• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Abundance and Distribution of Fatty Acids in Sediments of the South Mid-Atlantic Ridge

    2015-04-05 08:20:49HUANGXinZENGZhigangCHENShuaiYINXueboWANGXiaoyuanMAYaoYANGBaojuRONGKunboSHUYunchaoandJIANGTao
    Journal of Ocean University of China 2015年2期
    關(guān)鍵詞:榨油機(jī)膠輥東方紅

    HUANG Xin, ZENG Zhigang, CHEN Shuai YIN Xuebo WANG Xiaoyuan MA Yao, YANG Baoju, RONG Kunbo, SHU Yunchao, and JIANG Tao

    1)Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071,P.R.China

    2)University of Chinese Academy of Sciences,Beijing100049,P.R.China

    Abundance and Distribution of Fatty Acids in Sediments of the South Mid-Atlantic Ridge

    HUANG Xin1),2), ZENG Zhigang1),*, CHEN Shuai1), YIN Xuebo1), WANG Xiaoyuan1), MA Yao1),2), YANG Baoju1),2), RONG Kunbo1),2), SHU Yunchao1),2), and JIANG Tao1),2)

    1)Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao266071,P.R.China

    2)University of Chinese Academy of Sciences,Beijing100049,P.R.China

    Sediment samples obtained from the South Mid-Atlantic Ridge were studies by gas chromatography-mass spectrometer (GC-MS) for the abundance and distributions of total fatty acids (TFAs). Approximately 34 fatty acids were identified, with the chain-lengths ranging from C12to C30. The total concentrations of TFAs (∑TFA) ranged from 7.15 to 30.09 μg g-1dry sediment, and∑TFA was weakly correlated with bitumen content (R2= 0.69). The ∑TFA of samples around hydrothermal areas were significantly higher than that of samples away from hydrothermal areas, indicating intense primary production and large biomass in the hydrothermal areas, and suggesting a close relationship between hydrothermal activity and ∑TFA of samples. The characteristics of the TFA composition in the present study are rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, and the ratios between the concentrations of monounsaturated fatty acids and ΣTFAs in samples close to the hydrothermal areas, are about 0.8, but for samples far from the hydrothermal areas, they are only about 0.5. Several fatty acids (e.g., a/iC15:0 and C16:1ω7), which are signature biomarkers for sulfur-metabolizing bacteria, show the same distribution trend as ∑TFA of samples, further highlighting the close relationship between fatty acid content and hydrothermal activity and/or hydrothermal communities. The metabolic activities of hydrothermal communities, especially those of microorganisms, are likely the main source of fatty acids in samples.

    South Mid-Atlantic Ridge; sediment; fatty acids; hydrothermal activity; microorganism

    1 Introduction

    Chemosynthetic bacteria are major players in seafloor hydrothermal ecosystem, and are also the dominant source of organic matter around the seafloor hydrothermal vents (Yamanaka and Sakata, 2004). As the major constituents of cell membranes, fatty acids are closely associated with biological activity. The distinct structures of fatty acids make them useful as biomarkers of bacteria and other microorganisms (Bobbie and White, 1980; van Vleet and Quinn, 1979). Fatty acid analysis provides information about the surrounding ecological and environmental conditions.

    Many researchers have investigated the fatty acids in sulfides (Leinet al., 2003; Simoneitet al., 2004; Liet al., 2011), rocks (Bassezet al., 2009), and sediments (Ohkouchi, 1995; Venkatesanet al., 2003; Yamanaka and Sakata, 2004; Morgunovaet al., 2012; Shulgaet al., 2012). Extensively investigated are also fatty acids of submarine hydrothermal organisms: tube worms (Pondet al., 2002), bivalves (Fouadet al., 1992; Pranalet al.,1997; Colacoet al., 2009), barnacles (Huanget al., 2013), gastropods (Saito and Hashimoto, 2010), shrimp (Pondet al., 1997, 2000; Saito, 2011), crabs (Saito, 2011), and fish (Guerreiroet al., 2004; Pondet al., 2008). Ohkouchi (1995) analyzed the concentration of fatty acids of sediments in the Central Pacific along 175°E from 48°N to 15°S, and discovered that the concentration of fatty acids of sediments was closely related to the latitude of sediments. The concentration of fatty acids of hydrothermal sediments and massive sulfide in Rainbow hydrothermal field were detected by Simoneitet al. (2004), and they affirmed the relationship between hydrothermal activity and TFAs. Liet al. (2011) detected the concentration of fatty acids of sulfide chimneys in the Main Endeavour segment of Juan de Fuca Ridge, and showed the distribution of fatty acid in the sulfide chimneys. However, there were few researches about organic matter in the South Mid-Atlantic Ridge, and we have not found the study of fatty acids in sediments affected by hydrothermal activity in this area.

    In 2010-2012, hydrothermal sediments were obtained during the DY115-22 and DY115-26 cruises organized by the China Ocean Mineral Resources R&D Association (COMRA) in the South Mid-Atlantic Ridge. We meas-ured the abundance and distribution of total fatty acids of 10 sediment samples to understand the ecological and environmental conditions of this hydrothermal system, and obtain the influence of seafloor hydrothermal activities on the fatty acid in sediments.

    2 Methods

    2.1 Geologic Setting

    The slow-spreading Atlantic Ridge, which accounts for about 40% of the total length of global mid-ocean ridge, stretches from 87°N (only about 330 km from the North Pole) to 54°S. By the Romanche trench near the equator, the Mid-Atlantic Ridge is divided into the North Mid-Atlantic Ridge and the South Mid-Atlantic Ridge. The South Mid-Atlantic Ridge turns to the Atlantic-Indian Ridge near 54°S, crosses the Crozet plateau, and continues eastwards to the Southwest Indian Ridge and the west to the Scotia Ridge.

    In recent years, scientists have discovered several hydrothermal areas in the South Mid-Atlantic Ridge. In 2009, the DY115-21 cruise found two new hydrothermal areas between the 13°-14°S segments of the South Mid-Atlantic Ridge, and obtained hydrothermal sulfide chimney samples (Taoet al., 2011). In 2010-2012, DY115-22 and DY115-26 cruises continued to investigate the South Mid-Atlantic Ridge, and collected a variety of hydrothermal sulfides, sediment, and rocks. In this study, the sampling location (except 22V-TVG14) are centered in the mid-ocean ridge between 12° to 15°S of the South Mid-Atlantic Ridge (Fig.1), where the spreading rate is about 3.4 cm year-1(DeMetset al., 1994).

    Fig.1 Sample collection site in the South Mid-Atlantic Ridge.

    2.2 Sampling and Analyses

    In 2010-2012, samples were collected by a TV-grab on the DY115-22 and DY115-26 cruises of R/VDa Yang Yi Haoconducted by COMRA in the South Mid-Atlantic Ridge. Sites, water depths and descriptions of samples are summarized in Table 1.

    After collection, the samples were placed in bags and stored at -20℃ until analysis. About 200 g of sediment from each sample was placed into dry acid-clean glass beakers, and dried at for 48 h. The dried sediment was powdered in an agate mortar to 100 meshes and dried for 24 h.

    The extraction and analysis of fatty acids was performed at the Lanzhou Center for Oil and Gas Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences. The extraction process was as follows: bitumen were extracted by soxhlet extractor with chloroformfor 72 h. N-hexane was used to remove asphaltene and solubilize organic matter. Soluble organic matter was separated by column chromatography (silica-gel 60; i.d.:15 mm; length: 35 mm), and the acid fraction was eluted by methanol. After methyl esterification by BF3-MeOH, the acid fraction was analyzed by GC-MS.

    Table 1 Sample locations and principal characteristics

    The gas chromatograph was a 6890N gas chromatography analyzer with a 30-m DB-5MS fused silica capillary column (i.d.: 0.2 mm; film thickness: 0.2 μm). The carrier gas was He. The GC temperature program used was as follows: injection at 80℃, 2 min isothermal; from 80 to 290℃ at 4℃ min-1; 20 min isothermal. The mass spectrometer (5973N) was operated in EI model at 70 eV.

    3 Results

    3.1 Total Concentrations of TFAs

    Total concentrations of total fatty acids are given in Table 2. The value of ΣTFAs ranged from 7.15 to 30.09 μg g-1dry weight; sample 22V-TVG10 contained the highest fatty acid concentrations. The value of ΣTFAs in samples was in accord with that in the surface sediments in the Central Pacific along 175°E from 48°N to 15°S (1.82-23.8 μg g-1) (Ohkouchi, 1995). The concentration of bitumen and ΣTFA in samples were weakly correlated (R2= 0.69) (Fig.2).

    Fig.2 Relationship between the total concentrations of TFA (∑TFA) and bitumen concentration.

    Table 2 Content of the total fatty acids in the sediments

    3.2 Individual TFA Compositions

    The composition and abundance of TFAs are given in Table 2. Approximately 34 fatty acids were identified, with chain-lengths ranging from C12to C30. The composition of TFAs are in accord with that of hydrothermal sediments of the western Pacific Ocean (Yamanaka and Sakata, 2004). The ratios between the sum of saturated high-molecular-weight fatty acids and the sum of saturated low-molecular-weight fatty acids [∑(〈C20)/ ∑(≥C20)] ranged from 0.34 to 0.54.

    3.2.1 Saturated fatty acid

    Saturated fatty acids were the most plentiful among fatty acids detected in the samples. Unbranched saturated fatty acids were the major component of saturated fatty acids in the samples, with the chain-lengths ranging from C12to C30. The dominant acid was hexadecanoic acid (C16:0), which constituted about 10%-30% of ΣTFA, followed by octadecanoic acid (C18:0). The majority of the saturated fatty acids were even in carbon chain length.

    12-Methyl-tertadecanoic acid (aC15:0), 13-methyltetradecanoic acid (iC15:0) and iso-hexadecanoic acid (iC16:0) were all detected. 8,10-Dimethoxyl-octadecanoic acid and 12,14-dimethoxyl-docosanoic acid were also discovered in the samples with concentrations ranging from 1% to 10% of ΣTFA. Other branched fatty acid and cyclic fatty acid were not detected.

    3.2.2 Unsaturated fatty acid

    Unsaturated fatty acids detected in the samples were all even-carbon (16, 18, 20, 22 and 24) fatty acids without branched chains. Except 9,12-octadecadinoic acid (C18:2), unsaturated fatty acids were all monounsaturated fatty acids. The concentration of trans-13-docosenoic acid (C22:1ω13t), which was the highest among unsaturated fatty acids, was between 3.25 and 15.29 μg g-1dry weight, and about 50% of ΣTFA. The concentration of trans-octadecenoic acid (C18:1ω9t) was also high, and about 20-30% of ΣTFA. In addition, hexadecenoic acid (C16:1ω7), cis-octadecenoic acid (C18:1ω9c) and 9,12-octadecadinoic acid (C18:2) were all discovered in samples.

    4 Discussion

    ΣTFA is related to ecosystem productivity, and may be used as an indicator of biomass (Morris and Culkin, 1976). Samples 22V-TVG10, 26V-TVG05, 22V-TVG13 and 22II-TVG04 all contained high ΣTFA and high bitumen, indicating high biomass (Fig.3). The remaining samples (e.g. 22V-TVG14) were lower in ΣTFA and bitumen content, indicating lower biomass. Samples 22V-TVG10, 26V-TVG05 and 22II-TVG04 were located near the hydrothermal areas, suggesting a close relationship between high ΣTFA and hydrothermal activity (Fig.1). Moreover, high ΣTFA in 22V-TVG13 indicates that there may be an unknown hydrothermal source near this sampling location. However, several samples (e.g. 22IVTVG04) near the hydrothermal area have low ΣTFA, which may be related to the sedimentation rate, hydrothermal community size, hydrothermal plume altitude and sea water current direction (Braultet al., 1984). Braultet al. (1984) detected similar sample content in hydrothermal settings in EPR13°N.

    Fig.3 The abundance of ΣTFA in samples.

    We did not detect polyunsaturated fatty acids, suggesting that the fatty acids in our samples were not derived from marine invertebrates or algae (Farringtonet al., 1973; Joseph, 1982; Simoneit, 1977). The characteristics of the TFAs composition in the present study, rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, are common in the vent sediments and animal samples (Yamanaka and Sakata, 2004). The concentrations of monounsaturated fatty acids are high in samples, and the ratios between the concentrations of monounsaturated fatty acids and ΣTFAs in samples 22VTVG10, 26V-TVG05 and 22II-TVG04 collected near the hydrothermal areas, are about 0.8 (Table 2), which is in accord with the characteristics of the TFAs composition in the vent sediments and animal samples, indicating more influence of hydrothermal activity on these samples. However, the ratio from sample 22V-TVG14, which is far from the hydrothermal areas, is only about 0.5 (Table 2), indicating less influence of hydrothermal activity and being in accordance with above conclusion about ΣTFA.

    Sulfur-based metabolic processes are important in the hydrothermal environment (Simoneit, 1977; Correet al., 2001; Brazeltonet al., 2006). High-temperature hydrothermal fluids contain hydrogen sulfide in concentrations several orders of magnitude higher than that of surrounding ambient seawater (Dinget al., 2001) and supply a critical substrate for chemosynthesis bacteria (McCollom and Shock, 1997; Van Dover, 2002). Sulfur metabolism supplies electron donors and acceptors for energy metabolism to the dense chemosynthetic-based vent ecosystems (McCollom and Shock, 1997). Some previous studies have shown a predominance of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in thehydrothermal systems (McCaffreyet al., 1989; Guezennec and Fiala-Medioni, 1996; Zhanget al., 2005).

    Some individual fatty acids including iC16:0, a/iC15:0, and C18:1ω9c/t (Liet al., 2011; Edlundet al., 1985; Doωlinget al., 1986; Kohringet al., 1994) are summed as the biomarker of SRB in the present study (Table 2). From Fig.4, the concentrations of these fatty acids in samples 22V-TVG10, 26V-TVG05, 22II-TVG04 and 22V-TVG13 are higher than those in other samples, indicating more influence of SRB on fatty acids, and also suggesting more influence of hydrothermal activity on these samples.

    Fig.4 The abundance of several selected fatty acids.

    Many previous studies have considered C16:1ω7 as the signature biomarker for SOB (Yamanaka and Sakata, 2004; Liet al., 2011; McCaffreyet al., 1989; Guezennec and Fiala-Medioni, 1996; Zhanget al., 2005; Liet al., 2007). The fatty acid C16:1ω7 was detected in all samples, indicating some contribution of SOB to fatty acids in samples. Yamanaka and Sakata (2004) reported the ratio of 16:1n-7/16:0 could be used to indicate the relative contribution of bacterial input and hydrothermal influence. The ratios of 16:1n-7/16:0 were larger in the samples of 22II-TVG04, 22V-TVG10, 22V-TVG13 and 26V-TVG05 than in other samples (Table 2), indicating a higher contribution of bacteria and more influence of hydrothermal activity, which is also in accord with the above conclusion.

    In samples, we did not detect C18:1ω7, a common biomarker for SOB (Yamanaka and Sakata, 2004; Liet al., 2011; McCaffreyet al., 1989; Guezennec and Fiala-Medioni, 1996; Zhanget al., 2005; Liet al., 2007), and iC17:0, a common biomarker for SRB (Liet al., 2011; Edlundet al., 1985; Doωlinget al., 1986; Kohringet al., 1994) may be related to the species of microorganisms, and long time mixture of sediment and seawater. However, other biomarkers and their distribution make it difficult for us to ignore the contribution of microorganisms associated with sulfur metabolism (e.g., SRB and SOB) to the fatty acids in the samples.

    5 Conclusion

    The distribution of ΣTFA in these samples reflects intense biomass and biological activity. The TFAs composition in the present study, rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, are in accord with most of the hydrothermal sediment in previous researches, indicating that the metabolic activities of hydrothermal communities (especially microbial metabolic activities) are likely to be the main source of fatty acids in samples. Microorganisms associated with sulfur metabolism play an important role in the abundance and distribution of fatty acids in these samples, which is not only reflected in the high concentration of biomarkers for microorganisms associated with the sulfur metabolism, but also reflected in the ratio of 16:1n-7/16:0 in samples. In conclusion, the influence of the hydrothermal activity and the microbial community are clear from the abundance and distribution of fatty acids in the sediment samples.

    Acknowledgements

    The authors would like to thank the crew of the COMRA cruises (DY115-22 and DY115-26) for their help with sampling operations, and thank Professor MENG Qianxiang for his help with sampling analysis. This work was supported by the National Key Basic Research Program of China (Grant No. 2013CB429700), National Special Fund for the 12th Five Year Plan of COMRA (Grant Nos. DY125-12-R-02, DY125-12-R-05, DY125- 11-R-05), National Natural Science Foundation of China (Grant Nos. 41325021, 40830849, 40976027), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11030302), and the Shandong Province Natural Science Foundation of China for Distinguished Young Scholars (Grant No. JQ200913).

    Bassez, M. P., Takano, Y., and Ohkouchi, N., 2009. Organic analysis of peridotite rocks from the Ashadze and Logatchev hydrothermal sites.International Jourmal of Molecular Sciences, 10: 2986-2998.

    Bobbie, R. J., and White, D. C., 1980. Characterization of benthic microbial community structure by high-resolution gas chromatography of fatty acid methyl esters.Applied and Environmental Microbiology, 39: 1212-1222.

    Brault, M., Marty, J. C., and Saliot, A., 1984. Fatty acids from particulate matter and sediment in hydrothermal environments from the east Pacific rise, near 13°N.Organic Geochemistry, 6: 217-222.

    Brazelton, W., Schrenk, M., Kelley, D., and Barass, J., 2006. Methane and sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem.Applied and Environmental Microbiology, 72: 6257-6270.

    Colaco, A., Prieto, C., Martins, A., Figueiredo, M., Lafon, V., Monteiro, M., and Banadarra, N., 2009. Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen vent field.Marine Environmental Research, 67: 146-152.

    Corre, E., Reysenbach, A. L., and Prieur, D., 2001. ε-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge.FEMS Microbiology Letters, 205: 329-335.

    DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions.Geophysical Research Letters, 21: 2191-2194.

    Ding, K., Seyfried, W. E., Tivey, M. K., and Bradley, A. M., 2001.In situmeasurement of dissolved H2and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge.Earth and Planetary Science Letters, 186 (3-4): 417-425.

    Dowling, N. J. E., Widdel, F., and White, D. C., 1986. Phospholipid ester-linked fatty acid biomarkers of acetateoxidizing sulphate-reducers and other sulphide-forming bacteria.Journal of General Microbiology, 132: 1815-1825.

    Edlund, A., Nichols, P. D., Roffey, R., and White, D. C., 1985. Extractable and lipopolysaccharide fatty acid and hydroxyl acid profiles fromDesulfovibriospecies.Journal of Lipid Research, 26: 982-988.

    Farrington, J. W., Quinn, J. G., and Davis, W. R., 1973. Fatty acid composition ofNephtys incisaandYoldia eimatula.Journal of the Fisheries Research Board of Canada, 30:181-185.

    Fouad, B. M., Jean, C. M., and Aline, F. M., 1992. Fatty acid composition in deep hydrothermal vent symbiotic bivalves.Journal of Lipid Research, 33: 1797-1806.

    Guerreiro, V., Narciso, L., Almeida, A. J., and Biscoito, M., 2004. Fatty acid profiles of deep-sea fishes from the Lucky Strike and Menez Gwen hydrothermal vent fields (Mid-Atlantic Ridge).Cybium, 28 (1): 33-44.

    Guezennec, J., and Fiala-Medioni, A., 1996. Bacterial abundance and diversity in the Barbados Trench determined by phospholipids analysis.FEMS Microbiology Ecology, 19:83-93.

    Huang, X., Zeng, Z., Chen, S., Yin, X., Wang, X., Zhao, H., Yang, B., Rong, K., and Ma, Y., 2013. Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge.Acta OceanologicaSinica, 12: 60-67.

    Joseph, J. D., 1982. Lipid composition of marine and estuarine invertebrates. Part II. Mollusca.Progress in Lipid Research, 21: 109-153.

    Kohring, L. L., Ringelberg, D. B., Devereux, R., Stahl, D. A., Mittelman, M. W., and White, D. C., 1994. Comparison of phylogenetic relationship based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfatereducing bacteria.FEMS Microbiology Letters, 119: 303-308.

    Lein, A. Y., Peresypkin, V. I., and Simoneit, B. R. T., 2003. Origin of hydrocarbons in hydrothermal sulfide ores in the Mid-Atlantic Ridge.Lithology and Mineral Resources, 38 (5):383-393.

    以關(guān)系到千家萬戶的糧食加工行業(yè)為例,在解決糧食供應(yīng)問題后,人們的生活開始由溫飽型向小康型逐步過渡。如小型礱谷機(jī),碾米機(jī)和200型榨油機(jī)、“東方紅”牌糧機(jī)和“雙獅”牌礱谷膠輥等具有代表性的機(jī)械,開始被運(yùn)用到米、面、油的深加工、精加工上來,以提高原料的利用率。

    Li, J., Zhou, H., Peng, X., Fu, M., Chen, Z., and Yao, H., 2011. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney.Journal of Sea Research, 65: 333-339.

    Li, Y. L., Peacock, A. D., White, D. C., Geyer, R., and Zhang, C., 2007. Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico.Chemical Geology, 238: 168-179.

    McCaffrey, M. A., Farrington, J. W., and Repeta, D. J., 1989. Geochemical implications of the lipid composition ofThioplocaspp. from the Peru upwelling regions 15°S.Organic Geochemistry, 14: 61-68.

    McCollom, T., and Shock, E. L., 1997. Geochemical constraints on chemolithoautotr-ophic metabolism by microorganisms in seafloor hydrothermal systems.Geochimica et Cosmochimica Acta, 61: 4375-4391.

    Morgunova, I. P., Ivanov, V. N., Litvinenko, I. V., Petrova, V. I., Stepanova, T. V., and Cherkashev, G. A., 2012. Geochemistry of organic matter in bottom sediments of the ashadze hydrothermal field.Oceanology, 52 (3): 345-353.

    Morris, R. J., and Culkin, F., 1976. Marine lipids: Analytical techniques and fatty acid ester analyses.Oceanography and Marine Biology, 14: 391-433.

    Pond, D. W., Allen, C. E., Bell, M. V., Dover, C. L., Fallick, A. E., Dixon, D. R., and Sargent, J. R., 2002. Origins of long-chain polyunsaturated fatty acids in the hydrothermal vent wormsRidgea piscesaeandProtis hydrothermica.Marine Ecology Progress Series, 225: 219-226.

    Pond, D. W., Dixon, D. R., Bell, M. V., Fallick, A. E., and Sargent, J. R., 1997. Occurrence of 16:2(n-4) and 18:2(n-4) fatty acids in the lipids of the hydrothermal vent shrimpsRimicaris exoculataandAlvinocaris markensis: Nutritional and trophic implications.Marine Ecology Progress Series, 156: 167-174.

    Pond, D. W., Fallick, A. E., Stevens, C. J., Morridon, D. J., and Dixon, D. R., 2008. Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence.Deep-Sea ResearchI, 55: 1718-1726.

    Pond, D. W., Gebruk, A., Southward, E. C., Southward, A. J., Fallick, A. E., Michael, V. B., and Sargent, J. R., 2000. Unusual fatty acid composition of storage lipids in the bresilioid shrimpRimicaris exoculatacouples the photic zone with MAR hydrothermal vent sites.Marine Ecology Progress Series, 198: 171-173.

    Pranal, V., Medioni, A. F., and Guezennec, J., 1997. Fatty acid characteristics in two symbiont-bearing mussels from deepsea hydrothermal vents of the south-western Pacific.Marine Biological Association of the UK, 77: 473-492.

    Pranal, V., Medioni, A. F., and Guezennec, J., 1996. Fatty acid characteristics in two symbiotic gastropods from a deep hydrothermal vent of the West Pacific.Marine Ecology Progress Series, 142: 175-184.

    Saito, H., and Hashimoto, J., 2010. Characteristics of the fatty acid composition of a deep-sea vent gastropod, ifremeria nautilei.Lipids, 45: 537-548.

    Saito, H., 2011. Characteristics of fatty acid composition of the deep-sea vent crab,Shinkaia crosnieriBaba and Williams.Lipids, 46: 723-740.

    Shulga, N. A., and Peresypkin, V. I., 2012. New data on the composition of organic matter in the hydrothermal deposits of the Mid-Atlantic Ridge (Broken Spur, Snake Pit, TAG).Doklady Earth Sciences, 444 (2): 773-775.

    Simoneit, B. R. T., 1977. Organic matter in eolian dusts over the Atlantic Ocean.Marine Chemistry, 5: 443-464.

    Simoneit, B. R. T., Lein, A. Y., Peresypkin, V. I., and Osipov, G. A., 2004. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N).Geochimica et Cosmochimica Acta, 68 (10): 2275-2294. Tao, C., Li, H., Yang, Y., Ni, J., Cui, R., Chen, Y., He, Y., Li, J., Huang, W., Lei, J., and Wang, Y., 2011. Two hydrothermal fields found on the southern Mid-Atlantic Ridge.Science China Earth Sciences, 54: 9.

    Van Dover, C. L., 2000.The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton, 424pp.

    Van Vleet, E. S., and Quinn, J. G., 1979. Early diagenesis of fatty acids and isoprenoid alcohols in estuarine and coastal sediments.Geochimica et Cosmochimica Acta, 43: 289-303.

    Venkatesan, M. I., Ruth, E., Rao, P. S., Nath, B. N., and Rao, B. R., 2003. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean.Applied Geochemistry, 18: 845-861.

    Yamanaka, T., and Sakata, S., 2004. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean.Organic Geochemistry, 35: 573-582.

    Zhang, C., Huang, Z., Cantu, J., Pancost, R. D., Brigmon, R. L., Lyons, T. W., and Sassen, R., 2005. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico.Applied and Environmental Microbiology, 71: 2106-2112.

    (Edited by Ji Dechun)

    (Received March 5, 2014; revised April 18, 2014; accepted May 20, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. E-mail: zgzeng@ms.qdio.ac.cn

    猜你喜歡
    榨油機(jī)膠輥東方紅
    Entrevista ping-pong “Mi mayor logro es haber aprendido espa?ol”
    LXC-866MD型膠輥紡紗實(shí)踐
    紡織器材(2022年4期)2022-08-18 14:05:34
    免加油并條膠輥在FA315型并條機(jī)上的應(yīng)用
    紡織器材(2022年4期)2022-08-18 14:05:34
    “東方紅”五號(hào)衛(wèi)星平臺(tái)
    東方紅20周年譜華章
    東方紅閃耀航展
    NFR865型免處理膠輥的應(yīng)用體會(huì)
    紡織器材(2015年5期)2015-12-19 06:38:34
    短膠輥在集聚紡細(xì)紗機(jī)上的應(yīng)用
    紡織器材(2015年4期)2015-12-19 06:37:30
    家庭新型電器
    ——家用榨油機(jī)
    低溫壓榨是榨油機(jī)的技術(shù)發(fā)展趨勢(shì)
    精品国产乱子伦一区二区三区| 免费一级毛片在线播放高清视频 | 日日摸夜夜添夜夜添小说| 一级,二级,三级黄色视频| 久热这里只有精品99| 无限看片的www在线观看| 亚洲情色 制服丝袜| av天堂久久9| 国产人伦9x9x在线观看| 亚洲第一欧美日韩一区二区三区| 精品久久久久久电影网| 无人区码免费观看不卡| 日本wwww免费看| 婷婷丁香在线五月| 黄色丝袜av网址大全| 色综合欧美亚洲国产小说| 两人在一起打扑克的视频| 老司机午夜十八禁免费视频| 可以免费在线观看a视频的电影网站| x7x7x7水蜜桃| 性少妇av在线| 亚洲精品国产一区二区精华液| 亚洲第一欧美日韩一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 熟女少妇亚洲综合色aaa.| 日本vs欧美在线观看视频| 中文欧美无线码| 一级片免费观看大全| 免费人成视频x8x8入口观看| 丝袜美腿诱惑在线| 长腿黑丝高跟| 日日夜夜操网爽| x7x7x7水蜜桃| 日本黄色日本黄色录像| 色哟哟哟哟哟哟| 热re99久久精品国产66热6| 91在线观看av| 麻豆国产av国片精品| 人成视频在线观看免费观看| 精品国产乱码久久久久久男人| 亚洲,欧美精品.| 波多野结衣高清无吗| 水蜜桃什么品种好| 多毛熟女@视频| 99精品久久久久人妻精品| 午夜亚洲福利在线播放| 午夜免费观看网址| 不卡一级毛片| 咕卡用的链子| 自拍欧美九色日韩亚洲蝌蚪91| 免费久久久久久久精品成人欧美视频| 欧美乱妇无乱码| 麻豆av在线久日| 夜夜爽天天搞| 99国产精品一区二区蜜桃av| 亚洲九九香蕉| 国产一卡二卡三卡精品| 欧美不卡视频在线免费观看 | 久久国产精品人妻蜜桃| 一级毛片高清免费大全| 国产精品一区二区在线不卡| 久久久国产成人精品二区 | 又紧又爽又黄一区二区| 国产av一区在线观看免费| 黑丝袜美女国产一区| 久久狼人影院| 999久久久精品免费观看国产| 日韩大尺度精品在线看网址 | 亚洲第一青青草原| 色婷婷久久久亚洲欧美| 久久伊人香网站| 国产人伦9x9x在线观看| 国产精品 欧美亚洲| 亚洲国产中文字幕在线视频| 免费久久久久久久精品成人欧美视频| xxx96com| 国产亚洲精品一区二区www| 亚洲三区欧美一区| 国产亚洲精品第一综合不卡| 久久人人精品亚洲av| 一级黄色大片毛片| av欧美777| 国产蜜桃级精品一区二区三区| 大陆偷拍与自拍| cao死你这个sao货| 精品熟女少妇八av免费久了| 99久久综合精品五月天人人| 狂野欧美激情性xxxx| 成人18禁高潮啪啪吃奶动态图| 欧美乱色亚洲激情| 色老头精品视频在线观看| 在线观看免费视频日本深夜| 91字幕亚洲| avwww免费| 日韩欧美一区二区三区在线观看| 欧美日本中文国产一区发布| 一区二区三区国产精品乱码| 精品一区二区三卡| 在线观看一区二区三区| 亚洲成人精品中文字幕电影 | 激情视频va一区二区三区| 亚洲欧美激情综合另类| 国产精品九九99| 自线自在国产av| 欧美日韩乱码在线| 自线自在国产av| 日韩欧美国产一区二区入口| 精品国产一区二区三区四区第35| 精品一区二区三区视频在线观看免费 | 国产欧美日韩一区二区三| 另类亚洲欧美激情| 色综合站精品国产| 亚洲人成77777在线视频| 午夜亚洲福利在线播放| 电影成人av| x7x7x7水蜜桃| 欧美乱妇无乱码| 国产精品秋霞免费鲁丝片| 我的亚洲天堂| 亚洲va日本ⅴa欧美va伊人久久| 国产99白浆流出| 午夜福利影视在线免费观看| 日韩免费高清中文字幕av| 超碰成人久久| 久久久久国产精品人妻aⅴ院| 少妇粗大呻吟视频| 12—13女人毛片做爰片一| 他把我摸到了高潮在线观看| 国产精品二区激情视频| 成人免费观看视频高清| 日韩欧美免费精品| 欧美在线一区亚洲| 在线观看日韩欧美| 成年女人毛片免费观看观看9| svipshipincom国产片| 国产1区2区3区精品| 国产免费男女视频| 天天影视国产精品| 亚洲五月婷婷丁香| 美女福利国产在线| 男女做爰动态图高潮gif福利片 | 大型av网站在线播放| 免费av中文字幕在线| 老汉色av国产亚洲站长工具| 亚洲色图 男人天堂 中文字幕| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 久久中文字幕一级| 多毛熟女@视频| 精品国产亚洲在线| 成年人免费黄色播放视频| 最近最新免费中文字幕在线| 亚洲人成电影免费在线| 精品一区二区三区四区五区乱码| 国产亚洲欧美精品永久| 精品国产乱子伦一区二区三区| 一本综合久久免费| 亚洲 欧美 日韩 在线 免费| 日韩精品青青久久久久久| 欧美黑人精品巨大| av超薄肉色丝袜交足视频| 国产精品一区二区三区四区久久 | 中出人妻视频一区二区| 国产精品亚洲av一区麻豆| 免费在线观看黄色视频的| 老司机午夜十八禁免费视频| 黑人猛操日本美女一级片| netflix在线观看网站| 久久精品亚洲精品国产色婷小说| 亚洲av成人不卡在线观看播放网| 欧美黑人欧美精品刺激| 男女下面插进去视频免费观看| 视频区图区小说| 色综合欧美亚洲国产小说| 高清欧美精品videossex| 日韩精品青青久久久久久| 亚洲精品粉嫩美女一区| 别揉我奶头~嗯~啊~动态视频| 亚洲avbb在线观看| 亚洲欧美一区二区三区久久| 侵犯人妻中文字幕一二三四区| 一进一出好大好爽视频| 日韩视频一区二区在线观看| 一级片免费观看大全| 午夜精品久久久久久毛片777| 婷婷丁香在线五月| 一级毛片精品| 老熟妇乱子伦视频在线观看| 久久国产精品男人的天堂亚洲| 另类亚洲欧美激情| 国产成人精品无人区| 高清毛片免费观看视频网站 | 激情在线观看视频在线高清| 天天躁夜夜躁狠狠躁躁| 美女午夜性视频免费| 国产免费av片在线观看野外av| 日韩欧美免费精品| 操出白浆在线播放| 50天的宝宝边吃奶边哭怎么回事| 国产精品98久久久久久宅男小说| 国产真人三级小视频在线观看| 视频在线观看一区二区三区| 咕卡用的链子| 亚洲视频免费观看视频| 极品人妻少妇av视频| 欧美精品啪啪一区二区三区| 欧美激情极品国产一区二区三区| 午夜精品久久久久久毛片777| 精品午夜福利视频在线观看一区| 看黄色毛片网站| 精品国产超薄肉色丝袜足j| 亚洲avbb在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产精品合色在线| 大型黄色视频在线免费观看| 久热这里只有精品99| 91av网站免费观看| 色精品久久人妻99蜜桃| 亚洲第一欧美日韩一区二区三区| 精品午夜福利视频在线观看一区| 久久九九热精品免费| av视频免费观看在线观看| 午夜亚洲福利在线播放| 国产熟女午夜一区二区三区| av欧美777| 亚洲情色 制服丝袜| 精品熟女少妇八av免费久了| 极品人妻少妇av视频| 看片在线看免费视频| 久久精品91蜜桃| 亚洲成人免费av在线播放| 亚洲视频免费观看视频| 在线看a的网站| 国产精品久久电影中文字幕| 亚洲专区国产一区二区| 日韩成人在线观看一区二区三区| 亚洲中文av在线| 一边摸一边抽搐一进一小说| 欧美中文日本在线观看视频| 怎么达到女性高潮| 超碰97精品在线观看| 久久人人97超碰香蕉20202| 国产一卡二卡三卡精品| 电影成人av| 成年人黄色毛片网站| 久久国产精品人妻蜜桃| 久久久久国产精品人妻aⅴ院| 免费少妇av软件| 久久中文字幕一级| 免费在线观看亚洲国产| 久久久久久久久中文| 亚洲熟女毛片儿| 国产欧美日韩精品亚洲av| 黄片大片在线免费观看| 国产日韩一区二区三区精品不卡| 亚洲专区国产一区二区| 一级a爱片免费观看的视频| 精品福利永久在线观看| 亚洲精品国产一区二区精华液| 国产精品一区二区精品视频观看| 欧美av亚洲av综合av国产av| av超薄肉色丝袜交足视频| 久久久久国产一级毛片高清牌| 精品国产乱子伦一区二区三区| 亚洲 国产 在线| 亚洲狠狠婷婷综合久久图片| 国产有黄有色有爽视频| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| 久久久久久久精品吃奶| e午夜精品久久久久久久| 国产精品乱码一区二三区的特点 | 国产激情欧美一区二区| 每晚都被弄得嗷嗷叫到高潮| 免费高清视频大片| 欧美色视频一区免费| 亚洲欧美激情综合另类| 9191精品国产免费久久| 成人国产一区最新在线观看| 99精国产麻豆久久婷婷| 欧美日韩视频精品一区| 国产成人av激情在线播放| 午夜福利影视在线免费观看| 日韩欧美国产一区二区入口| 国产一区二区三区综合在线观看| 无人区码免费观看不卡| 午夜免费鲁丝| 久久久久亚洲av毛片大全| 少妇裸体淫交视频免费看高清 | 国产精品久久电影中文字幕| 欧美成人午夜精品| 少妇被粗大的猛进出69影院| 高清毛片免费观看视频网站 | 国产男靠女视频免费网站| 亚洲熟妇熟女久久| 精品国产一区二区久久| 亚洲欧美一区二区三区久久| 国产亚洲精品一区二区www| 亚洲片人在线观看| 日韩人妻精品一区2区三区| 久久久久精品国产欧美久久久| 成年版毛片免费区| 国产成人系列免费观看| 久久中文字幕一级| 自拍欧美九色日韩亚洲蝌蚪91| 精品高清国产在线一区| 99re在线观看精品视频| 亚洲精华国产精华精| 国产高清videossex| 动漫黄色视频在线观看| 国产一卡二卡三卡精品| 国产成人影院久久av| 亚洲欧美日韩高清在线视频| 免费少妇av软件| 欧美激情极品国产一区二区三区| 精品国产一区二区久久| 亚洲欧美一区二区三区久久| 天天躁夜夜躁狠狠躁躁| 亚洲性夜色夜夜综合| 亚洲一区高清亚洲精品| 一区二区三区激情视频| 丝袜美腿诱惑在线| 99久久精品国产亚洲精品| 欧美国产精品va在线观看不卡| 精品人妻在线不人妻| 中文字幕人妻熟女乱码| 精品久久久精品久久久| 国产高清激情床上av| 欧美日韩一级在线毛片| 热99国产精品久久久久久7| 久久狼人影院| 男人操女人黄网站| 两个人看的免费小视频| 超碰97精品在线观看| 国产av精品麻豆| svipshipincom国产片| 亚洲欧美激情在线| 久久香蕉国产精品| 亚洲一区高清亚洲精品| 身体一侧抽搐| 国产一卡二卡三卡精品| 亚洲人成伊人成综合网2020| 亚洲自偷自拍图片 自拍| 亚洲片人在线观看| 国产极品粉嫩免费观看在线| 99国产精品一区二区三区| 午夜福利欧美成人| 国产成人精品久久二区二区91| 精品欧美一区二区三区在线| 大香蕉久久成人网| 欧美黑人精品巨大| 久久精品成人免费网站| 脱女人内裤的视频| 黄网站色视频无遮挡免费观看| 精品久久久久久久毛片微露脸| 欧美成人性av电影在线观看| 欧美丝袜亚洲另类 | 久久久久九九精品影院| 看黄色毛片网站| 亚洲自拍偷在线| 国产一卡二卡三卡精品| 极品教师在线免费播放| 国产av精品麻豆| 亚洲七黄色美女视频| 老司机午夜福利在线观看视频| 天天躁夜夜躁狠狠躁躁| 午夜福利免费观看在线| 国产精品自产拍在线观看55亚洲| 人人妻人人澡人人看| 免费不卡黄色视频| 91在线观看av| 无遮挡黄片免费观看| 超色免费av| xxxhd国产人妻xxx| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久午夜电影 | 久久天躁狠狠躁夜夜2o2o| 黄频高清免费视频| 99香蕉大伊视频| 国产激情久久老熟女| 又黄又粗又硬又大视频| 亚洲视频免费观看视频| 18禁裸乳无遮挡免费网站照片 | 亚洲avbb在线观看| 女性被躁到高潮视频| 亚洲美女黄片视频| 长腿黑丝高跟| 亚洲av电影在线进入| av有码第一页| 交换朋友夫妻互换小说| 在线观看免费午夜福利视频| 精品国产国语对白av| 天天影视国产精品| 日本a在线网址| 免费久久久久久久精品成人欧美视频| 日韩国内少妇激情av| 亚洲 国产 在线| 叶爱在线成人免费视频播放| 欧美一级毛片孕妇| 欧美亚洲日本最大视频资源| 国产黄a三级三级三级人| 波多野结衣一区麻豆| 精品卡一卡二卡四卡免费| 久久久久亚洲av毛片大全| 人成视频在线观看免费观看| 亚洲精品av麻豆狂野| 少妇粗大呻吟视频| 成人免费观看视频高清| 国产人伦9x9x在线观看| 日韩免费av在线播放| a级毛片在线看网站| 丰满迷人的少妇在线观看| 国产男靠女视频免费网站| 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 91国产中文字幕| 午夜两性在线视频| 亚洲国产欧美一区二区综合| 国产亚洲av高清不卡| 精品免费久久久久久久清纯| 欧美日韩av久久| videosex国产| 亚洲av片天天在线观看| 亚洲第一青青草原| 一级毛片女人18水好多| 久久精品人人爽人人爽视色| 黑人欧美特级aaaaaa片| 国产一区二区在线av高清观看| 成熟少妇高潮喷水视频| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻丝袜制服| 又黄又粗又硬又大视频| 亚洲五月天丁香| 欧美国产精品va在线观看不卡| 久久久久久久久久久久大奶| 一本大道久久a久久精品| 少妇裸体淫交视频免费看高清 | 一本综合久久免费| 成在线人永久免费视频| a级毛片黄视频| 19禁男女啪啪无遮挡网站| 99久久99久久久精品蜜桃| 在线永久观看黄色视频| 亚洲免费av在线视频| 搡老熟女国产l中国老女人| 99国产综合亚洲精品| 精品福利观看| 免费高清在线观看日韩| 91精品国产国语对白视频| 亚洲精品一二三| 最新美女视频免费是黄的| 久久天堂一区二区三区四区| 久久青草综合色| 少妇被粗大的猛进出69影院| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 9191精品国产免费久久| 啪啪无遮挡十八禁网站| 国产成人欧美| 日韩一卡2卡3卡4卡2021年| 色婷婷久久久亚洲欧美| 亚洲五月婷婷丁香| 99久久人妻综合| 色综合欧美亚洲国产小说| 日本 av在线| 精品日产1卡2卡| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区精品| 纯流量卡能插随身wifi吗| 欧美丝袜亚洲另类 | 激情视频va一区二区三区| 久久香蕉激情| 欧美日本亚洲视频在线播放| 国内久久婷婷六月综合欲色啪| 国产在线观看jvid| 丰满迷人的少妇在线观看| 亚洲精品粉嫩美女一区| 热re99久久国产66热| 欧美成人性av电影在线观看| 老司机亚洲免费影院| 久久久久九九精品影院| 亚洲熟女毛片儿| 丝袜人妻中文字幕| 18禁观看日本| 免费在线观看黄色视频的| 亚洲国产精品sss在线观看 | 亚洲三区欧美一区| www.www免费av| 男人舔女人的私密视频| cao死你这个sao货| 热99国产精品久久久久久7| 男女下面进入的视频免费午夜 | 三上悠亚av全集在线观看| 久久精品aⅴ一区二区三区四区| 在线观看免费日韩欧美大片| 久久国产精品人妻蜜桃| 国产亚洲精品综合一区在线观看 | 久久精品91蜜桃| 视频区欧美日本亚洲| 高潮久久久久久久久久久不卡| 国产三级在线视频| 麻豆av在线久日| 中文字幕精品免费在线观看视频| 国产蜜桃级精品一区二区三区| 欧美成人免费av一区二区三区| 日韩免费av在线播放| 在线观看免费日韩欧美大片| 久久国产亚洲av麻豆专区| 丁香欧美五月| 女人精品久久久久毛片| 国产成人欧美| 欧美乱妇无乱码| 超碰成人久久| 91麻豆精品激情在线观看国产 | 国内久久婷婷六月综合欲色啪| 久久狼人影院| 亚洲色图 男人天堂 中文字幕| 日本黄色视频三级网站网址| 欧美成人性av电影在线观看| 一本大道久久a久久精品| 精品乱码久久久久久99久播| 免费高清视频大片| 中文欧美无线码| 亚洲欧美精品综合一区二区三区| 一夜夜www| 校园春色视频在线观看| 少妇粗大呻吟视频| 成人黄色视频免费在线看| 一级a爱视频在线免费观看| 一级,二级,三级黄色视频| 夜夜看夜夜爽夜夜摸 | 少妇 在线观看| 男女下面插进去视频免费观看| 久久国产亚洲av麻豆专区| 精品一品国产午夜福利视频| 精品日产1卡2卡| av中文乱码字幕在线| e午夜精品久久久久久久| 国产一区二区三区视频了| 午夜精品在线福利| 9热在线视频观看99| 午夜a级毛片| 女人被狂操c到高潮| 国产精品一区二区精品视频观看| 91精品三级在线观看| 熟女少妇亚洲综合色aaa.| 日韩免费av在线播放| 国产精品 国内视频| 搡老熟女国产l中国老女人| 大型黄色视频在线免费观看| 午夜精品在线福利| 免费在线观看视频国产中文字幕亚洲| 99国产精品一区二区蜜桃av| 不卡av一区二区三区| 黄色视频,在线免费观看| www.熟女人妻精品国产| 亚洲国产精品合色在线| 亚洲aⅴ乱码一区二区在线播放 | 真人一进一出gif抽搐免费| 美国免费a级毛片| 大陆偷拍与自拍| 9色porny在线观看| 国产欧美日韩精品亚洲av| 天堂影院成人在线观看| 国产精品免费一区二区三区在线| 美女扒开内裤让男人捅视频| 两个人免费观看高清视频| 中文字幕人妻熟女乱码| 国产激情欧美一区二区| av有码第一页| 高潮久久久久久久久久久不卡| 国产精品九九99| 校园春色视频在线观看| 日韩精品免费视频一区二区三区| 麻豆国产av国片精品| 九色亚洲精品在线播放| 亚洲精华国产精华精| 亚洲 欧美 日韩 在线 免费| 久久精品成人免费网站| 亚洲三区欧美一区| 中国美女看黄片| 亚洲一区二区三区色噜噜 | av天堂在线播放| 99香蕉大伊视频| 亚洲美女黄片视频| 久久久久久亚洲精品国产蜜桃av| 美女大奶头视频| a级毛片在线看网站| 超碰97精品在线观看| 大型av网站在线播放| 国产乱人伦免费视频| 午夜福利,免费看| 亚洲国产欧美网| av网站免费在线观看视频| 国产日韩一区二区三区精品不卡| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 19禁男女啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 国产精品国产av在线观看| 97超级碰碰碰精品色视频在线观看| avwww免费| e午夜精品久久久久久久| 神马国产精品三级电影在线观看 | 一进一出好大好爽视频| 成年人黄色毛片网站| 最好的美女福利视频网| 国产极品粉嫩免费观看在线| 国产精品久久久av美女十八| 欧美日韩福利视频一区二区| 亚洲欧美日韩无卡精品| 波多野结衣一区麻豆| 国产野战对白在线观看| 法律面前人人平等表现在哪些方面|