• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fe2BiTaO7納米催化劑的組織結(jié)構(gòu)及光催化性能

    2015-04-01 06:16:56欒景飛胡文華陳標(biāo)杭裴冬華
    無機(jī)化學(xué)學(xué)報 2015年2期
    關(guān)鍵詞:羅丹明光催化劑資源化

    欒景飛 胡文華 陳標(biāo)杭 裴冬華

    (南京大學(xué)環(huán)境學(xué)院污染控制與資源化研究國家重點實驗室,南京210023)

    Fe2BiTaO7納米催化劑的組織結(jié)構(gòu)及光催化性能

    欒景飛*胡文華 陳標(biāo)杭 裴冬華

    (南京大學(xué)環(huán)境學(xué)院污染控制與資源化研究國家重點實驗室,南京210023)

    用固相反應(yīng)合成法合成了光催化劑Fe2BiTaO7,通過XRD、SEM、TEM、紫外-可見漫反射等表征方法對其組織結(jié)構(gòu)及光催化性能進(jìn)行了研究。結(jié)果表明Fe2BiTaO7為立方晶系燒綠石結(jié)構(gòu),空間群為Fd3m,禁帶寬度為1.72 eV。通過比較Fe2BiTaO7、P25 TiO2、摻氮TiO2和Bi2InTaO7的可見光光催化降解羅丹明B,發(fā)現(xiàn)Fe2BiTaO7降解效果及催化活性均高于其它催化劑,并且Fe2BiTaO7降解羅丹明B效率是摻氮二氧化鈦的1.5倍。Fe2BiTaO7降解羅丹明B的曲線符合一級動力學(xué),一級動力學(xué)常數(shù)為0.022 93 min-1。研究了羅丹明B可能的降解路徑和Fe2BiTaO7在可見光下降解苯酚的效果。Fe2BiTaO7(可見光)光催化劑系統(tǒng)適用于紡織工業(yè)廢水處理。

    催化作用;Fe2BiTaO7;光學(xué)性能;可見光;光催化降解;羅丹明B

    0 Introduction

    Dyes in the effluents of the textile,leather,food processing,dyeing,paper,andmanufacturing industries have become one of the most notorious organic pollutants in aquatic environments in recent years[1-6].There is huge volume of dye wastewater releasing to the ecosystem each year,which causes serious environmental pollutions[7].The presence of dye in water is not only aesthetically displeasing but alsoadversetowatertransparency,resultingin reduction of sunlight penetration,gas solubility and reducing the photosynthetic reaction[3-4,8].Some dyes also exhibit toxic effects toward microbial populations and some are even carcinogenic to mankind[9-10]. Rhodamine B(RhB)is one of the most important representatives of xanthene dyes widely utilized as a photosensitizer,a quantum counter and an active medium in dye lasers,etc.Most dyes are resistant to biodegradation and direct photolysis.As a N-containing dye,RhBundergoesnaturalreductiveanaerobic degradation to yield potentially carcinogenic aromatic amines[11-12].Therefore,the removal of RhB from wastewater is necessary and should be highly concerned.

    Conventionalmethodsincludingphysical, chemical and biological processes are used for the removal of dyes[13-16].However,it is usually inefficient to use biological oxidation or multi-step physicalchemicaltreatmentsforremovingdyecolors[17]. Photocatalysis has emerged as an efficient approach for purifying water[18-20].In recent years,photosensitive degradation of colored contaminants in wastewater on semiconductor surface has attracted a great deal of attentions[21-25].Zhao et al.[26]reported that some dyes could be degraded under visible light irradiation over TiO2by a self-photosensitized process.Some dyes are often utilized as a probe contaminant to evaluate the activity of a photocatalyst under irradiation of both ultraviolet light and visible light[27-28].Asthe most commonly used photocatalyst,TiO2has shown effective photocatalytic activity for RhB under ultraviolet light irradiation accounted for 4%of sunlight.However, TiO2cannot be used in the visible light region which accounts for 43%of sunlight,and this problem limits itsapplicationsinthefieldofphotocatalysis. Therefore,some efficient catalysts,which can generate electron-hole pairs under visible light irradiation, should be developed.Fortunately,there are some oxides such as BiVO4,Bi12TiO20,K6Nb10.8O30,Bi38ZnO58which show photocatalytic activity under visible light irradiation[29-37].Because of the controllability in composition, the diversity in structure and the difference in property, transitionmetaloxidesnano-compositehasbeen further developed in the field of photocatalysis.A series of A2B2O7inorganic compounds with different structures have been resulted from the wide-range chemicalreplacementinA,BandOsite.In particular,A2B2O7compounds are considered to own betterphotocatalyticpropertyundervisiblelight irradiation[38-42],they have not only been the important part of the nano-materials field but also have a good application in real life.In our previous work[43],we found that Bi2InTaO7crystallized with the pyrochloretype structure which could be used as a photocatalyst under visible light irradiation.It seems that Bi2InTaO7has a potential for improvement of photocatalytic activity by modification of its structure.According to above analysis,we guess that the substitution of Bi3+by Fe5+and substitution of In3+by Bi3+in Bi2InTaO7may increase carriers concentration.A change and improvementoftheelectricaltransportationand photophysicalpropertiescanbefoundinthe Fe2BiTaO7compound.

    To the best of our knowledge,there have no reports on preparation and structural,photophysical andphotocatalyticpropertycharacterizationsfor Fe2BiTaO7.The molecular composition of Fe2BiTaO7is very similar to other A2B2O7compounds.The resemblance suggests that Fe2BiTaO7may possess photocatalytic property under visible light irradiation,similar to that of other members in A2B2O7family.Fe2BiTaO7also seemstohavepotentialforimprovingthe photocatalytic activity by modification of its structure.

    We report here the synthesized semiconductor compound Fe2BiTaO7and its photocatalytic property for photosensitized removal of colored contaminants inwastewaterundervisiblelightirradiation.The structural,photophysical and photocatalytic property of Fe2BiTaO7were investigated.A comparison among the photocatalytic property of Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7was performed in order to reveal the structure-photocatalytic activity relationship for the title compound.

    1 Experimental

    1.1 Preparation of Fe2BiTaO7powder photocatalyst

    The photocatalysts were synthesized by a solidstate reaction method[36].Fe2O3,In2O3,Bi2O3and Ta2O5with purity of 99.99%(Sinopharm Group Chemical Reagent Co.,Ltd.,Shanghai,China)were utilized as precursors.All powders were dried at 200℃for 4 h before synthesis.The precursors were stoichiometrically mixed prior to the synthesis of Fe2BiTaO7and the mixture was then pressed into small columns and put into an alumina crucible(Shenyang Crucible Co.,Ltd., China).Finally,calcination was carried out at 1 060℃for 30 h in an electric furnace(KSL 1700X,Hefei KejingMaterialsTechnologyCO.,Ltd.,China). Similarly,Bi2InTaO7was prepared by calcination at 1 050℃for 46 h.

    1.2 Preparation of nitrogen-doped titania photocatalyst

    Nitrogen-doped titania(N-doped TiO2)catalyst with tetrabutyl titanate as a titanium precursor was preparedbyusingthesol-gelmethodatroom temperature.17 mL tetrabutyl titanate and 40 mL absolute ethyl alcohol were mixed as solution a,which was then added dropwise under vigorous stirring into a mixture(solution b)of 40 mL absolute ethyl alcohol, 10 mL glacial acetic acid and 5 mL double distilled waterto form transparent colloidal suspension c. Subsequently aqua ammonia with nN/nTiof 8%was added into c under vigorous stirring and stirred for 1 h.Finally,the xerogel was formed after being aged for 2 d.The xerogel was ground into powder and was then calcined at 500℃for 2 h,subsequently was ground in agate mortar and screened by shaker to obtain N-doped TiO2powder.

    1.3 Characterization of photocatalysts

    The crystal structures of the photocatalysts were analyzed by the powder X-ray diffraction method(D/ MAX-rB,Rigaku Corporation,Japan)with Cu Kα radiation(λ=1.54 18 nm).The data were collected at 295 K with a step-scan procedure in the range of 2θ= 10°~95°.The step interval was 0.02°and the time per step was 1.2 s.The chemical composition of Fe2BiTaO7was estimated by scanning electron microscope energy dispersiveX-rayspectroscopy(SEM-EDS,LEO 1530VP,LEO Corporation,Germany).The contents of surface O2-,Fe3+,Bi3+and Ta5+in Fe2BiTaO7were determined by X-ray photoelectron spectroscopy(XPS, ESCALABMK-2,VGScientificLtd.,U.K.).The chemical composition within the depth profile of Fe2BiTaO7was examined by the argon ion denudation method when X-ray photoelectron spectroscopy was utilized.The optical absorption of Fe2BiTaO7was analyzedwithanUV-Visiblespectrophotometer (Lambda 40,Perkin-Elmer Corporation,USA).The surface area of Fe2BiTaO7was determined by BET model(MS-21,Quantachrome Instruments Corporation, USA)with N2adsorption at liquid nitrogen temperature. The particle sizes of the photocatalysts were measured by malvern′s mastersize-2000 particle size analyzer (Malvern Instruments Ltd.,United Kingdom).The particle morphology was measured by transmission electronmicroscope(TecnalF20S-Twin,FEI Corporation,USA).

    1.4 Photocatalytic reaction

    The photocatalytic degradation of RhB(Tianjin Kermel Chemical Reagent Co.,Ltd.)was performed with 0.8 g photocatalyst(Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7)powder suspended in 300 mL of 0.029 3 mmol·L-1RhB solution within a pyrex glass cell(Jiangsu Yancheng Huaou Industry,China). Before visible light irradiation,the suspension was magnetically stirred in the dark for 45 min to ensure establishment of an adsorption/desorption equilibrium among the photocatalysts,RhB dye and atmospheric oxygen.Thephotocatalyticreactionsystemis consisted of a 300 W Xe arc lamp with the main emission wavelength at 436 nm(Nanjing JYZCPSTCO.,Ltd.),a magnetic stirrer and a cut-off filter(λ>400 nm,Jiangsu Nantong JSOL Corporation,China). The Xe arc lamp was surrounded by a quartz jacket andwaspositionedwithintheinnerpartofa photoreactor quartz vessel(5.8 cm in diameter and 68 cm in length),through which a suspension of RhB and photocatalyst was circulated.An outer recycling water glass jacket maintained a near constant reaction temperature(22℃),and the solution was continuously stirred and aerated.2 mL aliquots were sampled at various time intervals.The incident photon flux Iomeasured by a radiometer(Model FZ-A,Photoelectric Instrument Factory Beijing Normal University,China) was 4.76×10-6Einstein·L-1·s-1under visible light irradiation(wavelength range of 400~700 nm).The incident photon flux on the photoreactor was varied by adjusting the distance between the photoreactor and the Xe arc lamp.The adjustment of pH value was not carried out and the initial pH value was 7.0.The concentration of RhB was determined according to the absorption at 554 nm by an UV-Vis spectrophotometer (Lambda 40,Perkin-Elmer Corporation,USA).The inorganic products obtained from RhB degradation were analyzed by ion chromatograph(DX-300,Dionex Corporation,USA).

    The identification of RhB and the degradation intermediate products of RhB were performed by gas chromatograph-mass spectrometer(HP 6890 Series Gas Chromatograph,HP-Innowax column,30 m×0.32 mm×0.25 μm)operated at 320℃and connected to HP 5973 mass selective detector and a flame ionization detector with He as the carrier gas.The split ratio was 40∶1,the injection and detector temperature were 250℃and 300℃respectively.Intermediate products of RhB were also identified by liquid chromatographmass spectrometer(LC-MS,Thermo Quest LCQ Duo, USA,HPLC column:Beta Basic-C18(150 mm×2.1 mm×5 μm),Finnigan,Thermo,USA).Here,20 μL of post-photocatalysis solution was injected automatically into the LC-MS system.The eluent contained 60% methanol and 40%water,and the flow rate was 0.2 mL·min-1.MS conditions included an electrospray ionization interface and a capillary temperature of 27℃with a voltage of 19.00 V,a spray voltage of 5 000 V and a constant sheath gas flow rate.The spectrum was acquired in the negative ion scan mode,sweeping the m/z range from 50 to 600.Evolution of CO2was analyzedwithanintersmatTMIGC120-MBgas chromatograph equipped with a porapack Q column (30 m×0.32 mm×20 μm),which was connected to a catharometer detector.

    The total organic carbon(TOC)concentration was determined with a TOC analyzer(TOC-5000,Shimadzu Corporation,Japan).Thephotonicefficiencywas calculated according to the following equation[44-45]:

    φ=R/Io

    where φ is the photonic efficiency(%),and R is the rate of RhB degradation(mol·L-1·s-1),and Iois the incident photon flux(Einstein·L-1·s-1).

    The catalyst recycling experiment was taken to prove that the Fe2BiTaO7catalyst was still active.The Fe2BiTaO7catalyst was washed by anhydrous ethanol and distilled water for 6 times after recycling from the previous experiment,then it was dried in the 60℃oven and put it into the photocatalytic reactor for the degradation of rhodamine B again,the catalyst was recycled for three times.

    2 Results and discussion

    2.1 Structure analysis

    Fig.1showstheTEMimageofFe2BiTaO7nanoscale particles and regular shapes.The diameter of Fe2BiTaO7particles is 400~600 nm,indicating a small mean particle size.Fig.2(a)and(b)present SEM image and EDS spectrum of Fe2BiTaO7,respectively. SEM-EDSspectrumtakenfromthepreparedFe2BiTaO7indicates the presence of iron,bismuth, tantalum and oxygen.Other elements can not be identified from Fe2BiTaO7.

    Fig.1TEM image of Fe2BiTaO7

    Fig.2SEM image and EDS spectrum of Fe2BiTaO7

    Fig.3 shows the XRD pattern of Fe2BiTaO7.The full-profile structure refinements of the collected data are obtained by the RIETANTM[46]program based on Rietveld analysis.The results of the final refinements for Fe2BiTaO7indicate a good agreement between the observed intensities and calculated intensities for the pyrochlore-type structure,a cubic crystal system and a space group Fd3m(O atoms are included in the model).The lattice parameter α for Fe2BiTaO7is 1.048 734 4 nm.All the diffraction peaks for Fe2BiTaO7can be indexed according to the lattice constant and the space group above.The atomic coordinates and structural parameters of Fe2BiTaO7are listed in Table 1.It can be seen from Fig.3 that Fe2BiTaO7is a single phase.In addition,the XRD results show that Fe2BiTaO7crystallizes by the pyrochlore-type structure,a cubic crystal system and a space group Fd3m.The 2θ angles for each diffraction of Bi2InTaO7change with Bi3+substitution by Fe3+and In3+substitution by Bi3+. The lattice parameter decreases from α=1.074 641 0 nm for Bi2InTaO7to α=1.048 734 4 nm for Fe2BiTaO7, indicating a decrease in lattice parameter of the photocatalyst with a decrease of corresponding ionic radii,Fe3+(0.078 nm)<Bi3+(0.117 nm)and Fe3+(0.078 nm)<In3+(0.092 nm).

    Fig.3XRD patterns and Rietveld refinements for Fe2BiTaO7prepared by a solid-state reaction method at 1 060℃

    Fe2BiTaO7and Bi2InTaO7crystallize with the same pyrochlore-type structure according to the X-ray diffraction results.The cubic system structure with space group Fd3m for Bi2InTaO7keep unchanged upon substituting Fe3+by Bi3+and substituting Bi3+by In3+. The outcome of refinements for Fe2BiTaO7generates the unweighted R factors,RP=18.64%with spacegroup Fd3m.The crystal structure of Bi2InNbO7was refined by Zou et al.[47]and R factor obtained was large due to a slightly modified structure model for Bi2InNbO7.Accordingtothehighpurityofthe precursors utilized in this study and no impurity elements observed from EDS results,it is unlikely that the observed space groups originate from the impurities. Therefore,it is suggested that the slightly high RPfactor for Fe2BiTaO7is due to a slightly modified structure model for Fe2BiTaO7.It should be emphasized that the defects or the disorder/order of a fraction of the atoms can result in the change of structures, including different bond-distance distributions,thermal displacement parameters and occupation factors for some of the atoms.

    Table 1Atomic coordinates and structural parameters of Fe2BiTaO7prepared by the solid state reaction method

    ThevariouselementalXPSpeaksandthe corresponding specific binding energies of Fe2BiTaO7, i.e.Bi4f7/2,Ta4f7/2,Fe2p3/2,O1s,are 155.9,26.6,708.2, 529.0 eV,respectively.The results further suggest that the oxidation states of Fe,Bi,Ta and O ions from Fe2BiTaO7are+3,+3,+5 and-2 respectively.For Fe2BiTaO7,the average atomic ratios of Fe∶Bi∶Ta∶O are 2.00∶0.97∶1.01∶6.96 according to the average results of XPS,SEM-EDS.Similarly,the oxidation states of Bi, In,Ta and O ions from Bi2InTaO7are+3,+3,+5 and -2 respectively.It is obvious that the observed XPS spectra of Fe2BiTaO7show neither shoulders nor widening peaks,implying(albeit not proving)the absence of any other phases.Hence,it can be deduced that the obtained material is of high purity under our preparation conditions.

    Fig.4Selected area electron diffraction pattern of Fe2BiTaO7

    Fig.4presentstheselectedareaelectron diffraction pattern of Fe2BiTaO7.It can be seen from Fig.4 that Fe2BiTaO7is a single phase.As shown in Fig.4,Fe2BiTaO7crystallizes with the pyrochlore-type structure,cubic crystal system and space group Fd3m. The lattice parameter for Fe2BiTaO7is α=1.048 734 4 nm.According to the calculation results from Fig.4, the(hkl)value for the main peaks of Fe2BiTaO7can be found and indexed.

    2.2 UV-Vis diffuse reflectance spectroscopy

    TheabsorptionspectrumofFe2BiTaO7is presented in Fig.5.Compared with the well-known TiO2whose absorption edge is less than 380 nm,the absorption edge of newly synthesized Fe2BiTaO7is at 710 nm,which is in the visible region of the spectrum.It is noteworthy that the apparent absorption(defined hereby as 1-transmission)can not take reflection and scatteringintoconsideration.Consequently,the apparent absorbance at sub-bandgap wavelengths(600 to 800 nm for Fe2BiTaO7)is higher than zero.

    Fig.5Absorption spectrum of Fe2BiTaO7

    For a crystalline semiconductor,the optical absorption near the band edge follows the equation:αhν= A(hν-Eg)n[48-49].Here,A,α,Egand ν are proportional constant,absorption coefficient,band gap and light frequency,respectively.Withintheequation,n determinesthecharacterofthetransitionina semiconductor.Egand n can be calculated by the following steps:(i)plotting ln(αhν)versus ln(hν-Eg)by assuming an approximate value of Eg,(ii)deducing the value of n according to the slope in the graph.(iii) refining the value of Egby plotting(αhν)1/nversus hν and extrapolating the plot to(αhν)1/n=0.According tothis method,Fig.6 shows the plot of(αhν)1/nversus hν for Fe2BiTaO7.According to the data in Fig.6,the value of Egfor Fe2BiTaO7is calculated to be 1.72 eV, while the value of n for Fe2BiTaO7is 0.5.The results above indicate that Fe2BiTaO7possesses a narrower band gap compared with Bi2InTaO7.At the same time, the optical transition for Fe2BiTaO7is directly allowed.

    Fig.6Plot of(αhν)2versus hν for Fe2BiTaO7

    2.3 Photocatalytic activity

    Generally speaking,the semiconductor photocatalysis starts from the direct absorption of suprabandgap photons and the generation of electron-hole pairs in the semiconductor particles.Subsequently, the diffusion of the charge carriers to the surface of the semiconductor particles is followed.Fig.7 presents the concentration changes of RhB during the process ofphotocatalyticdegradationundervisiblelight irradiation(λ>400 nm)with the presence of Fe2BiTaO7, P25 TiO2,N-doped TiO2,Bi2InTaO7as well as with the absence of photocatalyst.Above measurements are performed under oxygen-saturation conditions(cO2sat=1.02 mmol·L-1).Though the photocatalyst/RhB suspension or RhB suspension exists in the experimental system,the degradation of RhB does not happen in dark.It can be clearly noticed from the results that a reduction of typical RhB peaks at 554 nm and 525 nm appear.Table 2 provides the photocatalytic effects with Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7as the catalyst under visible light irradiation(λ>400 nm).It can be seen from Table 2 that the photocatalytic efficiency is 95%with Fe2BiTaO7,59%with P25 TiO2,63%with N-doped TiO2,37.5%with Bi2InTaO7after 140 min under visible light irradiation.A complete color change from deep pink into colorless solution of the absorption signal is obtained with Fe2BiTaO7within 230 min, which shows a complete degradation.According to the results,fastdegradationrateisobservedwith Fe2BiTaO7as the catalyst,and the photocatalytic degradation activity of Fe2BiTaO7is higher than that of P25 TiO2,N-doped TiO2or Bi2InTaO7.Furthermore, the photocatalytic degradation activity of N-doped TiO2is higher than that of P25 TiO2and Bi2InTaO7. Additionally,somedecreasefortheUV-Vis absorbance signal of RhB is obtained under visible lightirradiationevenintheabsenceofa photocatalyst.The initial rate of RhB degradation isestimated to be 0.071 nmol·L-1·s-1and the photonic efficiency is 0.00149%(λ=420 nm)after visible light irradiation for 200 min with the absence of a photocatalyst.It suggests that the observed disappearance of RhB in the absence of a photocatalyst is due to direct dye-sensitization,and the dye-sensitization mechanism is similar to the observation from Liu et al.[50].

    Fig.7Photocatalytic degradation of rhodamine B under visible light irradiation with the presence of Fe2BiTaO7,P25 TiO2,N-doped TiO2,Bi2InTaO7as well as with the absence of a photocatalyst

    Table 2Photocatalytic effects with Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7as the catalyst under visible light irradiation

    The degradation rate is almost 100%after visible light irradiation for 200 min with Fe2BiTaO7as the catalyst,the catalyst is not in deactivation at this time.Accordingtotheexperimentaldata,the degradation rate of the recycling experiment is 96%, 92%,90%,respectively.Although the degradation rate drops each time,the change is not great,thus the results above can prove that the Fe2BiTaO7catalyst is still active after the previous experiment,the property of Fe2BiTaO7catalyst is stable and it can be recycled for photocatalysis many times.

    Thefirstordernatureofthephotocatalytic degradation kinetics with Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7as catalysts is clearly demonstratedinFig.8,whichpresentsalinear correlation between ln(C/C0)(or ln(TOC/TOC0))and the visible light irradiation time for the photocatalytic degradationofRhBwiththepresenceofthe photocatalysts.In above equation,C represents the RhB concentration at time t,and C0represents the initial RhB concentration,and TOC represents the total organic carbon concentration at time t and TOC0represents the initial total organic carbon concentration.According to the relationship between ln(C/C0) and the irradiation time,the apparent first order rate constant k is 0.022 93 min-1withFe2BiTaO7,0.006 27 min-1with P25 TiO2,0.007 15 min-1with N-doped TiO2and 0.003 29 min-1with Bi2InTaO7,indicating that Fe2BiTaO7is more efficient than P25 TiO2,N-doped TiO2or Bi2InTaO7for the photocatalytic degradation of RhB under visible light irradiation.In addition,N-doped TiO2is more efficient than P25 TiO2and Bi2InTaO7for the photocatalytic degradation of RhB undervisiblelightirradiation.Accordingtothe relationship between ln(TOC/TOC0)and the irradiation time,the apparent first order rate constantkTOCis estimated to be 0.019 22 min-1with Fe2BiTaO7, 0.006 22 min-1with P25 TiO2,0.006 73 min-1with N-dopedTiO2and0.00317min-1with Bi2InTaO7, indicatingthatthephotodegradationintermediate productsofRhBprobablyappearduringthe photocatalytic degradation of RhB under visible light irradiation.

    Fig.8Observed first order kinetic plots for the photocatalytic degradation of rhodamine B with Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7as catalysts under visible light irradiation

    Fig.9Suggested photocatalytic degradation pathway scheme for rhodamine B under visible light irradiation with the presence of Fe2BiTaO7

    Inourexperiments,thephotodegradation intermediate products of RhB with Fe2BiTaO7as the catalyst under visible light irradiation are identified as N,N-diethyl-N′-ethylrhodamine(m/z:415.5),N,N-diethylrhodamine(m/z:387.5),N-ethyl-N′-ethylrhodamine(m/z:387.6),N-ethylrhodamine(m/z:359.5)and rhodamine(m/z:331.5),benzoic acid(m/z:122), terephthalic acid(m/z:166),pentanedioic acid(m/z: 132),3-Hydroxybenzoic acid(m/z:138),1,2-benzenedicarboxylic acid(m/z:166)and maleic acid(m/z: 116),oxalic acid(m/z:90),2-hydroxypentanedioic acid(m/z:148)and adipic acid(m/z:146).Fig.9 suggests a possible photocatalytic degradation pathwayforRhBaccordingtotheintermediateproducts identified in this work.The main identified intermediates are the same as the results from Li et al.[51]for the TiO2-assisted photodegradation of RhB under visible light irradiation.However,Zhong et al.[52]reported that the major intermediates of RhB during microwaveenhanced photocatalysis also include malonic acid, succinic acid,phthalic acid and 3-nitrobenzoic acid. In addition to benzoic acid,2-hydroxypentanedioic acid,adipic acid,3-hydroxybenzoic acid and terephthalic acid,He et al.[53]indentified the presence of succinic acid and phthalic acid as well in the process of photocatalytic degradation of RhB by Bi2WO6with electron accepting agent under microwave irradiation.

    The pathway was similar,but not identical to the pathway proposed by Horikoshi et al.[54]for the photodegradationofRhBunderultravioletlight irradiation and visible light irradiation assisted by microwave radiation with TiO2as the photocatalyst. According to the results of Li et al.[33],the RhB photodegradation occurs via two competitive processes: one process is N-demethylation,and the other process is the destruction of the conjugated structure.Thus, we consider that chromophore cleavage,ring-opening and mineralization should be the main photocatalytic degradation pathway of RhB in our work.RhB is convertedtosmallerorganicspecies,andthen mineralizes together with other organic groups to inorganic products such as CO2and water ultimately. Fig.10 presents the CO2yield during the photocatalytic degradation of RhB with Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7as the catalyst under visible light irradiation.The results show that the CO2yield increases gradually with increasing reaction time.The production rate of CO2with Fe2BiTaO7is higher than that with P25 TiO2,N-doped TiO2or Bi2InTaO7,which is in accordance with the absorption curve(Fig.5)of Fe2BiTaO7.The production amount of CO2is 0.241 03 mmol with Fe2BiTaO7as the catalyst,0.159 02 mmol with P25 TiO2,0.166 73 mmol with N-doped TiO2and 0.108 03 mmol with Bi2InTaO7in 300 mL reaction system after visible light irradiation for 200 min.

    Fig.10CO2production kinetics during the photocatalytic degradation of rhodamine B with Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7as catalysts under visible light irradiation

    Fig.11 demonstrates the results of total organic carbon(TOC)measurements.The results reveal that the total disappearance of organic carbon occurs after visible light irradiation for 230 min with Fe2BiTaO7as the catalyst.The results show that after visible light irradiation for 140 min,91%of TOC decrease is obtained with Fe2BiTaO7as the photocatalyst,59% with P25 TiO2,61%with N-doped TiO2and 37%with Bi2InTaO7.The turnover number(the ratio between the total amount of evolved gas and dissipative catalyst)is 0.185 for Fe2BiTaO7after visible light irradiation for 200min,suggestingthatthereactionsoccur catalytically.The reactions stop when the light is turned off.

    Fig.11Disappearance of total organic carbon(TOC) during the photocatalytic degradation of rhodamine B with Fe2BiTaO7,P25 TiO2, N-doped TiO2and Bi2InTaO7as catalysts under visible light irradiation

    The photocatalytic property of the new compound Fe2BiTaO7is notable under visible light irradiation.This superior quality can be even more appreciated if we consider the fact that the specific surface area of Fe2BiTaO7is apparently smaller than that of titanium dioxide.In our work,the BET specific surface area is 46 m2·g-1for P25 TiO2,46 m2·g-1for N-doped TiO2,2 m2·g-1for Fe2BiTaO7and 1 m2·g-1for Bi2InTaO7respectively.The specific surface area of Fe2BiTaO7is almost 20 times smaller than that of P25 TiO2.

    The action spectra of RhB degradation with the presence of Fe2BiTaO7under visible light irradiation show a clear photonic efficiency(0.03722%at its maximal point)at wavelengths corresponding to sub-Eg energies of Fe2BiTaO7(λ from 710 to 800 nm). The existence of photonic efficiency at energies where photons are not absorbed by Fe2BiTaO7,in particular the correlation between the low-energy action spectrum and the absorption spectrum of RhB,demonstrates clearlythatanyphotodegradationatwavelengths above 710 nm should be attributed to photosensitization by RhB itself(SchemeⅠ).

    SchemeⅠ:

    Accordingtothemechanismabove,RhB adsorbed on Fe2BiTaO7is excited by visible light irradiation.Subsequently an electron is injected from the excited RhB to the conduction band of Fe2BiTaO7where the electron is scavenged by molecular oxygen. SchemeⅠmay explain the results obtained with Fe2BiTaO7asthecatalystundervisiblelight irradiation,where Fe2BiTaO7may reduce recombination ofphotoinducedelectronsandholesviathe scavenging of electrons[56].

    However,thesituationforphotocatalytic degradation mechanism of RhB is different below 710 nm,where the photonic efficiency correlates well with the absorption spectrum of Fe2BiTaO7.It evidently shows that the photocatalytic degradation mechanism of RhB is responsible for the photodegradation of RhB viabandgapexcitationofFe2BiTaO7.Although detailed experiments about the effects of oxygen and water on the degradation mechanism of RhB are not performed,it is sensible to assume that the degradation mechanism of RhB in the first step is similar to the degradation mechanism of RhB observed for Fe2BiTaO7under supra-bandgap irradiation,namely SchemeⅡ:

    SchemeⅡ:

    The M-O-M bond angle is closer to 180°,and the excited state is more delocalized as shown by previous study[57],thus the charge carriers can move easily in the matrix.High diffusivity due to the mobility of the photoinduced electrons and holes helps impel more electrons and holes to reach the reactive sites on the catalyst surface,resulting in the improvement of the photonic efficiency of Fe2BiTaO7.The lattice parameter a=1.048 734 4 nm for Fe2BiTaO7is smaller than the lattice parameter a=1.074 641 0 nm for Bi2InTaO7. Therefore,thephotoinducedelectronsandholes inside the particle of Fe2BiTaO7are easier and faster to reach the reactive sites on the catalyst surface compared with those of Bi2InTaO7.As a result,the photocatalytic degradation activity of Fe2BiTaO7is higher than that of Bi2InTaO7.The Bi-O-Ta bond angle of Fe2BiTaO7is 121°,close to 180°.Thus,the photocatalytic activity of Fe2BiTaO7is accordingly higher.Inaddition,theBi-O-Tabondangleof Fe2BiTaO7is larger than the Bi-O-Ta bond angle of Bi2InTaO7,resulting in an increase of photocatalytic activity for Fe2BiTaO7compared with Bi2InTaO7.The crystal structure of Fe2BiTaO7is similar to that of Bi2InTaO7,but the crystal structures of Fe2BiTaO7and P25 TiO2are different,and the electronic structures of them are also different.For Fe2BiTaO7,Fe is 3d-block metal element,and Bi is 6p-block metal element,and Ta is 5d-block metal element.But for Bi2InTaO7,Bi is 6p-block metal element,and In is 5p-block metal element,and Ta is 5d-block metal element.Moreover, for P25 TiO2,Ti is 3d-block metal element,indicating that the photocatalytic activity may be affected by not only the crystal structure but also the electronic structure of the photocatalysts.The difference of the photocatalytic degradation activity of RhB amongFe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7can be attributed mainly to the difference of their crystalline and electronic structures.

    Fig.12 shows the suggested band structures of Fe2BiTaO7.Recently,the electronic structures of InMO4(M=V,Nb and Ta)and BiVO4have been reported by Oshikirietal.accordingtothefirstprinciples calculations[58].The conduction bands of InMO4(M=V, Nb and Ta)are mainly composed of a dominant orbital component from V3d,Nb4d and Ta5d orbitals, respectively.The valence bands of BiVO4are composed of a small Bi6s orbital component and a dominant O2porbitalcomponent.Thebandstructuresof Fe2BiTaO7should be similar to those of InMO4(M=V, NbandTa)andBiVO4.Therefore,itcanbe concluded that the conduction band of Fe2BiTaO7is composed of Ta5d,Fe3d and Bi6p orbitals,and the valence band of Fe2BiTaO7is composed of a small dominant O2p orbital component and a small Bi6s orbital component.Direct absorption of photons by Fe2BiTaO7can produce electron-hole pairs in the catalyst,showingthatthenecessaryenergyfor decomposing RhB by photocatalysis should be larger than the band gap energy.

    Fig.12Suggested band structure of Fe2BiTaO7

    In order to see the effect of light wavelength on the degradation efficiency of rhodamine B,rhodamine B is degraded with Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7as the catalyst under visible light irradiation(λ>500 nm).The results show that the photocatalytic efficiency is 42%with Fe2BiTaO7,26% with P25 TiO2,28%with N-doped TiO2,17%with Bi2InTaO7after 140 min under visible light irradiation.

    RhB has a certain absorption in visible light area.In order to eliminate the influence of photosensitization,we have substituted phenol for RhB as the reaction substrate.The process of the experiment is as follows:The photocatalytic degradation of phenol is performed with 0.8 g photocatalyst(Fe2BiTaO7or N-doped TiO2)powder suspended in 300 mL of 0.029 3 mmol·L-1phenol wastewater.The photocatalytic reaction system and initial experimental conditions are performed as the same as the previous experiment with RhB as the reaction substrate.The results show thatthephotocatalyticefficiencyis88%with Fe2BiTaO7,62%with N-doped TiO2after 200 min under visible light irradiation.As phenol has no absorption effect in visible light area,the degradation of phenol can only be caused by photocatalysis.Thus, it can be deduced that Fe2BiTaO7has a strong photocatalytic activity under visible light.

    3 Conclusions

    Fe2BiTaO7was prepared by a solid-state reaction method.The structural,optical absorption and photocatalytic properties of Fe2BiTaO7were investigated and compared with that of P25 TiO2,N-doped TiO2and Bi2InTaO7.XRD results demonstrate that Fe2BiTaO7crystallizes with the pyrochlore-type structure,cubic crystal system and space group Fd3m.The lattice parameter of Fe2BiTaO7is found to be 1.048 734 4 nm. The band gap of Fe2BiTaO7is estimated to be about 1.72 eV,indicating that Fe2BiTaO7shows a strong optical absorption during the visible light region(λ>400 nm).Photocatalytic degradation of aqueous RhB solutions is observed under visible light irradiation with the presence of Fe2BiTaO7accompanied with the formation of end products such as carbon dioxide and water.Therefore,it can be concluded that Fe2BiTaO7/ (Visible light)system may be regarded as an effective way for removing colored contaminants from waste water.Fe2BiTaO7also shows higher photocatalytic activity for photocatalytic degradation of RhB under visible light irradiation compared with P25 TiO2,N-dopedTiO2andBi2InTaO7.Thephotocatalytic degradation of RhB follows the first order reactionkinetics.The apparent first order rate constant k is 0.022 93 min-1withFe2BiTaO7,0.006 27 min-1with P25 TiO2,0.007 15 min-1with N-doped TiO2and 0.003 29 min-1with Bi2InTaO7.The possible photocatalytic degradation pathway of RhB is provided in this paper. The results in our work prove that Fe2BiTaO7/(visible light)photocatalysis may be regarded as a method for practical treatment of diluted colored waste water.The Fe2BiTaO7/(visible light)photocatalysis system without demanding chemical reagents or using high pressure of oxygen or heating can be utilized for decolorization, purification and detoxification in textile industries, and printing and dyeing industries.In conclusion,the Fe2BiTaO7/(visible light)photocatalysis system may provide a valuable treatment for purifying and reusing colored aqueous effluents.

    Acknowledgements:This work was supported by the National Natural Science Foundation of China(No.21277067), by a grant from China-Israel Joint Research Program in Water Technology and Renewable Energy(No.5).by a grant from the NaturalScienceFoundationofJiangsuProvince(No. BK20141312),byaprojectofscienceandTechnology Development Plan of Suzhou City of China from 2014(No. ZXG201440).

    [1]Annadurai G,Juang R S,Lee D J.J.Hazard.Mater.,2002, 92(3):263-274

    [2]Bhatnagar A,Jain A K.J.Colloid Interface Sci.,2005,281 (1):49-55

    [3]Su L,GanY X.Composites Part B,2012,43(2):170-182

    [4]Wang S B,Boyjoo Y,Choueib A.Chemosphere,2005,60 (10):1401-1407

    [5]Shakir K,Elkafrawy A F,Ghoneimy H F,et al.Water Res., 2010,44(5):1449-1461

    [6]Shen C S,Shen Y,Wen Y Z,et al.Water Res.,2011,45(16): 5200-5210

    [7]Zhang F L,Zhao J C,Zang L,et al.J.Mol.Catal.A:Chem., 1997,120(1/2/3):173-178

    [8]Brustein V P,Cavalcanti C L B,de Melo M R,et al.Appl. Biochem.Biotechnol.,2012,166(2):268-275

    [9]Wang S B,Li H,Xu L Y.J.Colloid Interface Sci.,2006, 295(1):71-78

    [10]Guo Y P,Zhao J Z,Zhang H,et al.Dyes Pigm.,2005,66 (2):123-128

    [11]Fu H B,Pan C S,Yao W Q,et al.J.Phys.Chem.B,2005, 109(47):22432-22439

    [12]Ashraf U,Chat O A,Dar A A.Chemosphere,2014,99:199-206

    [13]Parida K M,Sahu N,Biswal N R,et al.J.Colloid Interface Sci.,2008,318(2):231-237

    [14]Mahmoodi N M,Najafi F.Microporous Mesoporous Mater., 2012,156:153-160

    [15]Park H O,Oh S,Bade R,et al.KSCE J.Civ.Eng.,2011,15 (3):453-461

    [16]Chatha S A S,Asgher M,Ali S,et al.Carbohydr.Polym., 2012,87(2):1476-1481

    [17]Xie Y B,Yuan C W,Li X Z.Colloid Surf.A,2005,252 (1):87-94

    [18]Pan H Q,Li X K,Zhuang Z J,et al.J.Mol.Catal.A:Chem., 2011,345(1/2):90-95

    [19]Luan J F,Wang S,Ma K,et al.J.Phys.Chem.C,2010,114 (20):9398-9407

    [20]Rauf M A,Ashraf S S.Chem.Eng.J.,2009,151(1/2/3):10-18

    [21]Chatterjee D,Mahata A.J.Photochem.Photobiol.A-Chem., 2002,153(1/2/3):199-204

    [22]Kyung H,Lee J,Choi W Y.Environ.Sci.Technol.,2005,39 (7):2376-2382

    [23]Su L S,Gan Y X.Composities Part B,2012,43(2):170-182

    [24]Dubal D P,Dhawale D S,More A M,et al.J.Mater.Sci., 2011,46(7):2288-2293

    [25]Bao N,Li Y,Yu X H,et al.Environ.Sci.Pollut.Res.Int., 2013,20(2):897-906

    [26]Qu P,Zhao J C,Shen T,et al.J.Mol.Catal.A:Chem., 1998,129(2-3):257-268

    [27]Ghosh J P,Sui R H,Langford C H,et al.Water Res.,2009, 43(18):4499-4506

    [28]Adhikari R,Gyawali G,Sekino T,et al.J.Solid State Chem., 2013,197:560-565

    [29]Zhang X,Ai Z H,Jia F L,et al.Mater.Chem.Phys.,2007, 103(1):162-167

    [30]Zhou J K,Zou Z G,Ray A K,et al.Ind.Eng.Chem.Res., 2007,46(3):745-749

    [31]Zhang G K,Zou X,Gong J,et al.J.Alloys Compd.,2006, 425(1/2):76-80

    [32]Feng P,Chen C L,Hao Y,et al.Mater.Chem.Phys.,2009, 116(1):294-299

    [33]Li J P,Zhang X,Ai Z H,et al.J.Phys.Chem.C,2007,111 (18):6832-6836

    [34]Li X K,Kako T,Ye J H.Appl.Catal.A:Gen.,2007,326(1): 1-7

    [35]Hou L R,Yuan C Z,Peng Y.J.Mol.Catal.A:Chem.,2006, 252(1/2):132-135

    [36]Tang X D,Ye H Q,Liu H,et al.Chem.Phys.Lett.,2009, 484(1/2/3):48-53

    [37]Dong H J,Chen G,Sun J X,et al.Appl.Catal.B:Environ., 2013,134:46-54

    [38]Li K W,Wang H,Yan H.J.Mol.Catal.A:Chem.,2006,249 (1/2):65-70

    [39]Luan J F,Pan B C,Paz Y,et al.Phys.Chem.Chem.Phys., 2009,11(29):6289-6298

    [40]Luan J F,Li M,Ma K,et al.Chem.Eng.J.,2011,167(1): 162-171

    [41]Yang H,Li J,Wang L Y,et al.Catal.Commun.,2013,35: 101-104

    [42]Nashim A,Parida K M.Chem.Eng.J.,2013,215:608-615

    [43]Luan J F,Zhao W,Feng J W,et al.J.Hazard.Mater.,2009, 164(2/3):781-789

    [44]Marugan J,Hufschmidt D,Sagawe G,et al.Water Res., 2006,40(4):833-839

    [45]Sakthivel S,Shankar M V,Palanichamy M,et al.Water Res.,2004,38(13):3001-3008

    [46]Fazey P G,Oconnor B H,Hammond L C.Clays Clay Miner., 1991,39(3):248-253

    [47]Zou Z,Ye J,Arakawa H.J.Mater.Sci.Lett.,2000,19(21): 1909-1911

    [48]Tauc J,Grigorov R,Vancu A.Phys.Status Solidi,1966,15 (2):627-637

    [49]Butler M A.J.Appl.Phys.,1977,48(5):1914-1920

    [50]Liu G M,Wu T X,Zhao J C,et al.Environ.Sci.Technol., 1999,33(12):2081-2087

    [51]Li J Y,Ma W H,Lei P X,et al.J.Environ.Sci.,2007,19 (7):892-896

    [52]He Z,Yang S G,Ju Y M,et al.J.Environ.Sci.,2009,21(2): 268-272

    [53]He Z,Sun C,Yang S G,et al.J.Hazard.Mater.,2009,162 (2/3):1477-1486

    [54]Oshikiri M,Boero M,Ye J H,et al.J.Chem.Phys.,2002, 117(15):7313-7318

    Structural and Photocatalytic Properties of Fe2BiTaO7Nanocatalyst

    LUAN Jing-Fei*HU Wen-HuaCHEN Biao-HangPEI Dong-Hua
    (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment,Nanjing University,Nanjing 210023,China)

    Fe2BiTaO7powder photocatalyst was synthesized by a solid state reaction method.The structural and photocatalytic properties of Fe2BiTaO7were characterized by XRD,SEM,TEM and UV-Vis diffuse reflectance spectroscopy.The results show that Fe2BiTaO7crystallizes with the pyrochlore-type structure,cubic crystal system and space group Fd3m.The estimated band gap of Fe2BiTaO7is 1.72 eV.The photocatalytic degradation of rhodamine B over Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7was investigated under visible light irradiation.The photocatalytic efficiency with Fe2BiTaO7catalyst is 1.5 times of N-doped TiO2catalyst after 140 minutes under visible light irradiation.Fe2BiTaO7has higher visible-light photocatalytic performance and shows much better activity than that of other photocatalysts.The photocatalytic degradation of rhodamine B follows the first-order reaction kinetics,and the first-order rate constant is 0.022 93 min-1for Fe2BiTaO7.The possible photocatalytic degradation pathway of rhodamine B under visible light irradiation is suggested.In addition,the photocatalytic degradation of phenol over Fe2BiTaO7catalyst was investigated under visible light irradiation. Fe2BiTaO7(visible light)photocatalysis system is confirmed to be suitable for textile industry wastewater treatment.

    catalysis;Fe2BiTaO7;optical properties;visible light;photocatalytic degradation;rhodamine B

    O643.36

    A

    1001-4861(2015)02-0385-14

    10.11862/CJIC.2015.046

    2014-09-17。收修改稿日期:2014-11-13。

    國家自然科學(xué)基金(No.21277067);中以科學(xué)與戰(zhàn)略研究開發(fā)專項資金(No.5)資助項目。*

    。E-mail:jfluan@nju.edu.cn

    猜你喜歡
    羅丹明光催化劑資源化
    磷石膏資源化綜合利用任重道遠(yuǎn)
    人造石行業(yè)固廢資源化處理及綜合利用概述
    石材(2022年2期)2022-05-25 13:04:14
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    污泥的處理及資源化利用
    秸稈資源化綜合利用的探討
    Pr3+/TiO2光催化劑的制備及性能研究
    原位合成H4SiW12O40@C協(xié)同UV/H2O2降解羅丹明B模擬廢水
    光助Fenton法處理羅丹明B廢水的研究
    BiVO4光催化劑的改性及其在水處理中的應(yīng)用研究進(jìn)展
    g-C3N4/TiO2復(fù)合光催化劑的制備及其性能研究
    亚洲精品久久久久久婷婷小说| 99久久精品国产国产毛片| 永久免费av网站大全| 国产淫片久久久久久久久| 国产精品免费大片| 国产精品无大码| 亚洲av日韩在线播放| 在线精品无人区一区二区三 | 联通29元200g的流量卡| 日韩一区二区视频免费看| 人妻 亚洲 视频| 99久久精品一区二区三区| 99久久精品一区二区三区| 亚洲性久久影院| 精品酒店卫生间| 久久女婷五月综合色啪小说| 网址你懂的国产日韩在线| 美女脱内裤让男人舔精品视频| 国产伦精品一区二区三区四那| 国产爽快片一区二区三区| 热re99久久精品国产66热6| 最近最新中文字幕免费大全7| 你懂的网址亚洲精品在线观看| videos熟女内射| 欧美 日韩 精品 国产| 婷婷色综合www| 午夜老司机福利剧场| 精品久久久精品久久久| 久久国产亚洲av麻豆专区| 美女xxoo啪啪120秒动态图| 亚洲内射少妇av| 一边亲一边摸免费视频| 自拍欧美九色日韩亚洲蝌蚪91 | 婷婷色麻豆天堂久久| 成人毛片a级毛片在线播放| 午夜福利在线观看免费完整高清在| 国产大屁股一区二区在线视频| 免费黄色在线免费观看| 久久99热这里只频精品6学生| 少妇裸体淫交视频免费看高清| 黑人高潮一二区| 欧美精品人与动牲交sv欧美| 人体艺术视频欧美日本| 亚洲欧美成人精品一区二区| 国产欧美日韩一区二区三区在线 | 久久国产精品大桥未久av | 久久热精品热| 亚洲欧美日韩无卡精品| 亚洲美女视频黄频| 日韩中文字幕视频在线看片 | 国产淫语在线视频| 久热这里只有精品99| 亚洲精华国产精华液的使用体验| 亚洲,欧美,日韩| 亚洲欧美日韩东京热| 永久免费av网站大全| 26uuu在线亚洲综合色| 国产伦精品一区二区三区视频9| 美女主播在线视频| 亚洲美女视频黄频| 七月丁香在线播放| 欧美日韩视频精品一区| 欧美少妇被猛烈插入视频| 久久国产精品大桥未久av | 亚洲va在线va天堂va国产| 少妇裸体淫交视频免费看高清| 国产男女内射视频| 日韩中字成人| 麻豆成人av视频| 性色av一级| 国产黄色视频一区二区在线观看| 99久国产av精品国产电影| 最近的中文字幕免费完整| 香蕉精品网在线| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看| 国产黄片美女视频| 国产高潮美女av| 久久精品久久久久久噜噜老黄| 成人国产av品久久久| 99久久精品一区二区三区| 在线免费观看不下载黄p国产| 一区二区三区乱码不卡18| 午夜激情久久久久久久| av在线观看视频网站免费| 亚洲av日韩在线播放| 国产成人精品福利久久| 午夜免费男女啪啪视频观看| 精品亚洲乱码少妇综合久久| 如何舔出高潮| 老熟女久久久| 国产高清三级在线| 国产毛片在线视频| 欧美日韩综合久久久久久| 日韩人妻高清精品专区| 久久精品国产自在天天线| 欧美精品国产亚洲| 日本av手机在线免费观看| 成年人午夜在线观看视频| 特大巨黑吊av在线直播| 秋霞伦理黄片| 国产精品一区二区三区四区免费观看| 永久免费av网站大全| 久久99热这里只有精品18| 多毛熟女@视频| 中文字幕精品免费在线观看视频 | 日韩 亚洲 欧美在线| 水蜜桃什么品种好| 少妇猛男粗大的猛烈进出视频| 国产精品爽爽va在线观看网站| 免费久久久久久久精品成人欧美视频 | 舔av片在线| 亚洲自偷自拍三级| 夫妻午夜视频| 亚洲高清免费不卡视频| 麻豆乱淫一区二区| 久久久久久久久久久丰满| 校园人妻丝袜中文字幕| 一二三四中文在线观看免费高清| 建设人人有责人人尽责人人享有的 | 韩国av在线不卡| 人妻 亚洲 视频| 成人毛片60女人毛片免费| 欧美日韩精品成人综合77777| 舔av片在线| 最近2019中文字幕mv第一页| 国产色婷婷99| 在线天堂最新版资源| 观看av在线不卡| 国国产精品蜜臀av免费| 国产免费一区二区三区四区乱码| 国产免费一区二区三区四区乱码| 精品99又大又爽又粗少妇毛片| 中文资源天堂在线| 亚洲av成人精品一区久久| 18禁在线无遮挡免费观看视频| 搡老乐熟女国产| 亚洲国产精品一区三区| 日本爱情动作片www.在线观看| 免费观看性生交大片5| 亚洲欧美日韩卡通动漫| 好男人视频免费观看在线| 国产精品一区www在线观看| 中文字幕免费在线视频6| 久久久欧美国产精品| 亚洲成人av在线免费| 久久99蜜桃精品久久| 一级a做视频免费观看| 日韩欧美精品免费久久| 免费看日本二区| 亚洲人成网站在线观看播放| 全区人妻精品视频| 免费播放大片免费观看视频在线观看| 久久久久人妻精品一区果冻| 国产精品嫩草影院av在线观看| 丝袜喷水一区| 日韩av在线免费看完整版不卡| 在线观看美女被高潮喷水网站| 美女高潮的动态| 伦理电影大哥的女人| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 老女人水多毛片| 午夜福利网站1000一区二区三区| 视频中文字幕在线观看| 亚洲国产毛片av蜜桃av| 国产午夜精品久久久久久一区二区三区| 精品少妇久久久久久888优播| av线在线观看网站| 1000部很黄的大片| 超碰av人人做人人爽久久| 欧美成人午夜免费资源| 国产熟女欧美一区二区| 在线观看国产h片| 内地一区二区视频在线| 午夜日本视频在线| 18禁裸乳无遮挡免费网站照片| 亚洲丝袜综合中文字幕| 搡女人真爽免费视频火全软件| 老司机影院成人| 熟女av电影| 国产精品秋霞免费鲁丝片| 中文乱码字字幕精品一区二区三区| 国产在线男女| 婷婷色综合大香蕉| 简卡轻食公司| 一个人看的www免费观看视频| 丰满人妻一区二区三区视频av| 狂野欧美激情性bbbbbb| 亚洲经典国产精华液单| av一本久久久久| 国产精品蜜桃在线观看| 日韩av不卡免费在线播放| 一级二级三级毛片免费看| 老熟女久久久| 一级片'在线观看视频| 国产精品久久久久成人av| 熟女av电影| 精品一区二区免费观看| 最近2019中文字幕mv第一页| 亚洲色图av天堂| 国产男女内射视频| 久久久久久久久久久丰满| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 久久亚洲国产成人精品v| 亚洲美女视频黄频| 美女高潮的动态| 全区人妻精品视频| 一区二区三区四区激情视频| 人人妻人人看人人澡| 视频区图区小说| 乱系列少妇在线播放| 国产欧美亚洲国产| 国产高清国产精品国产三级 | 汤姆久久久久久久影院中文字幕| 亚洲av免费高清在线观看| 人人妻人人看人人澡| 精品国产三级普通话版| 在线免费观看不下载黄p国产| 亚洲经典国产精华液单| 少妇裸体淫交视频免费看高清| tube8黄色片| 街头女战士在线观看网站| 99久久综合免费| 另类亚洲欧美激情| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美清纯卡通| 免费少妇av软件| 日本免费在线观看一区| 少妇的逼好多水| 女性被躁到高潮视频| 国产精品麻豆人妻色哟哟久久| 最近中文字幕2019免费版| 3wmmmm亚洲av在线观看| 18禁在线无遮挡免费观看视频| 在线亚洲精品国产二区图片欧美 | 国产亚洲精品久久久com| 久久精品国产亚洲av天美| 精品少妇黑人巨大在线播放| 男女下面进入的视频免费午夜| 一级二级三级毛片免费看| 少妇人妻精品综合一区二区| 性色av一级| 国产精品三级大全| 久久久久久九九精品二区国产| 边亲边吃奶的免费视频| 日韩欧美 国产精品| 寂寞人妻少妇视频99o| 亚洲精品aⅴ在线观看| 亚洲激情五月婷婷啪啪| 亚洲美女黄色视频免费看| 国产一区二区三区av在线| 精品国产乱码久久久久久小说| 精品一区二区免费观看| 午夜免费鲁丝| 久久久久久久大尺度免费视频| 九草在线视频观看| 久久久久精品久久久久真实原创| 六月丁香七月| 亚洲国产精品国产精品| 美女脱内裤让男人舔精品视频| 我的女老师完整版在线观看| 99热全是精品| 国产女主播在线喷水免费视频网站| 久久97久久精品| 联通29元200g的流量卡| 丰满人妻一区二区三区视频av| 成人二区视频| 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频 | 97超视频在线观看视频| 国产精品久久久久成人av| 91久久精品国产一区二区三区| 亚洲精品国产成人久久av| 日韩亚洲欧美综合| 在线观看免费视频网站a站| 精品人妻偷拍中文字幕| 亚洲精品国产成人久久av| 99热这里只有是精品在线观看| 十八禁网站网址无遮挡 | 人妻夜夜爽99麻豆av| 高清av免费在线| 狂野欧美白嫩少妇大欣赏| 欧美老熟妇乱子伦牲交| 亚洲欧美日韩无卡精品| 亚洲欧美日韩卡通动漫| 97在线人人人人妻| 亚洲电影在线观看av| 午夜激情久久久久久久| 久久久久性生活片| 国产成人freesex在线| 国产国拍精品亚洲av在线观看| 国产深夜福利视频在线观看| 91aial.com中文字幕在线观看| 2021少妇久久久久久久久久久| 少妇高潮的动态图| 校园人妻丝袜中文字幕| 久久av网站| 国产精品免费大片| 国产成人精品一,二区| 又大又黄又爽视频免费| 免费在线观看成人毛片| 永久网站在线| 我要看黄色一级片免费的| 伦理电影大哥的女人| 亚洲av电影在线观看一区二区三区| 久久国产精品男人的天堂亚洲 | 国产高清三级在线| 亚洲国产av新网站| 99热这里只有精品一区| 国产一区二区在线观看日韩| 妹子高潮喷水视频| 免费高清在线观看视频在线观看| 中文乱码字字幕精品一区二区三区| 国产精品一区二区在线观看99| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 日韩av免费高清视频| 国产乱人偷精品视频| 街头女战士在线观看网站| 熟女人妻精品中文字幕| 午夜福利网站1000一区二区三区| 日本欧美国产在线视频| 永久网站在线| 亚洲av免费高清在线观看| 久久女婷五月综合色啪小说| av卡一久久| 亚洲欧美日韩东京热| 久久影院123| 久热这里只有精品99| 日韩中文字幕视频在线看片 | 国产亚洲午夜精品一区二区久久| 日韩电影二区| xxx大片免费视频| 欧美成人午夜免费资源| 成人国产麻豆网| 水蜜桃什么品种好| 91久久精品电影网| 亚洲欧美中文字幕日韩二区| 1000部很黄的大片| 麻豆成人午夜福利视频| 日韩欧美 国产精品| 久久国内精品自在自线图片| 欧美日韩综合久久久久久| 高清不卡的av网站| 国产伦在线观看视频一区| 街头女战士在线观看网站| 91精品伊人久久大香线蕉| 亚洲人成网站高清观看| av网站免费在线观看视频| 欧美日韩视频高清一区二区三区二| 国产深夜福利视频在线观看| 亚洲精品日韩在线中文字幕| 一级毛片我不卡| 午夜免费观看性视频| 蜜臀久久99精品久久宅男| 亚洲精品国产色婷婷电影| 国产91av在线免费观看| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| 涩涩av久久男人的天堂| 精品人妻视频免费看| 国产在视频线精品| 久久av网站| 十分钟在线观看高清视频www | 久久 成人 亚洲| 中文字幕久久专区| 亚洲美女视频黄频| 色视频www国产| 99视频精品全部免费 在线| 日韩强制内射视频| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 久久久久久人妻| 99热国产这里只有精品6| 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| 国产久久久一区二区三区| 最新中文字幕久久久久| 欧美 日韩 精品 国产| 免费观看a级毛片全部| 美女视频免费永久观看网站| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆| 国产成人免费观看mmmm| 国产亚洲av片在线观看秒播厂| 99久久中文字幕三级久久日本| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 成人毛片60女人毛片免费| 成年人午夜在线观看视频| 边亲边吃奶的免费视频| 少妇人妻精品综合一区二区| av播播在线观看一区| 欧美3d第一页| 久久精品久久久久久噜噜老黄| 久久久久久人妻| 亚洲怡红院男人天堂| 尤物成人国产欧美一区二区三区| 日韩中文字幕视频在线看片 | 综合色丁香网| 伊人久久精品亚洲午夜| av卡一久久| 国产av精品麻豆| 最近手机中文字幕大全| 中文天堂在线官网| 人妻系列 视频| 只有这里有精品99| 中文字幕亚洲精品专区| 日韩精品有码人妻一区| 久久久a久久爽久久v久久| 在线观看三级黄色| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 亚洲欧美日韩东京热| 美女福利国产在线 | 黄色怎么调成土黄色| 人妻制服诱惑在线中文字幕| 国模一区二区三区四区视频| 永久网站在线| 97精品久久久久久久久久精品| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 3wmmmm亚洲av在线观看| 老师上课跳d突然被开到最大视频| 国产欧美另类精品又又久久亚洲欧美| 久久久精品免费免费高清| 亚洲精品乱久久久久久| 国产在线男女| 午夜免费鲁丝| 国产男女超爽视频在线观看| 97热精品久久久久久| 久久人妻熟女aⅴ| 亚洲欧美中文字幕日韩二区| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版| 天美传媒精品一区二区| 精品久久久噜噜| 视频区图区小说| 最后的刺客免费高清国语| 一个人看视频在线观看www免费| 2018国产大陆天天弄谢| 五月玫瑰六月丁香| 亚洲精品中文字幕在线视频 | 国产毛片在线视频| 久久久久人妻精品一区果冻| 成人高潮视频无遮挡免费网站| 大片免费播放器 马上看| 一级毛片黄色毛片免费观看视频| 丝袜脚勾引网站| av在线观看视频网站免费| 欧美成人精品欧美一级黄| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲成国产av| 国产精品欧美亚洲77777| 国产毛片在线视频| 六月丁香七月| 国产女主播在线喷水免费视频网站| 亚洲精品第二区| av免费观看日本| 九九爱精品视频在线观看| 97超视频在线观看视频| 午夜免费男女啪啪视频观看| 亚洲,一卡二卡三卡| 欧美区成人在线视频| 下体分泌物呈黄色| 国产一区二区三区av在线| 欧美成人午夜免费资源| 国产男人的电影天堂91| 91狼人影院| av卡一久久| 身体一侧抽搐| 韩国av在线不卡| 精品国产乱码久久久久久小说| 精品亚洲成a人片在线观看 | 岛国毛片在线播放| 2021少妇久久久久久久久久久| 亚洲精品亚洲一区二区| 国产欧美日韩一区二区三区在线 | 国产av精品麻豆| 91久久精品国产一区二区三区| 在线观看免费高清a一片| 人妻一区二区av| 久久人人爽av亚洲精品天堂 | 自拍欧美九色日韩亚洲蝌蚪91 | 色综合色国产| 免费观看性生交大片5| 免费看光身美女| 久久99热这里只频精品6学生| 高清视频免费观看一区二区| 视频中文字幕在线观看| 日本黄色日本黄色录像| 久久97久久精品| 亚洲中文av在线| 欧美日韩视频高清一区二区三区二| 国产成人午夜福利电影在线观看| 丰满乱子伦码专区| 午夜免费男女啪啪视频观看| 亚洲第一av免费看| 美女国产视频在线观看| 欧美成人精品欧美一级黄| av播播在线观看一区| 免费在线观看成人毛片| 三级国产精品欧美在线观看| 日韩免费高清中文字幕av| 亚洲成色77777| 亚洲高清免费不卡视频| 亚洲成色77777| 欧美成人a在线观看| 免费大片黄手机在线观看| 久久6这里有精品| 亚洲久久久国产精品| 观看美女的网站| 在线播放无遮挡| 久久影院123| 日日摸夜夜添夜夜添av毛片| 夫妻午夜视频| 亚洲av中文字字幕乱码综合| 免费av中文字幕在线| 国产午夜精品一二区理论片| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 我要看日韩黄色一级片| 日韩成人伦理影院| 色视频在线一区二区三区| 久久久久久久久久成人| 日日摸夜夜添夜夜爱| av.在线天堂| 韩国av在线不卡| 亚洲国产av新网站| 国产精品国产av在线观看| 毛片一级片免费看久久久久| 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久av| 伦理电影大哥的女人| a 毛片基地| 在线观看一区二区三区| 青春草视频在线免费观看| 最近中文字幕高清免费大全6| 永久网站在线| 欧美 日韩 精品 国产| 国产亚洲91精品色在线| 欧美激情国产日韩精品一区| 午夜福利影视在线免费观看| 黄片无遮挡物在线观看| 国产成人a区在线观看| 欧美日韩视频高清一区二区三区二| 肉色欧美久久久久久久蜜桃| 妹子高潮喷水视频| 亚洲国产欧美在线一区| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 亚洲美女黄色视频免费看| 99热这里只有是精品50| 日韩成人av中文字幕在线观看| 亚洲欧美精品自产自拍| 美女视频免费永久观看网站| 久久人人爽人人爽人人片va| 岛国毛片在线播放| 国产美女午夜福利| 亚洲国产精品专区欧美| 国产伦理片在线播放av一区| 国产亚洲精品久久久com| 亚洲天堂av无毛| 男人添女人高潮全过程视频| 日日摸夜夜添夜夜爱| 国产乱人视频| 日日啪夜夜爽| 深爱激情五月婷婷| 男女免费视频国产| 午夜精品国产一区二区电影| 久久久精品94久久精品| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的 | 一级a做视频免费观看| 国产欧美亚洲国产| 亚洲人与动物交配视频| 国产精品秋霞免费鲁丝片| 亚洲精品一二三| 毛片女人毛片| 26uuu在线亚洲综合色| av专区在线播放| 国产免费一区二区三区四区乱码| 只有这里有精品99| 国产免费又黄又爽又色| 91精品国产国语对白视频| 亚洲一区二区三区欧美精品| videos熟女内射| 嫩草影院新地址| 在线观看av片永久免费下载| 涩涩av久久男人的天堂| 久久99热这里只频精品6学生| 久久热精品热| 乱码一卡2卡4卡精品| 久久99热这里只频精品6学生| 22中文网久久字幕| 国产日韩欧美亚洲二区| 欧美一区二区亚洲| 边亲边吃奶的免费视频| 亚洲精品一区蜜桃| 18禁在线播放成人免费| 人妻夜夜爽99麻豆av| 亚洲图色成人| 欧美一区二区亚洲| 日韩欧美 国产精品| 日日啪夜夜爽| 日本爱情动作片www.在线观看| 国产乱人视频| 国产色爽女视频免费观看| 免费观看无遮挡的男女| 国产极品天堂在线| 国产精品麻豆人妻色哟哟久久| 一二三四中文在线观看免费高清|