為是一種抗凍蛋白,保護(hù)細(xì)胞不受低溫?fù)p傷[13]。本文就冷休克蛋白(cold shock protein, CSP)調(diào)控宿主適應(yīng)低溫和其他生境進(jìn)行了概述,并對(duì)冷休克蛋白的應(yīng)用進(jìn)行了展望,以期為利用冷休克反應(yīng)及冷休克蛋白的潛在價(jià)值提供一些思考和建議。
在冷休克反應(yīng)期間持續(xù)表達(dá)的蛋白稱(chēng)為冷誘導(dǎo)蛋白,其中與E.coliCspA氨基酸序列高度保守的一類(lèi)蛋白稱(chēng)為冷休克蛋白。E.coli的CspA是最早揭示的冷休克蛋白,其在冷休克反應(yīng)中的調(diào)控機(jī)制也得以較為詳盡地闡明。CspA為含有70個(gè)氨基酸的酸性蛋白質(zhì),并形成5個(gè)反平行β折疊的β桶狀片層結(jié)構(gòu),通過(guò)2個(gè)RNP-motifs結(jié)合mRNA以阻止mRNA在低溫時(shí)形成穩(wěn)定二級(jí)結(jié)構(gòu)而促進(jìn)特定蛋白的表達(dá)[14]。此外,E.coliCspA還充當(dāng)以下元件:①抗轉(zhuǎn)錄終止子:增強(qiáng)低溫適應(yīng)相關(guān)的蛋白如NusA、IF2、RbfA 和PNP的表達(dá)[15];②轉(zhuǎn)錄激活子:促進(jìn)與低溫適應(yīng)性相關(guān)的蛋白,如DNA結(jié)合蛋白Hns和DNA異構(gòu)酶GyrA的表達(dá)[16]。
據(jù)蛋白質(zhì)的氨基酸序列一致性及蛋白性質(zhì)分析發(fā)現(xiàn):冷休克蛋白家族成員普遍存在于微生物中,在包括超嗜熱菌、嗜熱菌、中溫菌和嗜冷菌等400種微生物中均有發(fā)現(xiàn),其中來(lái)源于E.coli[17]、B.subtilis[1]、Neisseriameningitidis[16]、Salmonellatyphimurium[18]、T.maritima[19]的冷休克蛋白晶體結(jié)構(gòu)已得到解析。另一方面,冷休克蛋白家族成員數(shù)目隨微生物種類(lèi)差異而不同,E.coli存在9個(gè)[13],B.subtilis含有3個(gè)[20],T.thermophilusHB8含有2個(gè)[2],T.tengcongensisMB4含有1個(gè)[5]。目前,只在極少數(shù)微生物如Helicobacterpylori[21]、Campylobacterjejuni[22]和Mycoplasmagenitalium[23]的染色體上沒(méi)有發(fā)現(xiàn)冷休克蛋白基因。冷休克反應(yīng)和冷休克蛋白是普遍存在于生物體內(nèi)的應(yīng)激反應(yīng)和應(yīng)答響應(yīng)因子,暗示了它們?cè)谏矬w環(huán)境適應(yīng)(如低溫)方面扮演重要作用;另一方面,冷休克反應(yīng)機(jī)制和冷休克蛋白參與調(diào)控的生理功能的闡明在理論研究和實(shí)際應(yīng)用上有著積極意義。
2.1 冷休克蛋白與宿主對(duì)低溫的適應(yīng)性
冷休克蛋白在溫度驟降的過(guò)程中顯著表達(dá),如E.coli、T.thermophilus的冷休克蛋白基因在冷激后短時(shí)間內(nèi)轉(zhuǎn)錄水平均會(huì)顯著提高[2,13],合成的冷休克蛋白充當(dāng)冷凍保護(hù)劑或調(diào)控其他與低溫生存相關(guān)基因的表達(dá)。嗜熱菌T.tengcongensisMB4染色體只有一個(gè)冷休克蛋白基因cspC,該基因的轉(zhuǎn)錄水平經(jīng)50℃冷激1 h后提高了15.8倍,表明CspC參與了宿主的冷應(yīng)激過(guò)程[5]。基因缺失和過(guò)表達(dá)實(shí)驗(yàn)進(jìn)一步證實(shí),冷休克蛋白在宿主低溫適應(yīng)過(guò)程中起著重要作用。4個(gè)冷休克蛋白基因(cspA、cspB、cspG、cspE)共缺失的E.coli會(huì)呈現(xiàn)低溫敏感表型(在15℃時(shí)不能生長(zhǎng)),但這種表型可被任何表達(dá)過(guò)量的冷休克蛋白(除CspD)恢復(fù)。CspB是B.subtilis3個(gè)冷休克蛋白(CspB、CspC、CspD)中主要由低溫誘導(dǎo)表達(dá)的冷休克蛋白,cspB缺失菌株的抗凍能力明顯減弱,3個(gè)冷休克蛋白基因共缺失的菌株在低溫時(shí)不能生長(zhǎng)[24]。此外,cspB或cspC突變的ClostridiumbotulinumATCC 3502在15℃時(shí)幾乎不能生長(zhǎng),20℃時(shí)生長(zhǎng)速率只有野生型的30%;cspD突變的菌株在15℃和20℃時(shí)的生長(zhǎng)速率分別是野生型的30%和20%[25]。過(guò)表達(dá)冷休克蛋白可提升宿主低溫耐性,這從另一方面證實(shí)了冷休克蛋白對(duì)于宿主適應(yīng)低溫環(huán)境至關(guān)重要,如在E.coli中過(guò)表達(dá)P.articaKOPRI 22215的冷休克蛋白基因cspA后,E.coli對(duì)低溫的耐性明顯提高[9]。
2.2 冷休克蛋白與宿主的正常生長(zhǎng)和分化
越來(lái)越多的研究結(jié)果表明,冷休克蛋白并不只參與宿主冷休克反應(yīng)和低溫脅迫,冷休克蛋白也為宿主正常生長(zhǎng)和分化所必需。相關(guān)研究揭示,E.coliCspD能結(jié)合單鏈DNA,從而影響DNA復(fù)制。在快速生長(zhǎng)時(shí),E.coliCspD被迅速降解使得染色體復(fù)制快速進(jìn)行;在穩(wěn)定期、延遲期或碳源缺乏時(shí), CspD大量表達(dá)并結(jié)合單鏈DNA,從而抑制了染色體的復(fù)制[26,27],并促使E.coli形成存留細(xì)胞[28]??傮w來(lái)講,CspD表達(dá)量與宿主的生長(zhǎng)速度呈負(fù)相關(guān);在快速生長(zhǎng)時(shí),表達(dá)量低;生長(zhǎng)停滯(如延遲期、穩(wěn)定期、營(yíng)養(yǎng)缺乏)時(shí),表達(dá)量提升進(jìn)而抑制染色體復(fù)制。此外,cspB和cspC雙基因破壞的B.subtilis呈現(xiàn)擬核結(jié)構(gòu)變異、穩(wěn)定期細(xì)胞裂解、孢子形成喪失[29]。Balhesteros等[8]也揭示了CspC和CspD與穩(wěn)定期細(xì)胞的活性相關(guān);CspC在C.crescentus進(jìn)入穩(wěn)定期時(shí)表達(dá),參與了C.crescentus的營(yíng)養(yǎng)饑餓應(yīng)激反應(yīng)。進(jìn)一步研究也發(fā)現(xiàn),Janthinobacteriumsp.的CspD除了具有與大腸桿菌CspD相同的功能,還具有保護(hù)DNA免受紫外線(xiàn)損傷的功能[30,31]。
2.3 冷休克蛋白與宿主的致病性和侵襲力
Sch?rer等[32]發(fā)現(xiàn),ListeriamonocytogenesCspB參與了宿主致病因子——溶胞素的合成,間接參與了該菌的致病性;缺失cspB后,L.monocytogenes致病能力減弱。此外,溫度下降(37℃降至26℃)會(huì)增強(qiáng)病原菌Moraxellacatarrhali黏附素及致病因子UspA1的表達(dá),進(jìn)而增強(qiáng)黏附和致病能力[33]。Wang等[34]研究表明,cspA缺失的Brucellamelitensis在正常生長(zhǎng)溫度和低溫時(shí)的生長(zhǎng)速率和活性并無(wú)明顯差異,但其致病能力顯著降低。此外,CspR也與糞腸球菌侵襲力相關(guān)[35]。
由共同祖先經(jīng)還原基因組進(jìn)化而來(lái)的哺乳動(dòng)物病原菌B.bronchiseptica、B.parapertussis、B.pertussis、鳥(niǎo)病原菌B.avium和自然環(huán)境中B.petrii雖然經(jīng)歷了不同的基因組簡(jiǎn)化,但這些菌體內(nèi)均含有序列保守的冷休克蛋白基因,暗示了冷休克蛋白對(duì)宿主致病性非常重要[7]。
2.4 冷休克蛋白與宿主的抗藥性
Staphylococcusaureus含有3個(gè)冷休克蛋白(CspA、CspB和CspC),在甲氧苯青霉素抗性菌株中CspC表達(dá)量顯著高于敏感菌株[36],降低CspA的表達(dá)則會(huì)降低甲氧苯青霉素抗性菌株中色素合成并增強(qiáng)菌株對(duì)陽(yáng)離子抗菌肽的抗性;cspB缺失的菌株生長(zhǎng)緩慢,色素產(chǎn)量降低,對(duì)氨基糖甙類(lèi)抗生素(gentamicin、amikacin和tobramycin)的抗性增加,對(duì)達(dá)托霉素(daptomycin)的抗性卻降低[37]。
2.5 冷休克蛋白與宿主對(duì)高滲環(huán)境的應(yīng)答
L.monocytogenes中3個(gè)冷休克蛋白CspA、CspB、CspD對(duì)宿主在最適生長(zhǎng)溫度(37℃)和正常滲透壓下生存并非必需。然而,Schmid等[38]證實(shí),3個(gè)冷休克蛋白對(duì)宿主的低溫耐受性和滲透壓耐受性至關(guān)重要。進(jìn)一步研究發(fā)現(xiàn),3個(gè)冷休克蛋白在宿主應(yīng)對(duì)不同環(huán)境壓力時(shí)重要性不同;應(yīng)答低溫低壓力時(shí),3個(gè)冷休克蛋白的重要性為CspA>CspD>CspB;低溫高滲壓力時(shí),3個(gè)冷休克蛋白的重要性為CspD>CspA>CspB。此外,3個(gè)冷休克蛋白基因均缺失的L.monocytogenes在含2.2%的DMS高滲培養(yǎng)基中不能中生長(zhǎng)。
3.1 菌種保藏與發(fā)酵
在乳酸菌發(fā)酵過(guò)程中通常以冷凍菌體作為接種物,接種物的活性會(huì)在一定程度上影響發(fā)酵過(guò)程,提高接種物的活性顯得尤為重要。研究表明,制作酸奶的Streptococcusthermophilus在20℃溫育4 h后經(jīng)冷凍,其存活率約為未經(jīng)低溫處理的1 000倍,存活率的提高可能與冷休克蛋白表達(dá)及其參與調(diào)控網(wǎng)絡(luò)相關(guān)[39]。L.lactisMG1363在10℃溫育4 h,其冷凍后存活力比未經(jīng)低溫處理的提高了近100倍,提高冷休克蛋白CspB、CspD和CspE的表達(dá)量則能增加L.lactis冷凍后的存活率[40]。這可能是因?yàn)槔鋬鲞^(guò)程中形成的冰晶、高滲、大分子物質(zhì)變性以及細(xì)胞膜完整性的破壞均降低了微生物的活性,而冷凍前進(jìn)行適當(dāng)?shù)牡蜏靥幚砟軌蛞鸺?xì)胞發(fā)生冷應(yīng)激反應(yīng)而產(chǎn)生大量冷休克蛋白,這些冷休克蛋白充當(dāng)抗凍劑保護(hù)細(xì)胞免受傷害。因此,深入了解微生物冷休克和冷適應(yīng)過(guò)程對(duì)低溫發(fā)酵和菌種保藏將有積極意義。
3.2 低溫表達(dá)系統(tǒng)
目前冷休克蛋白用于細(xì)菌表達(dá)系統(tǒng)存在一個(gè)主要的缺陷:外源蛋白容易形成包涵體[41]。相對(duì)應(yīng)的解決辦法主要有:①增加細(xì)胞內(nèi)幫助蛋白正確折疊的分子伴侶的表達(dá)量[42];②低溫下表達(dá)外源蛋白,限制蛋白的聚集速度[43]。此外,低溫除了能降低包涵體形成還能降低重組蛋白的降解[44,45],并有利于提高目的蛋白的可溶性和穩(wěn)定性[45,46]。因此,開(kāi)發(fā)低溫表達(dá)系統(tǒng)有著良好的應(yīng)用前景。
Giuliodori等[39]研究闡明了E.coliCspA在冷休克反應(yīng)中的高效表達(dá)機(jī)制。CspA mRNA扮演溫度感應(yīng)器的角色,其5′端非編碼區(qū)域的構(gòu)象隨溫度波動(dòng)而改變;低溫時(shí)的構(gòu)象利于基因的表達(dá),且不易被RNase降解。2004年,Qing等[47]利用E.coli冷休克蛋白基因cspA的啟動(dòng)子和終止子構(gòu)建了低溫表達(dá)載體pCold Ⅰ、Ⅱ、Ⅲ和Ⅳ,并證實(shí)該系統(tǒng)能有效表達(dá)從原核到真核細(xì)胞的多種外源基因。2008年,Hayashi等[48]在載體上引入了GST標(biāo)簽和HRV 3C蛋白酶識(shí)別序列,并應(yīng)用該系統(tǒng)表達(dá)了10個(gè)在37℃時(shí)不能可溶性表達(dá)的蛋白,其中9個(gè)蛋白可溶性表達(dá)。2013年,F(xiàn)reischmidt[49]開(kāi)發(fā)了一種基于E.coli冷休克蛋白基因cspA5′-UTR的無(wú)細(xì)胞蛋白合成系統(tǒng),該系統(tǒng)在低溫(25℃)合成氯霉素?;D(zhuǎn)移酶的能力高于基于T7啟動(dòng)子在37℃的效率。
3.3 冷休克蛋白與作物抗逆性
冷、熱、旱是作物經(jīng)常面臨的脅迫,能夠?qū)е伦魑锛?xì)胞基因表達(dá)模式發(fā)生改變,致使作物產(chǎn)量下降。研究表明,增加作物細(xì)胞中冷休克蛋白含量可以部分恢復(fù)作物細(xì)胞基因的表達(dá)模式,從而提高作物的優(yōu)良性狀。2008年,Castiglioni等[50]發(fā)現(xiàn),轉(zhuǎn)入大腸桿菌cspA基因或枯草芽孢桿菌cspB基因的擬南芥對(duì)多種逆境(如冷、熱、旱)的抗性顯著提高,轉(zhuǎn)有相應(yīng)基因的玉米產(chǎn)量在干旱環(huán)境下也得以提高。
3.4 冷休克反應(yīng)與食品滅菌
目前食品行業(yè)主要采用高溫滅菌的方法來(lái)保藏食品,近幾年一種稱(chēng)為高水壓的保藏方法也得以應(yīng)用,這種方法相對(duì)于高溫殺菌來(lái)說(shuō),不會(huì)嚴(yán)重破壞食物的營(yíng)養(yǎng)成分,因而有很好的應(yīng)用前景[51,52]。但研究發(fā)現(xiàn),經(jīng)高水壓處理的L.monocytogenes,其體內(nèi)冷休克蛋白量會(huì)顯著增加,暗示該蛋白也參與了宿主對(duì)高水壓環(huán)境的適應(yīng)過(guò)程[53]。經(jīng)冷激再高水壓處理的細(xì)胞存活率較僅高水壓處理的要高,表明微生物對(duì)低溫和高水壓的應(yīng)答存在交互機(jī)制。低溫和高水壓處理具有協(xié)同效應(yīng),低溫處理會(huì)降低高靜水壓的滅菌效果,因此在食品滅菌時(shí)應(yīng)避免兩種方法的聯(lián)合使用。
冷休克反應(yīng)是普遍存在于生物體內(nèi)的一種生存機(jī)制,而冷休克蛋白是冷休克反應(yīng)的關(guān)鍵調(diào)控因子之一。冷休克蛋白參與的生理功能早已突破了冷休克反應(yīng),其可能參與了宿主對(duì)多種逆境的應(yīng)答;另一方面來(lái)講,冷休克蛋白的生理功能遠(yuǎn)不止于目前已經(jīng)揭示的方面,仍需大量的研究來(lái)進(jìn)一步闡明。對(duì)于含有冷休克蛋白基因的生物體來(lái)說(shuō),某一個(gè)冷休克蛋白的缺失可由另一個(gè)冷休克蛋白來(lái)彌補(bǔ),或許表明了細(xì)胞內(nèi)冷休克蛋白功能及表達(dá)調(diào)節(jié)存在內(nèi)部網(wǎng)絡(luò)。
低溫冷激過(guò)程中冷休克蛋白急劇合成機(jī)制也為構(gòu)建新型的高效表達(dá)系統(tǒng)提供了參考,基于冷休克蛋白基因啟動(dòng)子的表達(dá)載體已被日本Takara公司開(kāi)發(fā)和推廣。另一方面,生物尤其是微生物冷休克和冷適應(yīng)機(jī)制及冷休克蛋白生理功能的揭示將會(huì)在發(fā)酵條件優(yōu)化、食品儲(chǔ)藏、菌種儲(chǔ)藏、有害微生物抑制和作物性狀改良等方面發(fā)揮積極的作用。
[1] Sachs R, Max K E, Heinemann U,etal.. RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution[J]. RNA, 2012, 18(1): 65-76.
[2] Mega R, Manzoku M, Shinkai A,etal.. Very rapid induction of a cold shock protein by temperature downshift inThermusthermophilus[J]. Biochem. Biophys. Res. Commun., 2010, 399(3): 336-340.
[3] Phadtare S, Hwang J W, Severinov K,etal.. CspB and CspL, thermostable cold-shock proteins fromThermotogamaritima[J]. Genes Cells, 2003, 8(10): 801-810.
[4] Yousefi-Nejad M, Naderi-Manesh H, Khajeh K. Proteomics of early and late cold shock stress on thermophilic bacterium,Thermussp. GH5[J]. J. Prot., 2011, 74(10): 2100-2111.
[5] Liu B, Zhang Y H, Zhang W. RNA-seq-based analysis of cold shock response inThermoanaerobactertengcongensis, a bacterium harboring a single cold shock protein encoding gene[J]. PLoS ONE, 2014, 9(3):e93289.
[6] Sauvageot N, Beaufils S, Maze A,etal.. Cloning and characterization of a gene encoding a cold-shock protein inLactobacilluscasei[J]. FEMS Microbiol. Lett., 2006, 254(1): 55-62.
[7] Stubs D, Fuchs T M, Schneider B,etal.. Identification and regulation of cold-inducible factors ofBordetellabronchiseptica[J]. Microbiol. Sgm., 2005, 151: 1895-1909.
[8] Balhesteros H, Mazzon R R,da Silva C A P T,etal.. CspC and CspD are essential forCaulobactercrescentusstationary phase survival, in Arch[J]. Microbiology, 2010, 192(9): 747-758.
[9] Jung Y H, Yi J Y, Jung H,etal.. Overexpression of cold shock protein A ofPsychromonasarcticaKOPRI 22215 confers cold-resistance[J]. Protein J., 2010, 29(2): 136-142.
[10] Piette F, Leprince P, Feller G. Is there a cold shock response in the Antarctic psychrophilePseudoalteromonashaloplanktis? [J]. Extremophiles, 2012, 16(4): 681-683.
[11] Horn G, Hofweber R, Kremer W,etal.. Structure and function of bacterial cold shock proteins[J]. Cell. Mol. Life Sci., 2007, 64(12): 1457-1470.
[12] Jones P G, VanBogelen R A, Neidhardt F C. Induction of proteins in response to low temperature inEscherichiacoli[J]. J. Bacteriol., 1987, 169(5): 2092-2095.
[13] Goldstein J, Pollitt N S, Inouye M. Major cold shock protein ofEscherichiacoli[J]. Proc. Natl. Acad. Sci. USA, 1990, 87(1): 283-287.
[14] Horn G, Hofweber R, Kremer W,etal.. Structure and function of bacterial cold shock proteins[J]. Cell. Mol. Life Sci., 2007, 64(12): 1457-1470.
[15] Bae W H, Xia B, Inouye M,etal.. Escherichia coli CspA-family RNA chaperones are transcription antiterminators[J]. Proc. Natil. Acad. Sci. USA, 2000, 97(14): 7784-7789.
[16] Ren J, Nettleship J E, Sainsbury S,etal.. Structure of the cold-shock domain protein fromNeisseriameningitidisreveals a strand-exchanged dimer[J]. Acta Crystallogr. F, 2008, 64: 247-251.
[17] Feng W Q, Tejero R, Zimmerman D E,etal.. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) fromEscherichiacoli: Evidence for conformational dynamics in the single-stranded RNA-binding site[J]. Biochemistry, 1998, 37(31): 10881-10896.
[18] Morgan H P, Wear M A, McNae I,etal.. Crystallization and X-ray structure of cold-shock protein E fromSalmonellatyphimurium[J]. Acta Crystallogr. F, 2009, 65: 1240-1245.
[19] Kremer W, Schuler B, Harrieder S,etal.. Solution NMR structure of the cold-shock protein from the hyperthermophilic bacteriumThermotogamaritima[J]. Eur. J. Biochem., 2001, 268(9): 2527-2539.
[20] Graumann P, Schroder K, Schmid R,etal.. Cold shock stress-induced proteins inBacillussubtilis[J]. J. Bacteriol., 1996, 178(15): 4611-4619.
[21] Tomb J F, White O, Kerlavage A R,etal.. The complete genome sequence of the gastric pathogenHelicobacterpylori[J]. Nature, 1997, 388(6642): 539-547.
[22] Hazeleger W C, Wouters J A, Rombouts F M,etal.. Physiological activity ofCampylobacterjejunifar below the minimal growth temperature[J]. Appl. Environ. Microbiol., 1998, 64(10): 3917-3922.
[23] Graumann P, Marahiel M A. Some like it cold: Response of microorganisms to cold shock[J]. Arch. Microbiol., 1996, 166(5): 293-300.
[24] Graumann P, Wendrich T M, Weber M H W,etal.. A family of cold shock proteins inBacillussubtilisis essential for cellular growth and for efficient protein synthesis at optimal and low temperatures[J]. Mol. Microbiol., 1997, 25(4): 741-756.
[25] Soderholm H, Lindstrom M, Somervuo P,etal.. cspB encodes a major cold shock protein inClostridiumbotulinumATCC 3502[J]. Int. J. Food Microbiol., 2011, 146(1): 23-30.
[26] Yamanaka K, Inouye M. Growth-phase-dependent expression of cspD, encoding a member of the CspA family inEscherichiacoli[J]. J. Bacteriol., 1997, 179(16): 5126-5130.
[27] Yamanaka K, Zheng W D, Crooke E,etal.. CspD, a novel DNA replication inhibitor induced during the stationary phase inEscherichiacoli[J]. Mol. Microbiol., 2001, 39(6): 1572-1584.
[28] Kim Y, Wood T K. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR inEscherichiacoli[J]. Biochem. Biophys. Res. Commun., 2010, 391(1): 209-213.
[29] Budde I, Steil L, Scharf C,etal.. Adaptation ofBacillussubtilisto growth at low temperature: a combined transcriptomic and proteomic appraisal[J]. Microbiol. Sgm., 2006, 152: 831-853.
[30] Baliga N S, Bjork S J, Bonneau R,etal.. Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1[J]. Genome Res., 2004, 14(6): 1025-1035.
[31] Mojib N, Andersen D T, Bej A K. Structure and function of a cold shock domain fold protein, CspD, in Janthinobacterium sp Ant5-2 from East Antarctica[J]. FEMS Microbiol. Lett., 2011, 319(2): 106-114.
[32] Schaerer K, Stephan R, Tasara T. Cold shock proteins contribute to the regulation of listeriolysin O production inListeriamonocytogenes[J]. Foodborne Pathog. Dis., 2013, 10(12): 1023-1029.
[33] Spaniol V, Troller R, Aebi C. Physiologic cold shock increases adherence ofMoraxellacatarrhalisto and secretion of interleukin 8 in human upper respiratory tract epithelial cells[J]. J. Infect. Dis., 2009, 200(10): 1593-1601.
[34] Wang Z, Wang S S, Wu Q M. Cold shock protein A plays an important role in the stress adaptation and virulence ofBrucellamelitensis[J]. FEMS Microbiol. Lett., 2014, 354(1): 27-36.
[35] Michaux C, Martini C, Shioya K,etal.. CspR, a cold shock RNA-binding protein involved in the long-term survival and the virulence ofEnterococcusfaecalis[J]. J. Bacteriol., 2012, 194(24): 6900-6908.
[36] Cordwell S J, Larsen M R, Cole R T,etal.. Comparative proteomics ofStaphylococcusaureusand the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100[J]. Microbiol. Sgm., 2002, 148: 2765-2781.
[37] Duval B D, Mathew A, Satola S W,etal.. Altered growth, pigmentation, and antimicrobial susceptibility properties of staphylococcus aureus due to loss of the major cold shock gene cspB[J]. Antimicrobial. Agents Chemother., 2010, 54(6): 2283-2290.
[38] Schmid B, Klumpp J, Raimann E,etal.. Role of cold shock proteins in growth ofListeriamonocytogenesunder cold and osmotic stress conditions[J]. Appl. Environ. Microbiol., 2009, 75(6): 1621-1627.
[39] Giuliodori A M, Di P F, Marzi S,etal.. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA[J]. Mol. Cell, 2010, 37(1): 21-33.
[40] Wouters J A, Jeynov B, Rombouts F M,etal.. Analysis of the role of 7 kDa cold-shock proteins ofLactococcuslactisMG1363 in cryoprotection[J]. Microbiology, 1999, 145: 3185-3194.
[41] Mogk A, Mayer M P, Deuerling E. Mechanisms of protein folding: Molecular chaperones and their application in biotechnology[J]. ChemBioChem, 2002, 3(9): 807-814.
[42] Thomas J G, Baneyx F. Protein misfolding and inclusion body formation in recombinantEscherichiacolicells overexpressing heat-shock proteins[J]. J. Biol. Chem., 1996, 271(19): 11141-11147.
[43] Catherine H, Schein M H M N. Formation of soluble recombinant proteins inEscherichiacoliis favored by lower growth temperature[J]. Nat. Biotechnol., 1988, 6(4):291-294.
[44] Anne W, Emerick B L B A, Ben-Bassat T J,etal.. Expression of a β-lactamase preproinsulin fusion protein inEscherichiacoli[J]. Nat. Biotechnol., 1984, 2(4):165-168.
[45] Shirano Y, Shibata D. Low temperature cultivation ofEscherichiacolicarrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level[J]. FEBS Lett., 1990, 271(1-2): 128-130.
[46] Schein C H. Solubility as a function of protein structure and solvent components[J]. Biotechnology, 1990, 8(4): 308-317.
[47] Qing G L, Ma L C, Khorchid A,etal.. Cold-shock induced high-yield protein production inEscherichiacoli[J]. Nat. Biotechnol., 2004, 22(7): 877-882.
[48] Hayashi K, Kojima C. pCold-GST vector: A novel cold-shock vector containing GST tag for soluble protein production[J]. Protein Exp. Purif., 2008, 62(1): 120-127.
[49] Freischmidt A, Hiltl J, Kalbitzer H R,etal.. Enhanced in vitro translation at reduced temperatures using a cold-shock RNA motif[J]. Biotechnol. Lett., 2013, 35(3): 389-395.
[50] Castiglioni P, Warner D, Bensen R J,etal.. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions[J]. Plant Physiol., 2008, 147(2): 446-455.
[51] Funamoto S, Nam K, Kimura T,etal.. The use of high-hydrostatic pressure treatment to decellularize blood vessels[J]. Biomaterials, 2010, 31(13): 3590-3595.
[52] Ulmer H M, Ganzle M G, Vogel R F. Effects of high pressure on survival and metabolic activity ofLactobacillusplantarumTMW1.460[J]. Appl. Environ. Microbiol., 2000, 66(9): 3966-3973.
[53] Wemekamp-Kamphuis H H, Karatzas A K, Wouters J A,etal.. Enhanced levels of cold shock proteins inListeriamonocytogenesLO28 upon exposure to low temperature and high hydrostatic pressure[J]. Appl. Environ. Microbiol., 2002, 68(2): 456-463.
Physiological Function and Potential Applications of Cold Shock Proteins in Microbes
ZHANG Xue1,2§, ZHANG Hua-fang3§, LIU Qing2,4, ZHANG Yu-wei2, LIU Bo2*
1.CollegeofLifeScienceandTechnology,HarbinNormalUniversity,Harbin150025,China;
2.BiotechnologyResearchInstitute,ChineseAcademyofAgriculturalSciences,Beijing100081,China;
3.BeijingUrbanDrainageMonitoringCenterCo.,Ltd.,Beijing100061,China;
4.CollegeofFoodScienceandBiotechnology,ZhejiangGongshangUniversity,Hangzhou310018,China
Cold shock response, a phenomenon that results from a sudden decrease in conditional temperature, widely lies in microbes; cold-shock proteins (CSPs), some small homologous proteins were found to play important roles in cold shock response. It is revealed that CSPs regulate the expression of some genes invovled in cold shock response, and also regulate a wide range of genes expression, such as normal growth and differentiation of hosts, invasiveness and pathogenicity of pathogen, and stress response of hosts including high pressure and antibiotic stress. The paper summarized the source of CSPs, physiological characters regulation that CSPs involved, and the application of CSPs based on cold shock response, which was expected to provide reference for fermentation process conditions, food storage, inhibition of pathogens, crop genetic improvement, and so on.
cold shock response; cold shock protein; physiological function; adverse condition
2015-02-05; 接受日期:2015-03-19
國(guó)家自然科學(xué)基金(31200072)資助。
§張雪與張華方為本文共同第一作者。張雪,碩士研究生,研究方向?yàn)榉肿舆z傳學(xué)。E-mail:zx89519@163.com;張華方,高級(jí)工程師,主要從事微生物生化研究。E-mail:13811364231@139.com。*通信作者:劉波,副研究員,博士,主要從事微生物基因工程研究。E-mail:Liubo01@caas.cn
10.3969/j.issn.2095-2341.2015.04.05