,
(中國人民解放軍總參謀部第六十研究所,江蘇 南京 210016)
無人直升機(jī)作為一種特殊的航空飛行器,近幾年來在軍事領(lǐng)域和關(guān)鍵民用領(lǐng)域得到越來越廣泛的應(yīng)用和重視。相對于固定翼無人機(jī)來說,無人直升機(jī)旋翼及尾旋翼系統(tǒng)對機(jī)體施加的周期性激勵是無人直升機(jī)產(chǎn)生強(qiáng)烈振動的主要原因,而且過高的振動水平會引起機(jī)體結(jié)構(gòu)的疲勞破壞,影響機(jī)載設(shè)備的正常工作,嚴(yán)重影響了無人直升機(jī)的飛行品質(zhì)[1,2]。隨著科學(xué)技術(shù)的發(fā)展和無人直升機(jī)系統(tǒng)對振動環(huán)境要求的越來越高,無人直升機(jī)機(jī)體的振動水平已經(jīng)成為評定無人直升機(jī)性能的一項重要指標(biāo),所以進(jìn)行機(jī)體減振設(shè)計以及振動可靠性研究十分必要。
一般的振動分析是建立在動力學(xué)的基礎(chǔ)之上的,簡單的依靠機(jī)械振動理論來進(jìn)行機(jī)械結(jié)構(gòu)設(shè)計,由于這種設(shè)計理論的基本出發(fā)點是把所有的設(shè)計變量(如尺寸、材料參數(shù)等設(shè)計變量)看成是確定性的量,從而使設(shè)計的產(chǎn)品無法提供結(jié)構(gòu)的可靠性水平。本文在一般的無人直升機(jī)結(jié)構(gòu)振動設(shè)計與分析的基礎(chǔ)上,考慮了結(jié)構(gòu)設(shè)計變量隨機(jī)性情況,提出了無人直升機(jī)結(jié)構(gòu)振動可靠性分析方法及推導(dǎo)了相應(yīng)的振動可靠度計算公式。最后,以某型無人直升機(jī)為例說明了所提方法的合理性及推導(dǎo)公式的正確性。
常規(guī)振動可靠性分析是將ω激j∈[(1-a)ω固i,(1+a)ω固i](其中的a根據(jù)結(jié)構(gòu)振動特性確定,一般地a取0~0.3[5])作為振動可靠性設(shè)計準(zhǔn)則,即激振頻率落在該區(qū)域內(nèi)時,就確定產(chǎn)生不可接受的振動響應(yīng),溢出該區(qū)域即為振動安全,見圖1所示。
圖1 振動安全和危險區(qū)域示意圖
根據(jù)振動理論和結(jié)構(gòu)固有頻率特點可知,多自由度結(jié)構(gòu)各階固有頻率是相互獨立的,而且這些固有頻率和多個激振頻率也是相互獨立的。因此,結(jié)構(gòu)振動可靠性分析時,考慮各種主客觀因素,將影響結(jié)構(gòu)固有頻率和激振頻率的各因素當(dāng)作服從一定分布的隨機(jī)變量來看[3-5]。用g(ω固i)(i=1,2,…,n)來表示結(jié)構(gòu)前n階固有頻率分布的概率密度函數(shù),用f(ω激j)(j=1,2,…,m)表示結(jié)構(gòu)m個激振頻率分布的概率密度函數(shù)。此處的概率密度函數(shù)g和f可以是正態(tài)分布、對數(shù)正態(tài)分布、Weibull分布等不同的概率分布形式,對于簡單結(jié)構(gòu)系統(tǒng),可以用根據(jù)結(jié)構(gòu)設(shè)計變量分布形式顯式解出。根據(jù)常規(guī)振動可靠性理論,結(jié)構(gòu)m個激振頻率與第n階固有頻率之間振動安全的可靠度可以由以下公式給出。
單頻激勵和系統(tǒng)固有頻率之間發(fā)生不可接受的振動響應(yīng)的概率為:
(1)
振動安全的概率為:
(2)
單頻激勵和多系統(tǒng)第i階固有頻率之間發(fā)生不可接受的振動響應(yīng)的概率為:
(3)
振動安全的概率為:
Ri=1-Pi
(4)
結(jié)構(gòu)系統(tǒng)振動安全的概率為:
(5)
系統(tǒng)第j個激勵和系統(tǒng)固有頻率發(fā)生不可接受的振動響應(yīng)的概率為:
(6)
振動安全的概率為:
Rj=1-Pj
(7)
結(jié)構(gòu)系統(tǒng)振動安全的概率為:
(8)
系統(tǒng)第j個激勵和第i階固有頻率發(fā)生不可接受的振動響應(yīng)的概率為:
(9)
振動安全的概率為:
Rij=1-Pij
(10)
結(jié)構(gòu)系統(tǒng)振動安全的概率為:
(11)
一般地,無人直升機(jī)結(jié)構(gòu)是一個多自由度振動系統(tǒng),其中的主旋翼和尾旋翼系統(tǒng)是其主要振源。因此,通過公式就可以得到該無人直升機(jī)系統(tǒng)的振動可靠度。
以某型無人直升機(jī)系統(tǒng)為例,通過全機(jī)振動模態(tài)試驗,獲得該型無人直升機(jī)系統(tǒng)的前7階固有頻率(表1)。影響該型該無人直升機(jī)振動水平的一共有兩個激振源,分別是主旋翼系統(tǒng)和尾旋翼系統(tǒng)。其中主旋翼轉(zhuǎn)速為471 rpm,尾旋翼轉(zhuǎn)速為3096 rpm。
表1 某型無人直升機(jī)模態(tài)測試試驗結(jié)果
文獻(xiàn)[6,7]中均將振動系統(tǒng)的激振頻率和固有頻率假設(shè)為正態(tài)分布,本例中也假設(shè)該型無人直升機(jī)系統(tǒng)的兩個激振頻率和前7階固有頻率均服從正態(tài)分布,變異系數(shù)分別取0.025和0.05。
根據(jù)公式計算得到該型無人直升機(jī)系統(tǒng)各階固有頻率和兩個激振頻率間的振動可靠度(表2)。
表2 各階固有頻率和兩個激振頻率之間的振動可靠度
根據(jù)公式,得到該型無人直升機(jī)的振動安全可靠度是0.994444。依照確定性振動分析,兩個激振源頻率均在各階固有頻率的[0.9,1.1]區(qū)間之外,該型無人直升機(jī)應(yīng)該是振動安全的;但是,依據(jù)實際飛行及試驗情況分析,這種情況下,該無人直升機(jī)只能說振動安全的概率比較高,并不是絕對安全。因此,考慮影響固有頻率和激振頻率參數(shù)隨機(jī)性情況下的振動可靠性分析更貼合工程實際,該方法在無人直升機(jī)結(jié)構(gòu)振動設(shè)計方面具有一定的應(yīng)用意義。
本文在無人直升機(jī)穩(wěn)定性的振動設(shè)計基礎(chǔ)上,將無人直升機(jī)系統(tǒng)固有頻率及激振頻率當(dāng)作服從一定分布的隨機(jī)變量,提出了振動可靠性分析方法并推導(dǎo)了振動安全可靠度計算公式。最后以某型無人直升機(jī)為例,驗證了所提振動可靠性方法的正確性。所提振動可靠性設(shè)計更符合無人直升機(jī)系統(tǒng)結(jié)構(gòu)振動的特點,具有廣泛的應(yīng)用范圍。
[1] 飛機(jī)設(shè)計手冊編委會. 飛機(jī)設(shè)計手冊——直升機(jī)設(shè)計[M]. 北京:航空工業(yè)出版社, 2005
[2] 航空航天工業(yè)部科學(xué)技術(shù)研究院. 直升機(jī)動力學(xué)手冊[M]. 北京:航空工業(yè)出版社, 1991
[3] 王延榮, 田愛梅. 結(jié)構(gòu)振動可靠性設(shè)計方法研究[J]. 航空動力學(xué)報, 2003,18(2):191-194
[4] 何曉聰. 單自由度系統(tǒng)振動可靠性計算方法初探[J]. 昆明理工大學(xué)學(xué)報, 1998,23(2):51-53
[5] 史進(jìn)淵,楊宇,等.機(jī)械零件振動的可靠性設(shè)計[J]. 振動工程學(xué)報,1999,12(4):553-558
[6] 呂震宙,馮元生. 工程結(jié)構(gòu)振動可靠性分析方法初探[J]. 機(jī)械強(qiáng)度,1993,15(6):1-6
[7] 史進(jìn)淵. 旋轉(zhuǎn)機(jī)械零件避開共振可靠度的計算方法[[J]. 機(jī)械設(shè)計與制造,1995 (4)