• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于“平均值概念”的“殘差示蹤法”
    ——黃土高原降水重建的應(yīng)用

    2015-03-28 07:48:24周衛(wèi)健陳茂柏孔祥輝杜雅娟武振坤宋少華康志海
    地球環(huán)境學(xué)報(bào) 2015年6期
    關(guān)鍵詞:黃土高原加速器黃土

    周衛(wèi)健,陳茂柏,孔祥輝,鮮 鋒,杜雅娟,武振坤,宋少華,康志海

    (1. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安 710061; 2. 西安加速器質(zhì)譜中心 ,西安 710061;3. 北京師范大學(xué),北京 100875;4. 西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院,西安 710049)

    基于“平均值概念”的“殘差示蹤法”
    ——黃土高原降水重建的應(yīng)用

    周衛(wèi)健1,2,3,4,陳茂柏1,2,孔祥輝1,2,鮮 鋒1,2,杜雅娟1,2,武振坤1,2,宋少華1,2,康志海1,2

    (1. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安 710061; 2. 西安加速器質(zhì)譜中心 ,西安 710061;3. 北京師范大學(xué),北京 100875;4. 西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院,西安 710049)

    本文對定量重建黃土高原降水的傳統(tǒng)方法進(jìn)行了回顧分析,提出了利用新發(fā)展的“殘差示蹤法”定量重建黃土高原古降水變化的兩種新方法。一種是利用黃土磁化率和粉塵通量指標(biāo)的關(guān)系進(jìn)行降水重建的磁化率方法(SUS-approach),另一種是利用黃土10Be濃度與10Be產(chǎn)率和粉塵通量指標(biāo)的關(guān)系進(jìn)行降水重建的10Be方法(10Be-approach)。上述兩種方法定量重建的洛川地區(qū)13萬年以來降水變化曲線高度一致,但與前人利用現(xiàn)代觀測數(shù)據(jù)建立的氣候回歸方程等傳統(tǒng)方法重建的降水記錄具有明顯的差異。本文所建立的降水曲線具有明顯的細(xì)節(jié)特征,揭示了粉塵稀釋作用對降水指標(biāo)的影響,顯示了該方法的優(yōu)勢。文章同時(shí)指出,“殘差示蹤法”的數(shù)學(xué)涵義是基于“平均值概念”(MVC),并對此從統(tǒng)計(jì)學(xué)角度進(jìn)行了論證。最后,就本文所提出的運(yùn)用線性回歸后的殘差進(jìn)行示蹤的新方法與傳統(tǒng)的示蹤方法之差異作了對比分析。

    黃土高原;SUS-approach;10Be-approach;平均值概念(MVC);殘差示蹤法;古降水

    1 Background of the traditional approach for paleoprecipitation reconstruction over the Chinese Loess Plateau

    The magnetic susceptibility records in Chinese loess-paleosols are very similar to the δ18O records from deep-sea sediments. This similarity led to the suggestion that magnetic susceptibility records from loess-paleosols could be used for paleoclimate change research (Kukla et al, 1988). For more than two decades, a number of studies (Maher et al, 1994; An and Sun, 1995; Sun et al, 1995; Han et al, 1996; Porter et al, 2001) have pursued this approach, with magnetic susceptibility as a proxy of paleoprecipitation over the Chinese Loess Plateau (CLP). These studies took important steps towards the spatial and temporal reconstruction of paleoprecipitation over the CLP. However, it becomes clear that the magnetic susceptibility signal in loess includes a dustfall induced susceptibility from the dust source regions that is not related to precipitation, and that the rainfall-induced pedogenic susceptibility is controlled by chemical/ biochemical pedogenic processes. Because it is not yet possible to collect information on all of the variables involved in pedogenic susceptibility, they cannot be quantitatively accounted for through conventional regression analysis (Porter et al, 2001). Therefore most studies have considered precipitation as the dominant factor that controls the pedogenic processes, and have adopted different simplifying assumptions to rule out other non-precipitation factors, and to reconstruct paleoprecipitation. These studies have given rise to a diverse set of climofunctions and results (Maher et al, 1994; An and Sun, 1995; Sun et al, 1995; Han et al, 1996; Porter et al, 2001) (Tab.1).

    Tab.1 Different types of climofunction in published papers

    All of the climofunctions cited in Tab.1, with the exception of Porter et al (2001), were established using a best fit between present (most recent 10 ~ 30 years) precipitation and total magnetic susceptibility (or pedogenic susceptibility) in the modern soil (near surface) from different locations, without consideration of the dust dilution effect. Namely, all these papers through burdensome work have ruled out all non-precipitation factors in regression calculations, leaving the latest 10 ~ 30 years’ precipitation alone. As a result, the effect of non-precipitation factors, including dustfall-induced susceptibility SUS(D) and the dilution effect (Kukla et al, 1988; Porter et al, 2001) of the slow dust deposition during pedogenesis (An and Sun, 1995; Porter et al, 2001), have altogether been taken as the rainfall-related composition to be fitted with the measured present precipitation P in their regression, which has resulted in that the inherentlinear correlation between the precipitation and the pedogenic susceptibility (Beer et al, 1993; Heller et al, 1993; An and Sun, 1995; Shen et al, 2000; Zhou et al, 2007a) was incorporated into a nonlinear climofunction (polynomial type or logarithmic type) depending on the local and temporal climate conditions being considered (Tab.1). These different types of nonlinear climofunctions did not achieve a perfect correlation between precipitation and pedogenic susceptibility in nature as they only reflected the best fit between the present precipitation and near surface susceptibility for a specifi c locality over the past 10 ~ 30 years.

    A basic question that arises from the aforementioned approach is whether climofunctions from the latest 10 ~ 30 years’ data can be extended to include past glacial and interglacial periods. Such an approach implies that all non-precipitation factors have been constant or have negligible changes from glacial and interglacial ages through the present. This is obviously not a valid assumption. For example, Fig.1a shows the dust flux (D) from the Louchuan loess profile for the past 130 ka, with a relative standard deviation RSD = 25%. This record features an abrupt change in dust flux at circa 80 ka that reached up to 200%. The large fluctuation of the dust flux indicates that it is inappropriate to apply the climofunctions in Table 1 through this interval. This includes the formula of Porter et al (2001), which accounts for the dust dilution effect, but still refers to recent accumulation rates.

    In addition to the susceptibility-based approach for paleoprecipitation reconstruction, Heller et al (1993) exploited a “10Be-Susceptibility similarity” approach to extract the pedogenic susceptibility. In their approach, they used both susceptibility and10Be to reconstruct regional paleorainfall in the CLP (Beer et al, 1993; Heller et al, 1993; Shen et al, 2000). However, their approach did not consider both dust flux variations and10Be changes associated with geomagnetic field changes. The latter account for 10% ~ 20% of the total10Be signal.

    Fig.1 The dust fl ux D (a), magnetic susceptibility (b),10Be concentration (c) for the past 130 ka of the Louchuan loess profi le. The RSD (relative standard deviation) of D, i.e. the ratio of the mean root square of the fl uctuation ΔD to their average value, is 25%, an abrupt change occurred at circa 80 ka. The high magnetic susceptibility during 80 ~ 110 ka was formed by a combination of high precipitation and low dust fl ux (Fig.1a) rather than by high precipitation alone.

    Authors have used the correlation between7Be in modern precipitation (Wallbrink and Murray, 1994; Ishikawa et al, 1995; Caillet et al, 2001) and tropospheric10Be/7Be ratio to derive quantitative estimates of the past 80 ka precipitation over the Luochuan profile (Zhou et al, 2007a). The results were comparable to speleothem δ18O records from Dongge and Hulu caves (Wang et al, 2001, 2008), however the approach relies the correlation with7Be which again is only available from modern observations. Hence the method cannot fully account for geomagnetic field changes and dust dilution effects that one may expect when extending a model to the past 80 ka.

    Hence, a quantitative reconstruction of paleoprecipitation remains a crucial goal towards understanding changes in East Asia Monsoon intensity through time. Here we introduce a new method to reconstruct paleoprecipitation by using loess magnetic susceptibility and10Be records.

    In order to make it clear, we explain a few terms used in the text as following (Tab.2).

    Tab.2 The explanation of terms used in this study

    2 Application of the “Residual Trace Approach”to the paleoprecipitation reconstruction over the past 130 ka from Luochuan loess prof le

    We describe next two approaches based on what we term the “Residual Trace Approach” (RTA) for paleoprecipitation reconstruction, and demonstrate their application over the past 130 ka in the Luochuan loess profile. The first is the SUS-approach where the dust dilution effect on pedogenic susceptibility is considered. The second is10Be-approach, which arose from10Be production rate reconstruction studies (Zhou et al, 2007a, 2007b, 2010a, 2010b). In the10Be-approach, the influences of both atmospheric10Be production rate and loess dust flux on the wet deposited10Be records are considered.

    2.1 SUS-approach

    In the SUS-approach we use magnetic susceptibility SUS(M ) = SUS(D, P) (Fig.1b) and dust fl ux D (Fig.1a) to reconstruct precipitation P at Luochuan for the past 130 ka. As stated above, this approach is different from previous methods that ignored dilution effects of the loess component on the pedogenic susceptibility (Maher et al, 1994; An and Sun, 1995; Sun et al, 1995; Han et al, 1996), and considers the dilution effect of the dust deposition on the pedogenic susceptibility SUS(P).

    We first assume that the dustfall-induced susceptibility SUS(D) is independent of precipitation and is homogenous in both its spatial and temporal distributions (Zhou et al, 2007a), it is reasonable to use the measured SUS(M ) =SUS(D, P), instead of the SUS(P) for precipitation reconstruction, since the pure SUS(P) is diffi cult to be extracted from the total SUS(M ).

    A linear regression of SUS(M ) vs. D for the Luochuan loess profi le during the past 130 ka is:

    According to Mean Value Concept (MVC) (Zhou et al, 2007b), the estimated SUS(M )eis determined by the varying dust fl ux D under the average precipitationfor the past 130 ka. The negative slope of the regression line refl ects the dilution effect of D on the magnetic susceptibility.

    We can then compute residual values compared to those foras:

    These are fl uctuations of pedogenic susceptibility caused by changes in monsoon precipitation relative to the mean precipitation(Zhou et al, 2007b).

    We next assert that the residual ΔSUS(ΔP) should be linearly correlated to precipitation variations ΔP about the mean,,

    Thus the absolute precipitation at age T is:

    And the absolute precipitation during the present day T0is:

    The [0, 1] normalization is introduced in order to delete the unknown constants in (4).

    where the symbol < > denotes the normalized precipitation value, and the footprint ‘max’ and ‘min’is the maximum and minimum residual or P within the regression interval.

    Then the ratio of (5-1) to (5-2) would be the relative precipitation to be reconstructed to the present, if the smallest precipitation is Pmin= 0 within the regression interval.

    where the present relative precipitation P(T0) =1.

    The next step is how to determine the ΔSUS(ΔP)mincorresponding to the Pmin= 0, that will be discussed in section 2.3.

    2.210Be-approach

    In10Be-approach, we will extract the precipitation P signals from the measured Be(M ) = Be(D, P, Pr) (Fig.1c) by using both the loess dust flux D (Fig.1a) and the reconstructed atmospheric10Be production rate Pr (Fig.2) synthesized from two Pr curves reconstructed from the Luochuan and Xifeng loess10Be records (Zhou et al, 2010a) which are closely comparable with the calculated10Be production rate from marine10Be (Christl et al, 2010) and SINT 800 paleointensity records (Guyodo and Valet, 1999).

    Fig.2 The reconstructed10Be production rate Pr curve synthesized from two Pr curves reconstructed from the past 130 ka of Luochuan and Xifeng10Be records (Zhou et al, 2010a)

    In the10Be-approach (Zhou et al, 2014a), we fi rst carried out binary linear regression of Be(M ) with Pr and D over the past 130 ka Luochuan loess profi le:

    where the estimated value Be (M)eis determined byvarying Pr and D under the average precipitationof the past 130 ka according to the MVC (Zhou et al, 2007b) and the dust dilution effect is apparent in the negative slope before D in equation (7).

    Next, we obtain the residual:

    which is the loess10Be concentration fluctuations caused by the precipitation variations ΔP relative to the averageof past 130 ka according to MVC.

    Similar to (3)~(6), the ratio in (9) would be the relative precipitation to be reconstructed to the present, if the smallest precipitation is Pmin= 0 within the regression interval.

    where the present relative precipitation P(T0) =1.

    The next step is how to determine the ΔBe(ΔP)mincorresponding to the Pmin= 0, that will be discussed in section 2.3.

    2.3 Normalization and Scaling

    As mentioned above, the ratios in (6) and (9) would be relative precipitation when reconstructed to the present. If the smallest precipitation within the regression interval is Pmin= 0 then the corresponding residual would be Δymin(ΔSUS(ΔP)minor ΔBe(ΔP)min) (10),

    Under the limiting condition that precipitation P = 0, the corresponding composition of the pedogenic susceptibility in loess would be SUS(P)=0, and the measured contemporary total susceptibility SUS(M ) is the smallest and is only related to dustfall-induced susceptibility, i.e. SUS(M) = SUS(D). According to the comparison of loess magnetic susceptibility versus coercivity (Evans and Heller, 2001) from a wide range of locations on the Chinese Loess Plateau for the last 135 ka, the endmember of high coercivity represents a dry dust component of loess susceptibility. We note the corresponding SUS(D) ≈ 25×10-8(m3· kg-1) (driest period) (Zhou et al, 2007a).

    Consequently, we can f ind the age corresponding to the smallest susceptibility SUS(M )≤25 (10-8m3· kg-1), and we can obtain the corresponding residual Δyminfrom the regression equation, i.e., ΔSUS(ΔP)minin SUS-approach, ΔBe(ΔP)minin10Be-approach. If the measured datum error is moderate, the residual Δymin(ΔSUS(ΔP)minor ΔBe(ΔP)min) should be the smallest (most negative) within the concerned regression interval. With the value of ΔSUS(ΔP)minor ΔBe(ΔP)min, the relative precipitation to the present can be reconstructed from equations (6) or (9).

    On the other hand, it has been acknowledged through modern observation that the average precipitation at present is about≈ 650 mm in Luochuan, thus, we can calculate the absolute precipitation through scaling the present relative precipitation to= 650 mm, noting the present relative precipitation P(T0)=1.

    Or through scaling the present normalized precipitationto 650 mm (Zhou et al, 2014a), which will introduce the ΔSUS(ΔP)maxor ΔBe(ΔP)max.

    2.4 Cross check and inter-comparison

    The correlation coefficient of the reconstructed precipitation curves (Fig.3 a, b) by the two approaches are 0.96. The relative differences of their average values are 13.0% (0 ~ 130 ka) and 12.7% (0 ~ 80 ka), and the RSDs (relative standard deviation of their difference to the average) are 9.6% (Tab.3).

    In order to compare our results with other susceptibility-reconstructed precipitation records, we substituted our measured magnetic susceptibility value SUS(M ) (Fig.1b) (or approximate pedogenic SUS(P)= SUS(M ) -25) into the individual climofunctions introduced by previous studies (Maher et al, 1994; Han et al, 1996; Porter et al, 2001) to calculate the past 130 ka precipitation over the Louchuan loess profi le. These results are superimposed on our curves as shown in Fig.3. The differences are apparent, especially at age ranges between 80 ~ 110 ka where the alternernative curves are higher than ours (Fig.3 c, d, e).

    In our view, the high pedogenic susceptibility during 80 ~ 110 ka (Fig.1b) formed through a combination of high precipitation and low dust flux (Fig.1a) rather than by high precipitation alone, so the horizontal sections of the precipitation curves during 80 ~ 110 ka should follow a lower trend, such as ours (Fig.3 a, b). The previous approaches follow a trend above these values because they failed to account for the abrupt drop in dust fl ux from 80 ~ 110 ka (Fig.1a).

    In addition, our reconstructed precipitation records (Fig.4 a, b) compare well with the δ18O records from Hulu-Sanbao caves (Fig.4c) (Wang et al, 2001, 2008), which is widely regarded as a reliable record of Asian Monsoon intensity. Like speleothem δ18O records,10Be precipitation records in loess during MIS 5 clearly reveal sub-cycles (MIS 5a—MIS 5e) of precipitation changes, providing further proof that our approaches are reliable.

    Fig.3 The comparison of the reconstructed precipitation curves by the SUS-approach (a) and the10Be-approach (b) with individual precipitation curves (c-e) reconstructed by substituting our measured magnetic susceptibility values into the climofunctions reported in previous studies

    Tab.3 The average precipitation () and their relative differences (σ, RSD) and correlation coeffi cient (R2) of the reconstructed precipitation curves by two approaches

    Tab.3 The average precipitation () and their relative differences (σ, RSD) and correlation coeffi cient (R2) of the reconstructed precipitation curves by two approaches

    Correlation (R2) σRSD (SUS-approach)(10Be-approach)0 ~ 130 ka440.7506.313.0%0.92 (r = 0.96)48.69.6% 0 ~ 80 ka444.4508.914.9%0.91(r = 0.96)48.79.6%

    Fig.4 The reconstructed past 130 ka precipitation over the Louchuan loess profi le by a)10Be-approach and b) SUS-approach, and their correlation with speleothem δ18O records (c) from Hulu-Sanbao caves (Wang et al, 2001, 2008)

    2.5 Summary for the paleoprecipitation reconstruction

    Using the loess susceptibility alone for precipitation reconstruction in previous studies based on the traditional trace methods has derived a number of climofunctions which have neglected to include the infl uence of dust dilution on pedogenic susceptibility, and on the reconstructed precipitation. The paired measurements of loess susceptibility and loess dust fl ux can be used to reconstruct glacial and interglacial precipitation by using the SUS-approach, in which the dust dilution influence on the reconstructed precipitation is accounted for.

    As a byproduct of reconstruction global10Be production rate (or geomagnetic intensity) reconstruction, we can use the10Be-approach to reconstruct precipitation over the loess plateau. The coincidence of the reconstructed precipitation curves by the two approaches is marked. Nevertheless, as speculated by previous workers (Heller et al, 1993; Maher et al, 1994), difficulties are also encountered with the SUS-approach and10Be-approach in determining precise estimates of dust fl ux through the loess accumulation rates and the dry bulk density.

    3 Mathematical explanation of the“Residual Trace Approach”: Mean Value Concept

    Variables SUS(P, D), P, D used in the SUS-approach, or variables Be(P, D, Pr), (P, D), Pr used in the10Be-approach constitute multiple variables y(x1, x2), x1, x2. Other than conventional multivariable regression analysis or traditional tracer research, in the“Residual Trace Approach”, we carry out the linear regression analyses between y(x1, x2) and x1to remove the effect of x1, and then carry out a calculation to quantify the variation due to the second variable x2through the calculated residual Δy(Δx2).

    Usually, the estimated regression equations (1) and (7) are expressed as the only correlation betweeny(x1, x2) and x1.

    Obviously, the second variable x2“uninvolved”in regression equation (12), must be a constant xCin the estimated values y(x1, x2= xc)eor on the regression line, otherwise the regression analysis (12) would be meaningless, and the calculated residuals Δy(Δx2) are caused only by the difference between the measured x2and the constant xCon the regression line.

    How much is the constant xCon the regression line? According to our study (Zhou et al, 2007b), this constant is taken to be xC=, the arithmetic mean value of x2over the concerned regression interval. Namely, all x2values corresponding to estimated values on the regression line are equal to the arithmetic mean value(Fig.5). This is the root of the MVC (Mean Value Concept) (Zhou et al, 2007b), which can be further explained from a statistical view as following.

    The top and middle panels of Fig.5 are the scatter diagrams of y(x1, x2) vs. x1(Fig.5a) and y(x1, x2) vs. x2(Fig.5b) respectively. The decline line in Fig.5a is the regression line of y(x1, x2) vs. x1and the vertical line in Fig.5b is the constant x2line xCcorresponding to the value on the regression line. Even though assuming the complete correlation between y(x1, x2) and x1and without datum errors, all measured data y(x1, x2) are distributed around the two sides of the regression line (Fig.5a). They are located at different distance Δy(Δx2) from the regression line depending on the Δx2, the deviation of the x2values from the constant value xC(Fig.5b). No matter whether the correlation between y(x1, x2) and x2is linear or nonlinear, the further the Δx2, the bigger the Δy (Δx2), and vice versa.

    Fig.5 Scatter diagrams of y(x1, x2) vs. x1

    If we define the Δy(Δx2), the deviation from the regression line caused by the Δx2, as a“residual”, like the conventionally defi ned residual in statistics due to datum error or incomplete similarity correlation, the regression equation derived by computer programs must be determined in compliance with the minimum of the sum of the“residual” square Δy(Δx2)2or the deviation square Δx2

    2according to the well-known principle of least square method, applicable to linear correlations. Moreover, the statistics indicates that the summation of the squares of the deviation from arithmetic mean value is the least among the sum of various deviation squares. Thus the constant xCon the regression line (Fig.5c) or on the vertical line (Fig.5b) must be the arithmetic mean valueso as to meet the minimum of the sum of the “residual” squares Δy(Δx2)2or the deviation squares Δx22. That is the virtual MeanValue Concept (MVC) deduced from the statistical point of view. The more the number of specimens, the more accurate the MVC.

    According to the MVC, a linear regression of a multivariable system, such as y(x1, x2) vs. x1, is carried out around the average, and the estimated value y(x1, x2) of the regression equation (12) is the correlation between y(x1, x2) and x1under the condition of constant(Fig.5c).

    With introduction of the MVC, we realize the residual in RTA,

    is the variations of y(x1, x2) caused by the Δx2, variation of x2relative to its average valuewithin concerned regression interval, which becomes the mathematic connotation of the “Residual Trace Approach”.

    4 Other successful application examples of the “Residual Trace Approach”

    By taking the loess susceptibility as climate (P, D) proxy, this new approach has successfully been applied to reconstruct the past 80 ka, 130 ka paleogeomagnetic intensities by using the10Be records in Luochuan and Xifeng loess profiles (Zhou et al, 2007a, 2010a). By using this approach, we have determined the Brunhes/ Matuyama (B/M) geomagnetic reversal at circa 780 ± 3 ka BP in Xifeng and Luochuan loess profi les, this timing is synchronous with the B/M reversal timing seen in marine records, facilitating the resolution of the long standing debate about the discrepancy of the B/M magnetic records between Chinese loess and marine sediments by paleomagnetic studies (Zhou et al, 2014b).

    In addition, taking the radioisotope90Sr as proxy of the sea surface temperature, we have applied this new approach to quantitatively reconstruct the past 90 years’ sea salty in the Xisha and Hainan islands with δ18O (Song, 2006) records.

    There is no doubt that the “Mean Value Concept”based “Residual Trace Approach” has opened a new way in environment tracing studies. The differences of the developed “Residual Trace Approach” from the traditional trace method are compared in tab.4, both of which can be applied to the trace research under the respect appropriate condition and with its own advantage and disadvantage, and the “Residual Trace Approach” is especially suitable to the trace research for a multivariable geosystem where all variables are changeable and their distribution have been known except the one to be reconstructed. However, it is important for RTA that the linear correlation between the dependent variable y and independent variables x1, x2… should be high, the higher the linear correlation, the more accurate the traced/ reconstructed results.

    Tab.4 Comparison of the “Residual Trace Approach” with the traditional trace approach

    References

    孫東懷, 周 杰, 吳錫浩. 1995. 全新世氣候適宜期黃土高原及黃土/沙漠過渡區(qū)年降水量的初步恢復(fù)[J].中國沙漠, 15: 339 - 344. [Sun D H, Zhou J, Wu X H. 1995. Preliminary reconstruction of annual rainfall in loess plateau and loess-desert transitional regions in suitable climatic period of Holocene [J]. Journal of Desert Research, 15: 339 - 344.]

    周衛(wèi)健, 孔祥輝, 鮮 鋒, 等. 2010b. 中國黃土10Be重建古地磁場變化史的初步研究[J]. 地球環(huán)境學(xué)報(bào),1(1): 20 - 27. [Zhou W J, Kong X H,Xian F, et al. 2010b. Preliminary study on the reconstruction of the plaeogeomagnetic intensities by10Be in Chinese loess [J]. Journal of Earth Environment, 1(1): 20 - 27.]

    An Z S, Sun D H. 1995. Discussion on the monsoon variation over the Loess Plateau in the Last Glacial Cycle [M]. Beijing: Science Press.

    Beer J, Shen C D, Heller F, et al. 1993.10Be and magnetic susceptibility in Chinese Loess [J]. Geophysical Research Letters, 20: 57 - 60.

    Caillet S, Arpagaus P, Monna F, et al. 2001. Factors controlling7Be and210Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland [J]. Journal of Environmental Radioactivity, 53: 241 - 256.

    Christl M, Lippold J, Steinhilber F, et al. 2010. Reconstruction of global10Be production over the past 250 ka from highly accumulating Atlantic drift sediments [J]. Quaternary Science Review, 29: 2663 - 2672.

    Evans M E, Heller F. 2001. Magnetism of loess/palaeosol sequences: recent developments [J]. Earth-Science Reviews, 54: 129 - 144.

    Guyodo Y, Valet J P. 1999. Global changes in intensity of the Earth’s magnetic fi eld during the past 800 kyr [J]. Nature, 399: 249 - 252.

    Han J M, Lu H Y, Wu N Q, et al. 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction [J]. Studia Geophysica et Geodaetica, 40: 262 - 275.

    Heller F, Shen C D, Beer J, et al. 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications [J]. Earth and Planetary Science Letters, 114: 385 - 390.

    Ishikawa Y, Murakami H, Sekine T, et al. 1995. Precipitation scavenging studies of radionuclides in air using cosmogenic7Be [J]. Journal of Environmental Radioactivity, 26: 19 - 36.

    Kukla G, Heller F, Liu X M, et al. 1988. Pleistocene climates in China dated by magnetic susceptibility [J]. Geology, 16: 811 - 814.

    Maher B A, Thompson R, Zhou L P, et al. 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach [J]. Earth and Planetary Science Letters, 125: 461 - 471.

    Porter S C, Hallet B, Wu X H, et al. 2001. Dependence of nearsurface magnetic susceptibility on dust accumulation rate and precipitation on the Chinese Loess Plateau [J]. Quaternary Research, 55: 271 - 283.

    Shen C D, Beer J, Heller F, et al. 2000.10Be-susceptibility model and quantitative estimates of pedogenic ferromagnetic material fl ux in Chinese loess [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172: 551 - 554.

    Song S H. 2006. Reconstruction of climatic history based on coral in South China Sea and the related data analysis method [D]. Beijing: Graduate University of Chinese Academy of Sciences.

    Wallbrink P J, Murray A S. 1994. Fallout of7Be in South Eastern Australia [J]. Journal of Environmental Radioactivity, 25: 213 - 228.

    Wang Y J, Cheng H, Edwards R L, et al. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 294: 2345 - 2349.

    Wang Y J, Cheng H, Edwards R L, et al. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years [J]. Nature, 451: 1090 - 1093.

    Zhou W J, Priller A, Beck W, et al. 2007a. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of10Be [J]. Radiocarbon, 49: 139 - 160.

    Zhou W J, Chen M B, Xian F, et al. 2007b. The mean value concept in mono-linear regression of multi-varaibles and its application to trace studies in geosciences [J]. Science in China Series D: Earth Sciences, 50: 1828 - 1834.

    Zhou W J, Xian F, Beck W, et al. 2010a. Reconstruction of 130-kyr relative geomagnetic intensities from10Be in two Chinese loess sections [J]. Radiocarbon, 52: 129 - 147.

    Zhou W J, Xian F, Du Y J, et al. 2014a. The last 130 ka precipitation reconstruction from Chinese loess10Be [J]. Journal of Geophysical Research: Solid Earth, 119: 191 - 197.

    Zhou W J, Beck W, Kong X H, et al. 2014b. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using10Be [J]. Geology, 42: 467 - 470.

    “Mean Value Concept” based “Residual Trace Approach” — application to paleoprecipitation reconstruction over the Chinese Loess Plateau

    ZHOU Wei-jian1,2,3,4, CHEN Mao-bai1,2, KONG Xiang-hui1,2, XIAN Feng1,2, DU Ya-juan1,2, WU Zhen-kun1,2, SONG Shao-hua1,2, KANG Zhi-hai1,2
    (1. State Key Laboratory of Loess and Quaternary Geology and Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. Xi’an Accelerator Mass Spectrometry Center, Xi’an 710061, China; 3. Beijing Normal University, Beijing 100875, China; 4. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

    The traditional trace methods for paleoprecipitation reconstruction over Chinese Loess Plateau are fi rst analyzed. Then, two practical applications of the newly developed “Residual Trace Approach” to quantitatively reconstruct the paleoprecipitation over the Chinese Loess Plateau are described. One is the “SUS-approach” that uses paired measurements of magnetic susceptibility and dust flux in loess-paleosol sediments as proxies, the other is the “10Be-approach” that uses both atmospheric10Be production rate and loess dust fl ux as proxies. The reconstructed precipitation curves of the past 130 ka over Luochuan loess plateau site by the two approaches are highly correlated. However, they are different to some extent from the other precipitation curves calculated by theindividual climofunctions of the previous studies using traditional trace methods, and the detailed variations evident in the new approach offer an advantage over the traditional methods in revealing the dust dilution effect on the reconstructed precipitation. Furthermore, it is pointed out that the mathematical connotation of the “Residual Trace Approach” is equivalent to the “Mean Value Concept (MVC)” which is further explained from a statistical point of view. Finally, the difference of the “Residual Trace Approach” from the traditional trace method is compared.

    Chinese Loess Plateau; SUS-approach;10Be-approach; Mean Value Concept; Residual Trace Approach; paleoprecipitation

    ZHOU Wei-jian, E-mail: weijian@loess.llqg.ac.cn

    P532

    A

    1674-9901(2015)06-0382-11

    10.7515/JEE201506002

    Received Date:2015-09-29

    Foundation Item:National Basic Research Program of China (2013CB955904); National Natural Science Foundation of China (41230525); MOST (Ministry of Science and Technology) Special Fund for State Key Laboratory of Loess and Quaternary Geology.

    猜你喜歡
    黃土高原加速器黃土
    輪滑加速器
    化學(xué)工業(yè)的“加速器”
    全民小康路上的“加速器”
    各路創(chuàng)新人才涌向“黃土高坡”
    只要有信心 黃土變成金
    黃土成金
    《劉文西:繪不盡是黃土情》
    選舉 沸騰了黃土高原(下)
    公民與法治(2016年3期)2016-05-17 04:09:00
    選舉沸騰了黃土高原(上)
    公民與法治(2016年1期)2016-05-17 04:07:56
    等待“加速器”
    国模一区二区三区四区视频| 久久午夜福利片| 一本色道久久久久久精品综合| 99久久精品热视频| 18禁裸乳无遮挡动漫免费视频| 精品久久国产蜜桃| 一级二级三级毛片免费看| 免费大片18禁| 久久韩国三级中文字幕| 毛片女人毛片| 秋霞在线观看毛片| 免费看日本二区| 青春草国产在线视频| 蜜桃久久精品国产亚洲av| 国产成人一区二区在线| 国产爱豆传媒在线观看| 亚洲av福利一区| 毛片一级片免费看久久久久| 亚洲图色成人| 久久精品国产亚洲av涩爱| 日韩一本色道免费dvd| 国产精品人妻久久久影院| 国产av国产精品国产| 国产视频内射| 内射极品少妇av片p| 国产极品天堂在线| 国产亚洲最大av| 丝袜脚勾引网站| 久久久久久久亚洲中文字幕| 国产免费一级a男人的天堂| 日韩中文字幕视频在线看片 | 一级毛片aaaaaa免费看小| 国产熟女欧美一区二区| 成人国产麻豆网| 久久精品久久精品一区二区三区| 亚洲精品国产av蜜桃| 亚洲在久久综合| 亚洲精品,欧美精品| 国国产精品蜜臀av免费| 男人爽女人下面视频在线观看| 久久国产精品男人的天堂亚洲 | 卡戴珊不雅视频在线播放| 嘟嘟电影网在线观看| 日韩成人伦理影院| 亚洲精品亚洲一区二区| 夫妻午夜视频| 一级黄片播放器| 成人午夜精彩视频在线观看| 国产精品无大码| 99九九线精品视频在线观看视频| 啦啦啦啦在线视频资源| 国产一区二区三区综合在线观看 | a 毛片基地| 精品一区二区三卡| 国产精品久久久久久久电影| 日韩三级伦理在线观看| 热99国产精品久久久久久7| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 最黄视频免费看| 久久精品久久精品一区二区三区| 欧美 日韩 精品 国产| 内射极品少妇av片p| 亚洲天堂av无毛| 人人妻人人添人人爽欧美一区卜 | 男的添女的下面高潮视频| 午夜激情久久久久久久| 久久久久精品性色| a级一级毛片免费在线观看| 交换朋友夫妻互换小说| 日韩强制内射视频| 性色av一级| 亚洲国产精品999| 国产亚洲5aaaaa淫片| 成人影院久久| 女的被弄到高潮叫床怎么办| h日本视频在线播放| 久久久成人免费电影| 好男人视频免费观看在线| 国产久久久一区二区三区| 国产黄片美女视频| 99久久中文字幕三级久久日本| 欧美成人一区二区免费高清观看| a级一级毛片免费在线观看| 亚洲av中文av极速乱| 狂野欧美激情性xxxx在线观看| a级毛色黄片| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区| 午夜免费鲁丝| av黄色大香蕉| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲日产国产| 狂野欧美白嫩少妇大欣赏| 欧美老熟妇乱子伦牲交| 亚洲美女黄色视频免费看| 国产高清有码在线观看视频| 亚洲精品一区蜜桃| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 国产精品久久久久久精品电影小说 | 婷婷色麻豆天堂久久| 成人影院久久| 国产在线一区二区三区精| 色网站视频免费| 中国三级夫妇交换| 国产淫片久久久久久久久| 人人妻人人看人人澡| 亚洲精品自拍成人| 人人妻人人添人人爽欧美一区卜 | 国产精品国产三级专区第一集| 伦理电影大哥的女人| 少妇精品久久久久久久| 精品熟女少妇av免费看| 一边亲一边摸免费视频| 久久久久性生活片| 免费看光身美女| 成人国产麻豆网| 婷婷色综合www| 在线观看免费视频网站a站| 亚洲一区二区三区欧美精品| 久久久久人妻精品一区果冻| 特大巨黑吊av在线直播| 你懂的网址亚洲精品在线观看| 久久久久视频综合| 久久精品夜色国产| 高清视频免费观看一区二区| 搡女人真爽免费视频火全软件| 午夜老司机福利剧场| 欧美97在线视频| 在线观看av片永久免费下载| 国精品久久久久久国模美| 亚洲精品乱码久久久v下载方式| 肉色欧美久久久久久久蜜桃| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 亚洲电影在线观看av| 少妇的逼好多水| 午夜激情福利司机影院| 亚洲国产日韩一区二区| 99热网站在线观看| 亚洲欧美一区二区三区国产| 老司机影院毛片| 五月玫瑰六月丁香| 妹子高潮喷水视频| 国产高清不卡午夜福利| 麻豆国产97在线/欧美| 亚洲精品成人av观看孕妇| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 丝袜脚勾引网站| 亚洲,欧美,日韩| 视频区图区小说| 男人和女人高潮做爰伦理| 成人午夜精彩视频在线观看| 亚洲伊人久久精品综合| 精品人妻熟女av久视频| 亚洲欧美日韩东京热| 亚洲国产精品专区欧美| 乱系列少妇在线播放| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| 老司机影院成人| 欧美变态另类bdsm刘玥| 亚洲精品日韩av片在线观看| 午夜老司机福利剧场| 亚洲av中文字字幕乱码综合| 99久久精品热视频| 久久久久国产精品人妻一区二区| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 水蜜桃什么品种好| 精品酒店卫生间| 我的女老师完整版在线观看| 秋霞在线观看毛片| 亚洲经典国产精华液单| 日本猛色少妇xxxxx猛交久久| 成年免费大片在线观看| 亚洲av二区三区四区| 亚洲国产欧美在线一区| 婷婷色av中文字幕| 欧美日韩综合久久久久久| 欧美少妇被猛烈插入视频| 国产v大片淫在线免费观看| 国产精品一区二区在线观看99| 亚洲一级一片aⅴ在线观看| 韩国av在线不卡| 性高湖久久久久久久久免费观看| 久久久精品94久久精品| 国产在线一区二区三区精| 22中文网久久字幕| 国产高清有码在线观看视频| 日韩欧美一区视频在线观看 | 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 精品人妻熟女av久视频| av福利片在线观看| 欧美日韩视频精品一区| 一级二级三级毛片免费看| 一二三四中文在线观看免费高清| 麻豆精品久久久久久蜜桃| 99久久精品一区二区三区| 亚洲美女黄色视频免费看| 亚洲va在线va天堂va国产| 亚洲人成网站在线观看播放| 日本wwww免费看| 亚洲国产精品成人久久小说| 成人亚洲欧美一区二区av| 国产亚洲91精品色在线| 99热这里只有精品一区| 欧美三级亚洲精品| 午夜免费鲁丝| 另类亚洲欧美激情| 亚洲av男天堂| 热re99久久精品国产66热6| 99精国产麻豆久久婷婷| 成人漫画全彩无遮挡| 老熟女久久久| 亚洲精品自拍成人| 我要看黄色一级片免费的| 尾随美女入室| av又黄又爽大尺度在线免费看| 色视频www国产| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 成人美女网站在线观看视频| 观看av在线不卡| 一本一本综合久久| 国产成人精品福利久久| 舔av片在线| av在线老鸭窝| 亚洲怡红院男人天堂| 久久精品国产亚洲网站| 亚洲电影在线观看av| 日韩成人av中文字幕在线观看| 一个人免费看片子| 国内少妇人妻偷人精品xxx网站| 日韩强制内射视频| 亚洲国产最新在线播放| 国产成人免费观看mmmm| 91在线精品国自产拍蜜月| av黄色大香蕉| 日韩欧美 国产精品| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| h日本视频在线播放| 色吧在线观看| 狂野欧美白嫩少妇大欣赏| www.av在线官网国产| 亚洲美女视频黄频| av国产久精品久网站免费入址| 一级a做视频免费观看| 欧美xxxx性猛交bbbb| 中国美白少妇内射xxxbb| 少妇被粗大猛烈的视频| 国内精品宾馆在线| 国产免费又黄又爽又色| 交换朋友夫妻互换小说| 多毛熟女@视频| 久久精品久久久久久久性| 老司机影院毛片| 99热网站在线观看| 亚洲成人手机| 99久久人妻综合| 免费观看av网站的网址| 亚洲av.av天堂| 一本久久精品| 久久久久久久亚洲中文字幕| 在线看a的网站| 大片电影免费在线观看免费| 最近2019中文字幕mv第一页| 少妇的逼水好多| 这个男人来自地球电影免费观看 | 亚洲国产最新在线播放| 精品亚洲成国产av| 这个男人来自地球电影免费观看 | 美女内射精品一级片tv| 久久鲁丝午夜福利片| 国产亚洲午夜精品一区二区久久| 国产色婷婷99| 丰满人妻一区二区三区视频av| 免费看日本二区| 亚洲精品日韩在线中文字幕| a 毛片基地| 国产精品久久久久久久电影| 一级毛片我不卡| 国产成人freesex在线| 色哟哟·www| 97在线人人人人妻| 一区在线观看完整版| 乱系列少妇在线播放| 亚洲电影在线观看av| av卡一久久| 麻豆成人av视频| 久久久精品94久久精品| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 国产一级毛片在线| 久久99精品国语久久久| 久久久久精品性色| 亚洲精品aⅴ在线观看| 日韩免费高清中文字幕av| 黄色配什么色好看| av在线播放精品| 蜜桃在线观看..| 有码 亚洲区| 亚洲第一av免费看| 日本wwww免费看| 特大巨黑吊av在线直播| av在线观看视频网站免费| 熟女人妻精品中文字幕| 午夜福利高清视频| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 能在线免费看毛片的网站| 亚洲中文av在线| 午夜免费鲁丝| 亚洲欧美日韩东京热| 偷拍熟女少妇极品色| 男女无遮挡免费网站观看| 色婷婷av一区二区三区视频| 新久久久久国产一级毛片| 黄片wwwwww| 国产无遮挡羞羞视频在线观看| 中文字幕av成人在线电影| 国产亚洲精品久久久com| 99精国产麻豆久久婷婷| 国语对白做爰xxxⅹ性视频网站| 岛国毛片在线播放| 在线观看免费高清a一片| 久久鲁丝午夜福利片| 久久人人爽av亚洲精品天堂 | 91在线精品国自产拍蜜月| 91狼人影院| 我要看日韩黄色一级片| 91狼人影院| 中国国产av一级| 赤兔流量卡办理| 色哟哟·www| 精品视频人人做人人爽| 丰满人妻一区二区三区视频av| 精品亚洲乱码少妇综合久久| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 视频区图区小说| 中文字幕亚洲精品专区| 少妇人妻 视频| 18禁动态无遮挡网站| 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| 亚洲av成人精品一二三区| 亚洲av综合色区一区| 午夜福利在线在线| 三级国产精品片| freevideosex欧美| 美女高潮的动态| 日日啪夜夜撸| 亚洲成人一二三区av| 欧美精品一区二区免费开放| 成人二区视频| 26uuu在线亚洲综合色| 中文字幕亚洲精品专区| 黄片wwwwww| 亚洲国产成人一精品久久久| 草草在线视频免费看| 亚洲av不卡在线观看| 精品久久久久久久久亚洲| 特大巨黑吊av在线直播| 美女主播在线视频| 蜜桃亚洲精品一区二区三区| 五月伊人婷婷丁香| 直男gayav资源| 久久久成人免费电影| 亚洲国产精品国产精品| 高清日韩中文字幕在线| 亚洲国产毛片av蜜桃av| 在线观看三级黄色| 一级毛片aaaaaa免费看小| 九色成人免费人妻av| 日韩视频在线欧美| 色哟哟·www| 小蜜桃在线观看免费完整版高清| 国产高清国产精品国产三级 | 亚洲色图综合在线观看| 成人亚洲精品一区在线观看 | 国产精品99久久久久久久久| 嫩草影院新地址| 黄色配什么色好看| 国模一区二区三区四区视频| 制服丝袜香蕉在线| 51国产日韩欧美| 久久精品人妻少妇| 欧美3d第一页| 日韩精品有码人妻一区| 亚洲图色成人| av又黄又爽大尺度在线免费看| 日韩视频在线欧美| 色哟哟·www| 免费看不卡的av| 麻豆国产97在线/欧美| 少妇的逼水好多| 舔av片在线| 久久久久久久久久成人| 男男h啪啪无遮挡| 大陆偷拍与自拍| 一区二区三区乱码不卡18| 插逼视频在线观看| 人妻少妇偷人精品九色| 2022亚洲国产成人精品| 天堂俺去俺来也www色官网| 深夜a级毛片| 国产精品久久久久久久久免| 亚洲伊人久久精品综合| 精品一区二区三卡| 国产高清国产精品国产三级 | 美女cb高潮喷水在线观看| 欧美日韩一区二区视频在线观看视频在线| 简卡轻食公司| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久久久免| 国产精品秋霞免费鲁丝片| 日日啪夜夜爽| 亚洲av福利一区| 成人午夜精彩视频在线观看| 日韩成人av中文字幕在线观看| 国产美女午夜福利| 日产精品乱码卡一卡2卡三| 亚洲精品中文字幕在线视频 | 国产国拍精品亚洲av在线观看| 久久婷婷青草| 一级毛片电影观看| 人人妻人人爽人人添夜夜欢视频 | 老司机影院成人| 男女啪啪激烈高潮av片| 美女高潮的动态| 99热国产这里只有精品6| 尤物成人国产欧美一区二区三区| 亚洲国产欧美在线一区| 91精品一卡2卡3卡4卡| 免费观看性生交大片5| 成人免费观看视频高清| 一本一本综合久久| 亚洲真实伦在线观看| 亚洲av不卡在线观看| 亚洲av男天堂| 亚洲av中文字字幕乱码综合| 久久青草综合色| 久久久久久久久久久免费av| 一级毛片我不卡| 国产高潮美女av| 亚洲欧美日韩另类电影网站 | 少妇熟女欧美另类| 男女下面进入的视频免费午夜| 伊人久久国产一区二区| 国产国拍精品亚洲av在线观看| 97超碰精品成人国产| 国产精品一区二区在线不卡| 看十八女毛片水多多多| 国产老妇伦熟女老妇高清| 汤姆久久久久久久影院中文字幕| 亚洲人成网站在线播| 免费不卡的大黄色大毛片视频在线观看| 精品一品国产午夜福利视频| 校园人妻丝袜中文字幕| 你懂的网址亚洲精品在线观看| 熟女人妻精品中文字幕| av国产免费在线观看| videos熟女内射| 久久久国产一区二区| 国产精品人妻久久久久久| 亚洲欧美日韩卡通动漫| 在线天堂最新版资源| 最近2019中文字幕mv第一页| 欧美bdsm另类| 久久久久久久亚洲中文字幕| 丰满迷人的少妇在线观看| 久久精品国产亚洲av涩爱| 一区二区三区免费毛片| 91午夜精品亚洲一区二区三区| 国产精品久久久久久久久免| 亚洲精品乱久久久久久| 久久亚洲国产成人精品v| 午夜福利视频精品| 成人综合一区亚洲| 久久久精品94久久精品| 女人久久www免费人成看片| 热99国产精品久久久久久7| 欧美亚洲 丝袜 人妻 在线| 中文字幕制服av| 成人国产av品久久久| 日韩 亚洲 欧美在线| 久久99蜜桃精品久久| 欧美高清性xxxxhd video| 一级片'在线观看视频| 国产成人午夜福利电影在线观看| 男男h啪啪无遮挡| 1000部很黄的大片| 香蕉精品网在线| 色吧在线观看| 亚洲无线观看免费| 一区二区三区乱码不卡18| 日韩av在线免费看完整版不卡| 国产精品久久久久久久久免| 精品午夜福利在线看| 人妻一区二区av| 天天躁日日操中文字幕| 1000部很黄的大片| 亚洲av不卡在线观看| av又黄又爽大尺度在线免费看| 日日摸夜夜添夜夜添av毛片| 亚洲高清免费不卡视频| 亚洲精品亚洲一区二区| 免费黄网站久久成人精品| 欧美精品国产亚洲| 亚洲国产日韩一区二区| 精品一区二区三区视频在线| 美女主播在线视频| 日韩电影二区| 国产免费视频播放在线视频| 成人特级av手机在线观看| 97超碰精品成人国产| 欧美成人a在线观看| 在线看a的网站| 超碰97精品在线观看| 精品一区二区免费观看| 国产精品国产av在线观看| 国产高清有码在线观看视频| 三级国产精品欧美在线观看| 99热全是精品| 亚洲综合色惰| 日韩一区二区视频免费看| 啦啦啦在线观看免费高清www| 国产精品麻豆人妻色哟哟久久| 久久影院123| 午夜免费男女啪啪视频观看| 91久久精品国产一区二区三区| 香蕉精品网在线| 婷婷色综合大香蕉| 免费人成在线观看视频色| 黄色怎么调成土黄色| 全区人妻精品视频| 免费黄色在线免费观看| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 黑丝袜美女国产一区| 亚洲精品成人av观看孕妇| 又大又黄又爽视频免费| 少妇的逼水好多| 精品久久久久久久末码| 中文字幕av成人在线电影| 高清毛片免费看| 久久久精品94久久精品| 伦理电影大哥的女人| 国产黄色视频一区二区在线观看| 一区二区av电影网| 国产成人午夜福利电影在线观看| 日韩欧美精品免费久久| 久久99蜜桃精品久久| 国产成人a区在线观看| 久久青草综合色| 91久久精品电影网| 极品教师在线视频| 国产男人的电影天堂91| 国产在线视频一区二区| 国产人妻一区二区三区在| 亚洲欧美成人综合另类久久久| 久久毛片免费看一区二区三区| videossex国产| 自拍偷自拍亚洲精品老妇| 中文在线观看免费www的网站| 国产精品女同一区二区软件| 大话2 男鬼变身卡| 女的被弄到高潮叫床怎么办| 免费av中文字幕在线| 99精国产麻豆久久婷婷| 国产无遮挡羞羞视频在线观看| 日韩三级伦理在线观看| 岛国毛片在线播放| 少妇人妻精品综合一区二区| 十分钟在线观看高清视频www | h视频一区二区三区| 卡戴珊不雅视频在线播放| 亚洲av国产av综合av卡| 免费黄频网站在线观看国产| 久久青草综合色| 中文字幕av成人在线电影| 极品少妇高潮喷水抽搐| 欧美一区二区亚洲| 永久网站在线| 蜜桃亚洲精品一区二区三区| 国国产精品蜜臀av免费| 精品国产露脸久久av麻豆| 色视频www国产| 久久久国产一区二区| 夫妻性生交免费视频一级片| 麻豆乱淫一区二区| 在线观看三级黄色| 一个人看的www免费观看视频| 在线免费观看不下载黄p国产| 各种免费的搞黄视频| 国产成人精品福利久久| 免费在线观看成人毛片| 丰满人妻一区二区三区视频av| 亚洲国产日韩一区二区| 免费黄色在线免费观看| 日韩三级伦理在线观看| 女人久久www免费人成看片| 麻豆精品久久久久久蜜桃| 欧美精品国产亚洲| av天堂中文字幕网| 麻豆精品久久久久久蜜桃| 又粗又硬又长又爽又黄的视频| 国产一区二区三区综合在线观看 | 亚洲欧美日韩无卡精品| 久久这里有精品视频免费|