• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of κ-carra-Oligosaccharides with Microwave Assisted Acid Hydrolysis Method

    2015-04-05 08:20:56LIGuangshengZHAOXiaLVYoujingLIMiaomiaoandYUGuangli
    Journal of Ocean University of China 2015年2期

    LI Guangsheng, ZHAO Xia, LV Youjing, LI Miaomiao, and YU Guangli,

    1)Key Laboratory of Marine Drugs,Ministry of Education,Qingdao266003,P. R. China

    2)Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    Preparation of κ-carra-Oligosaccharides with Microwave Assisted Acid Hydrolysis Method

    LI Guangsheng1),2), ZHAO Xia1),2), LV Youjing1),2), LI Miaomiao1),2), and YU Guangli1),2),*

    1)Key Laboratory of Marine Drugs,Ministry of Education,Qingdao266003,P. R. China

    2)Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 ℃ for 15min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

    κ-carrageenan; oligosaccharides; microwave degradation; acid hydrolysis

    1 Introduction

    Carrageenans are highly sulfated galactans isolated from marine red algae. They are consisted of linearly repeated modules of alternating 3-linked β-D-galactopyranose (β-Gal, unit G) and 4-linked α-D-galactopyranose (α-Gal, unit D) with unit D frequently occurred as the 3,6-anhydro form (anGal, unit A) (Yanget al., 2009). The main types of carrageenan are kappa (κ-), iota (ι-) and lambda (λ-) depending on the number and position of sulfate groups (Abadet al., 2009).

    Because of the superior gelling and high viscosity properties of the native carrageenan, their oligomers are often used. Many evidences have demonstrated that the molecular mass of sulfated polysaccharides was related to their biological activities. Oligomers of carrageenan have showed their promises as anti-herpetic and anti-oxidant (Carlucciet al., 1997; Sunet al., 2010; Yuanet al., 2005), anti-human immunodeficiency virus (HIV) (Yamadaet al., 2000), anti-virus (Wanget al., 2011; Yuet al., 2012) and anti-tumors (Huet al., 2006; Yuanet al., 2006).

    Oligomers of carrageenan can be obtained either byhydrolyzing carrageenan or synthesizing from monosaccharide. The first process is considered as the most competitive because a wide variety of oligomers can be obtained from one polymer; while the second is complicated and expensive, and only a low degree of polymerization (DP) oligomers can be produced (Courtois, 2009). Many depolymerization methods of carrageenan have been reported, including acid hydrolysis (Karlsson and Singh, 1999; Myslabodskiet al., 1996), enzymatic hydrolysis (Wu, 2012; Collenet al., 2009; Mouet al., 2003), hydrogen peroxide degradation (Sunet al., 2010) and irradiation degradation with gamma rays (Abadet al., 2009; Relleveet al., 2005). Recently, application of microwave irradiation techniques is attracting more and more attentions due to its effectiveness. It has been used in many fields of carbohydrate research, such as extraction (Rodriguez-Jassoet al., 2011), methylation (Singhet al., 2003), degradation (Singhet al., 2006; Yuet al., 1996) of polysaccharides, and desulfation of sulfated polysaccharides (Navarroet al., 2007). Huet al. (2013) has reported the preparation of guluronic acid oligosaccharides by using microwave irradiation. This method is not only convenient, less time consuming, but also environment-friendly. However, the preparation of κ-carra-oligosaccharides using microwave has not been reported.

    The purpose of this study is to establish an efficientand convenient method of preparing a series of different κ-carra-oligosaccharides and determine their structures by electrospray mass spectrometry (ESI-MS).

    2 Experiments

    2.1 Materials

    κ-carraheptaose was prepared by the Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology. Galactose (Gal) was purchased from Sigma (USA).

    2.2 Optimization of Microwave-Assisted Acid Hydrolysis of κ-carrageenan

    κ-carrageenan was purified by the KCl classification method (Smith and Cook, 1953). The purified κ-carrageenan was dissolved in water and adjusted to pH 2 to 4 with diluted hydrochloric acid. Then an orthogonal L9(3)4test design was used to optimize the hydrolysis condition based on the results of the single-factor experiment. Nine groups of different experiments were carried out under the specific experimental conditions (Table 1) for the depolymerization of κ-carrageenan, and the reaction volume was 2 mL. The parameters of the microwave oven (MARS, CEM Corporation, USA) were listed in Table 2.

    Table 1 Orthogonal experiments of degradation of κ-carrageenan

    Table 2 The setting parameters of the microwave oven

    2.3 High Performance Thin Layer Chromatography (HPTLC) Analysis

    The degraded κ-carrageenan oligosaccharides (KCO) were checked on a silica gel HPTLC plate (Merck corporation, Germany) (Zhanget al., 2006), developed in a solvent system of n-butanol/formic acid/water (4:6:1) and Gal was used as a standard. The developed plate was stained by dipping in a reagent containing 1 mL of 37.5% HCl, 2 mL of aniline, 10 mL of 85% H3PO4, 200 mL of acetone and 2 g diphenylamine, and then heated at 100℃ for 5 min.

    2.4 Polyacrylamide Gel Electrophoresis (PAGE) Analysis

    PAGE was used to analyze the DP of KCO (DP 〉 7), which could not be well detected by HPTLC. An equal volume of each sample (5 μL) was combined with one volume of 50% sucrose, and the mixture was loaded onto a stacking gel of 5% (total acrylamide) and fractionated on a 22% resolving gel. Electrophoresis was performed on the model 3000Xi computer controlled electrophoresis (Bio-Rad, USA) at 100 V for 10 min for stacking gel and 200 V for 120 min for 22% resolving gel. The gel was fixed and stained with Alcian Blue in 2% acetic acid. The gel was scanned, digitized, and analyzed by the software Quantity One 4.6.2 software (Bio-Rad, USA).

    2.5 Separation of κ-carrageenan Oligosaccharides

    KCO (0.5 g) prepared by microwave-assisted acid hydrolysis under the optimum condition was dissolved in 10 mL of 0.1 mol L-1NH4HCO3and applied on a Superdex 30 column (2.6 × 90 cm) using an AKTA Purifier UPC100 (GE, USA) equipped with an online refractive index detector (Shodex R101, Japan). The column was eluted with 0.1 mol L-1NH4HCO3at a flow rate of 0.5 mL min-1, and each fraction (3 mL per tube) was collected using a fraction collector.

    2.6 ESI-MS Analysis

    Negative-ionization mode electrospray mass spectroscopy on Micromass Q-Tof Ultima instruments (Waters, Manchester, UK) was performed for the molecular mass analysis of each oligosaccharide. The sample was dissolved in 50% acetonitrile and injected in a 5 μL loop and delivered to the electrospray source using a syringe pump at a flow rate of 5 μL min-1. The nitrogen gas was used as nebulizing and desolvation gas at 4.2 kg cm-2and kept at 250℃.

    3 Results and Discussion

    3.1 HPTLC Analysis of the Orthogonal Test

    In order to obtain the optimal condition of microwave-assisted acid hydrolysis κ-carrageenan, an orthogonal L9(3)4test was used. The KCO obtained under different hydrolysis conditions were analyzed by HPTLC (Fig.1). Gal (lane G) and κ-carraheptaose (lane 10) were used as standards. Lanes 1-9 were the different orthogonal experiments, respectively. Nearly no oligosaccharide (DP 〈 7) was prepared under the condition of experiments 2 and 3, and no oligosaccharide larger than DP 7 was prepared in experiments 4, 7 and 8. Lanes 1, 5, 6 and 9 showed that a series of oligosaccharides can be obtained in experiments 1, 5, 6 and 9, respectively. However, only the oligosaccharides with DP less than 7 can be well separated on the plate due to the low resolution of TLC. The higher resolution of κ-carrageenanoligosaccharides with DP 〉 7 need PAGE technique.

    Fig.1 HPTLC analysis of the orthogonal test. Lane G, Gal; Lanes 1-9, samples from the nine orthogonal L9(3)4experiments; Lane 10, κ-carraheptaose.

    3.2 PAGE Analysis of the Orthogonal Test

    Because of the low resolution of TLC, PAGE was used subsequently to detect oligosaccharides with DP 〉 5 (Fig.2). A κ-carraheptaose (lane 10) was used as standard. Lanes 1-9 were bands for samples from the different orthogonal test, respectively. The result was basically in accordance with that in HPTLC. Nearly no band was observed in experiments 4, 7 and 8, because the oligosaccharides obtained in these experiments were too small to stain with Alcian Blue. The KCO in experiments 1 and 5 between DP 5 and 21 (Fig.3, the peaks were marked as K5 to K21) was showed up. The gel was scanned and analyzed using Quantity One 4.6.2 software, it showed that the mount of oligosaccharides obtained in experiment 5 was larger than that in experiment 1 (Fig.3). Oligosaccharides could also be prepared under the condition in experiments 2, 3, 6 and 9, however, a lot of polysaccharides were left. It means the yield of oligosaccharides in these experiments was lower than that in experiments 1 and 5.

    Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis of κ-carrageenan was in test 1 (90℃, pH 2, 5 min, 5 mg mL-1) or test 5 (100℃, pH 3, 15 min, 5 mg mL-1). The condition in test 5 (100℃, pH 3, 15 min, 5 mg mL-1) was chosen as the optimum one, because less salt was produced in the hydrolysis procedure for the relative higher pH value and more oligosaccharides could be obtained.

    Fig.2 PAGE analysis result of the orthogonal test. Lanes 1-9, samples from the nine orthogonal L9(3)4experiments; Lane 10, κ-carraheptaose.

    Fig.3 Grey integral analysis of experiments 1 and 5 in PAGE by Quantity One 4.6.2 software.

    3.3 Separation of KCO

    The KCO mixture was separated by size exclusion chromatography on a preparative Superdex 30 column. The 0.1 mol L-1NH4HCO3was used as elution solvent due to its good volatility, and it was easy to remove from KCO by rotary evaporation and lyophilization. The preparative Superdex 30 column gave a satisfactory resolution of KCO from DP 3 to 21. Ten major oligosaccharide fractions were marked as K3 to K21 (Fig.4) based on refractive index detector.

    Fig.4 Separation graph of KCO on a Superdex 30 column (2.6 cm × 90 cm). Elution was performed with 0.1 mol L-1NH4HCO3at a flow rate of 0.5 mL min-1and detected by an online refractive index detector. K3-K21 indicated the fractions with degree of polymerization from 3 to 21.

    3.4 ESI-MS Analysis of KCO

    The main ions observed in the ESI-MS spectra of K3-K13 were listed in Table 3, and the DPs of KCO were determined by the molecular mass of each fraction. The ESI-MS spectra of K9 and K11 were shown in Fig.5. Taking K9 as an example, the ions at m/z 359.84 and 455.55 were corresponding to the five charged ion [M-5H]5-and the four charged ion [M-5H+Na]4-, respectively. So the molecular mass of K9 was calculated as 1804.20 Da (DP = 9). These results indicated that the oligosaccharides obtained by this method were oddnumbered, which was consistent with the oligosaccharides produced with the mild acid hydrolysis method (Yanget al., 2009; Yuet al., 2002; Yuet al., 2006).

    In this study, a rapid degradation method of κ-carrageenan was established by microwave assisted acid hydrolysis. The optimum hydrolysis condition was obtained by an orthogonal test, and the results were analyzed by HPTLC, PAGE and ESI-MS. The optimum hydrolysis condition was 100℃ 15 min, pH 3 and 5 mg mL-1ofκ-carrageenan. Odd-numbered κ-carra-oligosaccharides of DP from 3 to 21 were obtained by using this method, and the structures of the oligosaccharides were consistent with the oligosaccharides obtained by acid hydrolysis. This method was more convenient and rapid, and the reaction time was only 15 min, which was significantly shorter than that of traditional mild acid hydrolysis (90 min) (Yanget al., 2009). Besides, the pH value (3) of the reaction solution was much higher than that in the mild acid hydrolysis (0.1 mol L-1H2SO4), producing less salt during the hydrolysis procedure, and this would be very convenient for the further research of carrageenan.

    Fig.5 Negative-ion ESI-MS spectra of κ-carra-oligosaccharides. A, K9; B, K11.

    4 Conclusions

    κ-carra-oligosaccharides can be prepared from κ-carrageenan with a microwave assisted acid hydrolysis method. The optimum hydrolysis condition was 5 mg mL-1of κ-carrageenan, pH 3 and 100℃ for 15 min. Odd-numbered κ-carra-oligosaccharides with degree of polymerization (DP) from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained with traditional mild acid hydrolysis.

    Acknowledgements

    This research was supported by the Special Fund for Marine Scientific Research in the Public Interest (201005024), NSFC-Shandong Joint Fund for Marine Science Research Centers (U1406402), Qingdao Science & Technology Project (11-2-2-1-hy), and National Science & Technology Support Program of China (2013BAB 01B02).

    Abad, L. V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Katsumura, Y., Aranilla, C. T., Relleve, L. S., and De La Rosa, A. M., 2009. Radiation degradation studies of carrageenans.Carbohydrate Polymers, 78 (1): 100-106.

    Carlucci, M. J., Pujol, C. A., Ciancia, M., Noseda, M. D., Matulewicz, M. C., Damonte, E. B., and Cerezo, A. S., 1997. Antiherpetic and anticoagulant properties of carrageenans from the red seaweedGigartina skottsbergiiand their cyclized derivatives: Correlation between structure and biological activity.International Journal of Biological Macromolecules, 20 (2): 97-105.

    Collen, P. N., Lemoine, M., Daniellou, R., Guegan, J. P., Paoletti, S., and Helbert, W., 2009. Enzymatic degradation of kappa-carrageenan in aqueous solution.Biomacromolecules, 10 (7): 1757-1767.

    Courtois, J., 2009. Oligosaccharides from land plants and algae:Production and applications in therapeutics and biotechnology.Current Opinion in Microbiology, 12 (3): 261-273.

    Hu, T., Li, C., Zhao, X., Li, G., Yu, G., and Guan, H., 2013. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method.Carbohydrate Research, 373: 53-58.

    Hu, X., Jiang, X., Aubree, E., Boulenguer, P., and Critchley, A. T., 2006. Preparation andin vivoantitumor activity of κ-carrageenan oligosaccharides.Pharmaceutical Biology, 44 (9):646-650.

    Karlsson, A., and Singh, S. K., 1999. Acid hydrolysis of sulphated polysaccharides. Desulphation and the effect on molecular mass.Carbohydrate Polymers, 38 (1): 7-15.

    Mou, H. J., Jiang, X. L., and Guan, H. S., 2003. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity.Journal of Applied Phycology, 15 (4): 297-303.

    Myslabodski, D. E., Stancioff, D., and Heckert, R. A., 1996. Effect of acid hydrolysis on the molecular weight of kappa carrageenan by GPC-LS.Carbohydrate Polymers, 31 (1-2):83-92.

    Navarro, D. A., Flores, M. L., and Stortz, C. A., 2007. Microwave-assisted desulfation of sulfated polysaccharides.Carbohydrate Polymers, 69 (4): 742-747.

    Relleve, L., Nagasawa, N., Luan, L. Q., Yagi, T., Aranilla, C., Abad, L., Kume, T., Yoshii, F., and Dela Rosa, A., 2005. Degradation of carrageenan by radiation.Polymer Degrada-tion and Stability, 87 (3): 403-410.

    Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., and Teixeira, J. A., 2011. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed.Carbohydrate Polymers, 86 (3): 1137-1144.

    Singh, V., Tiwari, A., Kumari, P., and Tiwari, S., 2006. Microwave-promoted hydrolysis of plant seed gums on alumina support.Carbohydrate Research, 341 (13): 2270-2274.

    Singh, V., Tiwari, A., Tripathi, D. N., and Malviya, T., 2003. Microwave promoted methylation of plant polysaccharides.Tetrahedron Letters, 44 (39): 7295-7297.

    Smith, D. B., and Cook, W. H., 1953. Fractionation of carrageenin.Archives of Biochemistry and Biophysics, 45 (1): 232-233.

    Sun, T., Tao, H., Xie, J., Zhang, S., and Xu, X., 2010. Degradation and antioxidant activity of k-carrageenans.Journal of Applied Polymer Science, 117 (1): 194-199.

    Wang, W., Zhang, P., Hao, C., Zhang, X. E., Cui, Z. Q., and Guan, H. S., 2011.In vitroinhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus.Antiviral Research, 92 (2): 237-246.

    Wu, S., 2012. Degradation of κ-carrageenan by hydrolysis with commercial α-amylase.Carbohydrate Polymers, 89 (2): 394-396.

    Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., and Nakagawa, Y., 2000. Preparation of O-acylated low-molecularweight carrageenans with potent anti-HIV activity and low anticoagulant effect.Carbohydrate Polymers, 41 (2): 115-120.

    Yang, B., Yu, G., Zhao, X., Jiao, G., Ren, S., and Chai, W., 2009. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides.FEBS Journal, 276 (7): 2125-2137.

    Yu, G., Guan, H., Ioanoviciu, A. S., Sikkander, S. A., Thanawiroon, C., Tobacman, J. K., Toida, T., and Linhardt, R. J., 2002. Structural studies on kappa-carrageenan derived oligosaccharides.Carbohydrate Research, 337 (5): 433-440.

    Yu, G., Li, M., Wang, W., Liu, X., Zhao, X., Lv, Y., Li, G., Jiao, G., and Zhao, X., 2012. Structure and anti-influenza A (H1N1) virus activity of three polysaccharides fromEucheuma denticulatum.Journal of Ocean University of China, 11 (4): 527-532.

    Yu, G., Zhao, X., Yang, B., Ren, S., Guan, H., Zhang, Y., Lawson, A. M., and Chai, W., 2006. Sequence determination of sulfated carrageenan-derived oligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry.Analytical Chemistry, 78 (24): 8499-8505.

    Yu, H., Chen, S., Suree, P., Nuansri, R., and Wang, K., 1996. Effect of microwave irradiation on acid-catalyzed hydrolysis of starch.The Journal of Organic Chemistry, 61 (26): 9608-9609.

    Yuan, H., Song, J., Li, X., Li, N., and Dai, J., 2006. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides.Cancer Letters, 243 (2): 228-234.

    Yuan, H., Zhang, W., Li, X., Lu, X., Li, N., Gao, X., and Song, J., 2005. Preparation andin vitroantioxidant activity of kappa-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives.Carbohydrate Research, 340 (4): 685-692.

    Zhang, Z., Yu, G., Zhao, X., Liu, H., Guan, H., Lawson, A. M., and Chai, W., 2006. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry.Journal of the American Society for Mass Spectrometry, 17 (4): 621-630.

    (Edited by Qiu Yantao)

    (Received May 29, 2013; revised August 9, 2013; accepted December 23, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-82031609 E-mail: glyu@ouc.edu.cn

    日日夜夜操网爽| 国产高清三级在线| 看黄色毛片网站| 国产99白浆流出| 成人国产一区最新在线观看| 亚洲中文字幕一区二区三区有码在线看 | 三级男女做爰猛烈吃奶摸视频| 成人一区二区视频在线观看| 国产激情偷乱视频一区二区| 日本在线视频免费播放| 丁香六月欧美| 欧美乱色亚洲激情| 国内精品久久久久精免费| 伦理电影免费视频| 一本精品99久久精品77| 啦啦啦观看免费观看视频高清| 国产综合懂色| 99精品在免费线老司机午夜| 国产精品一区二区精品视频观看| 亚洲 国产 在线| 中文字幕人成人乱码亚洲影| 哪里可以看免费的av片| 欧美成狂野欧美在线观看| 色尼玛亚洲综合影院| 岛国在线观看网站| 18禁黄网站禁片免费观看直播| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9| 99久久99久久久精品蜜桃| 日韩免费av在线播放| www.999成人在线观看| 日本一二三区视频观看| av黄色大香蕉| 精品福利观看| 亚洲,欧美精品.| 在线观看午夜福利视频| 欧美一级a爱片免费观看看| 国产亚洲精品久久久久久毛片| 国产伦精品一区二区三区视频9 | 国产真实乱freesex| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 欧美日韩中文字幕国产精品一区二区三区| 夜夜爽天天搞| xxxwww97欧美| 怎么达到女性高潮| 精品国产乱码久久久久久男人| 99久久无色码亚洲精品果冻| 国产亚洲av嫩草精品影院| e午夜精品久久久久久久| 午夜精品一区二区三区免费看| 老司机午夜福利在线观看视频| 在线免费观看不下载黄p国产 | 欧美3d第一页| 国产在线精品亚洲第一网站| 黄色日韩在线| 国产又色又爽无遮挡免费看| 欧美日韩中文字幕国产精品一区二区三区| 国产成人精品久久二区二区91| 国产成人aa在线观看| 亚洲第一电影网av| 国产伦一二天堂av在线观看| 人妻夜夜爽99麻豆av| 男女下面进入的视频免费午夜| 成在线人永久免费视频| 亚洲成av人片免费观看| 夜夜夜夜夜久久久久| 黑人欧美特级aaaaaa片| 婷婷亚洲欧美| 我的老师免费观看完整版| 最新中文字幕久久久久 | 性色av乱码一区二区三区2| 嫁个100分男人电影在线观看| 久久久国产成人免费| 成人亚洲精品av一区二区| 黑人欧美特级aaaaaa片| netflix在线观看网站| 欧美日韩综合久久久久久 | 亚洲国产日韩欧美精品在线观看 | 又紧又爽又黄一区二区| 亚洲专区中文字幕在线| 午夜亚洲福利在线播放| 午夜久久久久精精品| 欧美日韩综合久久久久久 | 国产精品亚洲av一区麻豆| 亚洲在线观看片| 国产激情欧美一区二区| 99热精品在线国产| 不卡av一区二区三区| 免费无遮挡裸体视频| 老汉色∧v一级毛片| 啦啦啦免费观看视频1| 国产精品久久久久久精品电影| 日韩成人在线观看一区二区三区| 一级a爱片免费观看的视频| 999精品在线视频| 久久久久久人人人人人| 久久久成人免费电影| 18美女黄网站色大片免费观看| 99久久成人亚洲精品观看| 亚洲成人免费电影在线观看| 精品久久久久久久毛片微露脸| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品一区二区www| 亚洲成人中文字幕在线播放| 久久久久九九精品影院| 亚洲成av人片在线播放无| 国产av在哪里看| 51午夜福利影视在线观看| 99热这里只有精品一区 | 香蕉丝袜av| 精品99又大又爽又粗少妇毛片 | 黄色片一级片一级黄色片| 国产亚洲精品av在线| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影| 亚洲精品乱码久久久v下载方式 | 国产一区二区激情短视频| 国产成人一区二区三区免费视频网站| 岛国在线观看网站| 国产免费av片在线观看野外av| 俺也久久电影网| 脱女人内裤的视频| 一级a爱片免费观看的视频| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 国产精品影院久久| 91在线精品国自产拍蜜月 | 在线观看免费视频日本深夜| 免费高清视频大片| 99久久综合精品五月天人人| 国产午夜福利久久久久久| 女生性感内裤真人,穿戴方法视频| 久久久久性生活片| 不卡av一区二区三区| 丰满的人妻完整版| 午夜激情福利司机影院| 在线a可以看的网站| 亚洲精品美女久久av网站| 精品一区二区三区四区五区乱码| 亚洲一区二区三区不卡视频| 久久中文看片网| 久久久久久久精品吃奶| av片东京热男人的天堂| 脱女人内裤的视频| 久久国产精品影院| 热99在线观看视频| 亚洲狠狠婷婷综合久久图片| 午夜视频精品福利| 久久99热这里只有精品18| 国产黄色小视频在线观看| 在线观看免费午夜福利视频| 亚洲在线观看片| 亚洲成人免费电影在线观看| 搡老岳熟女国产| 亚洲精品美女久久久久99蜜臀| 精品国产乱码久久久久久男人| 成人无遮挡网站| 三级毛片av免费| 国产人伦9x9x在线观看| 亚洲av成人一区二区三| 在线a可以看的网站| 欧美又色又爽又黄视频| 88av欧美| 黄频高清免费视频| 午夜精品在线福利| av黄色大香蕉| 亚洲熟女毛片儿| 免费高清视频大片| 久久草成人影院| 精品不卡国产一区二区三区| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 好男人电影高清在线观看| 岛国在线免费视频观看| 99热精品在线国产| 婷婷六月久久综合丁香| 桃色一区二区三区在线观看| 精品国产超薄肉色丝袜足j| av在线天堂中文字幕| www.熟女人妻精品国产| 国产精品影院久久| tocl精华| 欧美乱色亚洲激情| 中文字幕人妻丝袜一区二区| 欧美日韩亚洲国产一区二区在线观看| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 亚洲精品456在线播放app | 别揉我奶头~嗯~啊~动态视频| 香蕉久久夜色| АⅤ资源中文在线天堂| 日本三级黄在线观看| 亚洲成人久久性| 亚洲七黄色美女视频| 国产精品一区二区免费欧美| 啦啦啦免费观看视频1| 久久午夜亚洲精品久久| 激情在线观看视频在线高清| 久久热在线av| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 免费看光身美女| 亚洲av美国av| 国产激情久久老熟女| 免费在线观看影片大全网站| 欧美黑人巨大hd| 国产伦精品一区二区三区四那| 巨乳人妻的诱惑在线观看| tocl精华| 久久国产精品影院| 国产黄色小视频在线观看| 淫妇啪啪啪对白视频| 亚洲国产精品999在线| a级毛片在线看网站| 精品久久久久久久久久免费视频| 熟女电影av网| 97超视频在线观看视频| 最近最新免费中文字幕在线| 成人三级做爰电影| 亚洲最大成人中文| 午夜福利18| 叶爱在线成人免费视频播放| 免费在线观看成人毛片| 可以在线观看毛片的网站| 欧美日韩综合久久久久久 | 琪琪午夜伦伦电影理论片6080| 免费在线观看亚洲国产| 免费一级毛片在线播放高清视频| 午夜福利高清视频| 国产av不卡久久| 99在线视频只有这里精品首页| 一区二区三区国产精品乱码| 亚洲成人久久性| 亚洲av日韩精品久久久久久密| 99热6这里只有精品| 窝窝影院91人妻| 91字幕亚洲| 欧美一区二区国产精品久久精品| 99久久精品国产亚洲精品| 日韩欧美在线乱码| 久久国产乱子伦精品免费另类| 夜夜爽天天搞| 韩国av一区二区三区四区| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 神马国产精品三级电影在线观看| 在线观看日韩欧美| 成人特级黄色片久久久久久久| 一夜夜www| 成人一区二区视频在线观看| 欧美黑人欧美精品刺激| 亚洲第一欧美日韩一区二区三区| 欧美高清成人免费视频www| 欧美中文日本在线观看视频| 在线国产一区二区在线| 午夜福利在线在线| 免费高清视频大片| 成年人黄色毛片网站| 久久午夜综合久久蜜桃| 国产视频一区二区在线看| 免费看a级黄色片| 久久久久久久午夜电影| 国产成人aa在线观看| 人人妻人人看人人澡| 亚洲中文字幕一区二区三区有码在线看 | 国产高清视频在线观看网站| 成人av在线播放网站| 国产成人精品久久二区二区免费| 成人三级黄色视频| 亚洲五月天丁香| 黄色丝袜av网址大全| 国产极品精品免费视频能看的| 午夜免费观看网址| 美女cb高潮喷水在线观看 | АⅤ资源中文在线天堂| 午夜精品在线福利| 色综合婷婷激情| www日本黄色视频网| www.www免费av| 亚洲欧美日韩高清在线视频| 亚洲一区二区三区色噜噜| 99精品欧美一区二区三区四区| 国产成人影院久久av| 久久久久久久久免费视频了| 日韩免费av在线播放| 黄色视频,在线免费观看| 亚洲欧美精品综合久久99| 两性午夜刺激爽爽歪歪视频在线观看| 最新中文字幕久久久久 | 制服人妻中文乱码| 精品不卡国产一区二区三区| 亚洲av美国av| 国产成人av教育| 亚洲无线观看免费| 精品国产三级普通话版| 欧美成人一区二区免费高清观看 | 国产精品,欧美在线| tocl精华| 91九色精品人成在线观看| 村上凉子中文字幕在线| 啪啪无遮挡十八禁网站| 中文在线观看免费www的网站| 好男人电影高清在线观看| av视频在线观看入口| 桃色一区二区三区在线观看| 99久久99久久久精品蜜桃| 一级a爱片免费观看的视频| 老鸭窝网址在线观看| 九色国产91popny在线| 成年女人看的毛片在线观看| 哪里可以看免费的av片| 美女 人体艺术 gogo| 不卡av一区二区三区| 18禁国产床啪视频网站| 男人和女人高潮做爰伦理| 国产伦在线观看视频一区| 国产精品久久久人人做人人爽| 久9热在线精品视频| 国产成+人综合+亚洲专区| 久久亚洲精品不卡| 一级作爱视频免费观看| 成人永久免费在线观看视频| 午夜免费观看网址| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 国产精品日韩av在线免费观看| 国产69精品久久久久777片 | 男人的好看免费观看在线视频| 国产精品99久久久久久久久| 1024香蕉在线观看| 久久这里只有精品19| 精品国产乱子伦一区二区三区| 亚洲在线观看片| 欧美成人性av电影在线观看| 久久热在线av| 色老头精品视频在线观看| 久久久水蜜桃国产精品网| 色综合欧美亚洲国产小说| 国产精品98久久久久久宅男小说| 亚洲18禁久久av| 精品无人区乱码1区二区| 波多野结衣巨乳人妻| 国产男靠女视频免费网站| 久久久久九九精品影院| 国产亚洲精品一区二区www| 欧美黄色片欧美黄色片| 首页视频小说图片口味搜索| 精品福利观看| 岛国视频午夜一区免费看| 日本黄色片子视频| 亚洲熟女毛片儿| 亚洲国产看品久久| 在线视频色国产色| 亚洲九九香蕉| 97超级碰碰碰精品色视频在线观看| 三级男女做爰猛烈吃奶摸视频| 国产三级黄色录像| 欧美成人免费av一区二区三区| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 国产av麻豆久久久久久久| 亚洲片人在线观看| 黄色片一级片一级黄色片| 亚洲欧美精品综合一区二区三区| 九色成人免费人妻av| 亚洲男人的天堂狠狠| 精品电影一区二区在线| cao死你这个sao货| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 亚洲第一欧美日韩一区二区三区| 国产高潮美女av| 欧美在线一区亚洲| 国产亚洲精品综合一区在线观看| 国产精品av久久久久免费| 99久久99久久久精品蜜桃| 最近视频中文字幕2019在线8| 99久久99久久久精品蜜桃| 亚洲性夜色夜夜综合| 搡老熟女国产l中国老女人| 国产精品女同一区二区软件 | 久久久久久久午夜电影| 91九色精品人成在线观看| 久久中文字幕一级| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产精品麻豆| 级片在线观看| 成人欧美大片| 黑人操中国人逼视频| 美女午夜性视频免费| 欧美色视频一区免费| 亚洲国产精品合色在线| 国产午夜精品久久久久久| 成人18禁在线播放| 久久人人精品亚洲av| 在线观看免费午夜福利视频| 免费av不卡在线播放| 免费观看人在逋| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| 波多野结衣巨乳人妻| 黄色视频,在线免费观看| 老司机深夜福利视频在线观看| av视频在线观看入口| 欧美日韩精品网址| 男人的好看免费观看在线视频| 999精品在线视频| 在线观看日韩欧美| 男女午夜视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 草草在线视频免费看| 国产综合懂色| 国产三级黄色录像| 搞女人的毛片| 日韩av在线大香蕉| 久久精品91蜜桃| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| 美女高潮的动态| 亚洲国产看品久久| xxx96com| a级毛片a级免费在线| 黑人操中国人逼视频| 亚洲av第一区精品v没综合| 免费无遮挡裸体视频| 俺也久久电影网| 亚洲成人久久性| 国内精品久久久久久久电影| 色噜噜av男人的天堂激情| 国产高清videossex| 亚洲18禁久久av| 一级毛片高清免费大全| а√天堂www在线а√下载| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 国产精品综合久久久久久久免费| 99热6这里只有精品| 欧美av亚洲av综合av国产av| 高清在线国产一区| 中文字幕人妻丝袜一区二区| 亚洲国产日韩欧美精品在线观看 | 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 人妻久久中文字幕网| 国产精品av视频在线免费观看| 国产在线精品亚洲第一网站| 噜噜噜噜噜久久久久久91| 一本综合久久免费| 麻豆av在线久日| 不卡一级毛片| 两人在一起打扑克的视频| 国产精品香港三级国产av潘金莲| 久久久久久久久免费视频了| 舔av片在线| 亚洲午夜精品一区,二区,三区| 午夜免费激情av| 一进一出抽搐gif免费好疼| x7x7x7水蜜桃| 嫩草影视91久久| 国产单亲对白刺激| 宅男免费午夜| 精品久久久久久久人妻蜜臀av| 一个人免费在线观看电影 | 成人性生交大片免费视频hd| 欧美av亚洲av综合av国产av| 亚洲天堂国产精品一区在线| 综合色av麻豆| 网址你懂的国产日韩在线| 男人和女人高潮做爰伦理| 午夜福利在线在线| 日本在线视频免费播放| 久久香蕉国产精品| 亚洲国产欧美网| 欧美zozozo另类| 午夜福利在线观看免费完整高清在 | 日本精品一区二区三区蜜桃| 国产综合懂色| 1024香蕉在线观看| 首页视频小说图片口味搜索| 久久热在线av| avwww免费| 少妇的丰满在线观看| 男人舔女人的私密视频| 99在线视频只有这里精品首页| 夜夜看夜夜爽夜夜摸| 欧美成人一区二区免费高清观看 | 亚洲中文av在线| 免费观看精品视频网站| 五月玫瑰六月丁香| 精品国产乱子伦一区二区三区| 国产精品一及| 国产av一区在线观看免费| 九九久久精品国产亚洲av麻豆 | 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美一区二区综合| 在线免费观看不下载黄p国产 | 国产黄a三级三级三级人| 在线国产一区二区在线| 最近最新免费中文字幕在线| 91字幕亚洲| 亚洲男人的天堂狠狠| 亚洲精品美女久久av网站| 超碰成人久久| 给我免费播放毛片高清在线观看| 欧美日本亚洲视频在线播放| 国产aⅴ精品一区二区三区波| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 国产淫片久久久久久久久 | 9191精品国产免费久久| 亚洲熟妇中文字幕五十中出| 性欧美人与动物交配| 最新美女视频免费是黄的| 午夜a级毛片| 亚洲精品456在线播放app | av欧美777| 国产激情久久老熟女| 99久久精品热视频| 在线播放国产精品三级| 久久天堂一区二区三区四区| 欧美国产日韩亚洲一区| 久久久成人免费电影| 午夜久久久久精精品| 日韩欧美三级三区| 91老司机精品| 亚洲精品美女久久久久99蜜臀| 欧美最黄视频在线播放免费| 久久香蕉国产精品| 少妇的逼水好多| 露出奶头的视频| netflix在线观看网站| 精品国产乱码久久久久久男人| 99国产精品一区二区三区| 亚洲黑人精品在线| 女同久久另类99精品国产91| 男插女下体视频免费在线播放| 国内精品美女久久久久久| 日韩有码中文字幕| 久久这里只有精品中国| 人人妻人人看人人澡| 中国美女看黄片| 日本五十路高清| 国产又黄又爽又无遮挡在线| 我要搜黄色片| 麻豆久久精品国产亚洲av| 中出人妻视频一区二区| 99在线人妻在线中文字幕| www日本在线高清视频| 99精品久久久久人妻精品| 国内揄拍国产精品人妻在线| 小蜜桃在线观看免费完整版高清| 国模一区二区三区四区视频 | 午夜成年电影在线免费观看| 久久久久久大精品| 在线观看免费视频日本深夜| 成人鲁丝片一二三区免费| 亚洲18禁久久av| 岛国在线观看网站| 黄色片一级片一级黄色片| 免费av毛片视频| 国产伦一二天堂av在线观看| 嫩草影院入口| 国产99白浆流出| 俺也久久电影网| 欧美另类亚洲清纯唯美| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利成人在线免费观看| 国产不卡一卡二| 精品久久久久久成人av| 日本 av在线| 国产人伦9x9x在线观看| 国产av不卡久久| 亚洲成av人片在线播放无| 欧美成人性av电影在线观看| 在线a可以看的网站| av女优亚洲男人天堂 | 国产成人影院久久av| 国产精品综合久久久久久久免费| 两人在一起打扑克的视频| 最新中文字幕久久久久 | 色哟哟哟哟哟哟| x7x7x7水蜜桃| 男人舔女人下体高潮全视频| 久久人妻av系列| 麻豆国产97在线/欧美| 老司机深夜福利视频在线观看| 日本 欧美在线| 1000部很黄的大片| 国产69精品久久久久777片 | av黄色大香蕉| 麻豆国产97在线/欧美| 老司机深夜福利视频在线观看| 久久精品91无色码中文字幕| 国产高潮美女av| 国产成人欧美在线观看| 变态另类丝袜制服| 黄色日韩在线| 成人鲁丝片一二三区免费| 19禁男女啪啪无遮挡网站| 国产亚洲av高清不卡| 国产69精品久久久久777片 | 国产精品国产高清国产av| 很黄的视频免费| 亚洲国产欧洲综合997久久,| 一个人看的www免费观看视频| 97超级碰碰碰精品色视频在线观看| 亚洲av成人av| 久久国产精品影院| 亚洲精品456在线播放app | 一个人看的www免费观看视频| 国产97色在线日韩免费| 国产午夜精品久久久久久|