• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電子碰撞激發(fā)氫原子和氦離子散射微分截面的計(jì)算

    2015-03-23 01:51:01賴(lài)卓勁陳德鋒潘霖慶蔣曉涵徐永亮陳長(zhǎng)進(jìn)
    關(guān)鍵詞:汕頭大學(xué)氫原子微分

    賴(lài)卓勁,陳德鋒,潘霖慶,蔣曉涵,徐永亮,陳長(zhǎng)進(jìn)

    (汕頭大學(xué)理學(xué)院,汕頭 515063)

    電子碰撞激發(fā)氫原子和氦離子散射微分截面的計(jì)算

    賴(lài)卓勁,陳德鋒,潘霖慶,蔣曉涵,徐永亮,陳長(zhǎng)進(jìn)

    (汕頭大學(xué)理學(xué)院,汕頭 515063)

    本文詳細(xì)介紹計(jì)算電子碰撞激發(fā)散射截面的扭曲波玻恩近似(DWBA)理論模型,并對(duì)低能DWBA模型進(jìn)行修正.利用修正的DWBA模型計(jì)算了電子碰撞激發(fā)氫原子和氦離子1s-2s 和1s-2p的散射微分截面.將關(guān)于氫原子由基態(tài)到n=2態(tài)的電子碰撞激發(fā)散射微分截面與絕對(duì)實(shí)驗(yàn)測(cè)量數(shù)據(jù)比較,發(fā)現(xiàn)二者符合得很好,這驗(yàn)證了我們對(duì)DWBA修正的正確性.本文工作為擬合強(qiáng)場(chǎng)誘導(dǎo)的氦原子非序列雙電離關(guān)聯(lián)電子動(dòng)量譜提供了有效的理論方法.

    電子碰撞激發(fā); 散射微分截面; 扭曲波玻恩近似

    1 Introduction

    The process of electron impact excitation of atoms and ions is one of the most basic and important processes in atomic physics. Theoretical investigations of such problems are of not only practical interest but also more fundamental interest. Numerous theoretical methods have been proposed for calculations of differential cross sections (DCSs) for electron impact excitation, including the distorted wave Born approximation (DWBA)[1,2], the second-order distorted wave model[3], the convergent close-coupling (CCC) calculations[4], and theR-matrix method[5], among which the DWBA is the simplest. The sophisticated theoretical models, such as the CCC and theR-matrix method, are supposed to be able to reproduce accurate DCS in angular distribution and absolute magnitude as well at low incident energies. On the other hand, for high energies, both the total cross sections (TCSs) and the DCSs predicted by DWBA are in fairly good agreement with the absolute measurements. However, it has been well recognized that, at low energies, the TCS predicted by the DWBA substantially overestimates the experimental values. "Ideally, one could use theR-matrix approach for low energies, the DWBA for high energies, and the two theories would yield the same results for intermediate energies. Unfortunately, we do not live in an ideal world."[6]

    The purpose of this work is to calibrate the DWBA for electron impact excitation of H and He+at low energies by employing the empirical formula proposed by Tongetal.[7]. This calibration procedure has been previously applied to correct the overestimate of DWBA on the DCS for electron impact excitation of Ne and Ar[8].

    Our ultimate objective is to apply the calibrated DWBA to simulate the correlated momentum distributions in nonsequential double ionization (NSDI) of He in strong laser fields[9,10].

    The process of NSDI is one of the laser-induced rescattering processes, which still remains one of the most interesting and challenging topics in strong field physics. Both electron impact ionization and electron impact excitation of ions could be involved in NSDI. In the last two decades a lot of experimental measurements have been performed, particularly noteworthy are the correlated momentum distributions of the two outgoing electrons which were measured at the turn of this century[11]. In the meantime, a number of theoretical efforts have been devoted to this problem as well. In one of the theoretical models, which was developed by Chenetal.[12,13], the correlated two-electron momentum spectra can be treated as a product of the wave packet for laser-induced returning electrons and the differential cross sections for the laser-free electron impact excitation and/or ionization of the parent ion. In the practical simulations of the correlated electron momentum distributions for NSDI, one needs to evaluate the DCS for electron impact excitation of the parent ion to all possible excited states at all incident energies from threshold to the maximum returning electron energy which is usually less than 200 eV. Due to the heavy computational demand, relatively simple and efficient theoretical approaches are highly desired. Since the shape of the DCS predicted by DWBA is typically in fairly good agreement with the experimental measurements, once the overestimate of DWBA on the DCS is corrected, the calibrated DWBA can serve as a good candidate for such required theoretical tools.

    The organization of this paper is as follows: In section 2, the theory of DWBA for electron impact excitation is presented in detail and the method to calibrate DWBA is proposed. In section 3, the normalization factors for DWBA at incident energies below 1000 eV are given for electron impact excitation of H and He+from 1s to 2s and 2p, and the calibrated DCSs of DWBA for H at 50 eV and 100 eV are compared with the experimental measurements. Furthermore, some calibrated DCSs of DWBA for H and He+at four different incident energies below 100 eV are analyzed. And finally some conclusions are drawn in section 4.

    Atomic units are used in this paper unless otherwise specified.

    2 Theory

    In this section, we present the general form for DWBA theory in detail on electron impact excitation of atoms which can be easily applied to electron impact excitation of ions. A method used to calibrate the DWBA at energies below 1000 eV is also given.

    2.1 Basic equations

    The problem to be considered here is inelastic electron-atom (e-A) scattering. The Hamiltonian for such a process is given by

    (1)

    wherer1andr2are the position vectors for the projectile and the bound state electron with respect to the nucleus, respectively. In Eq. (1),VA+is the effective potential based on single active electron approximation, which takes the form as

    (2)

    where the parametersai, as given explicitly in Table 1 in Tong and Lin[14], were obtained by fitting the calculated binding energies of the ground state and the first few excited states of the target atom using this potential to the experimental data. Both the exact initial state wave functionΨi(r1,r2) and the final state wave functionΨf(r1,r2) of the system satisfy the Schr?dinger equation

    HΨj(r1,r2)=EΨj(r1,r2) (j=i,f),

    (3)

    whereEis the total energy.

    Since Eq. (3) cannot be solved analytically, one has to employ approximate Hamiltonians, which can be expressed as

    +VA+(r2) (j=i,f),

    (4)

    whereUi(Uf) is the distorting potential used to calculate the wave functionχki(χkf) for the projectile in the incident (exit) channel with momentum ki(kf). With this approximation, the initial (final) state wave function can be expressed as a product of the initial (final) state wave function for the projectile and the wave function for the bound electron in the ground (excited) state.

    The initial and final state wave functions for the projectile satisfy the differential equation

    (5)

    and the bound state wave functions are eigenfunctions of the equation

    (6)

    whereεj(j=i,f) are the corresponding eigenenergies of the initial and final states. Due to energy conservation,

    εf.

    (7)

    In the distorted wave Born approximation, the direct transition amplitude for excitation from an initial stateΦito a final stateΦfis given by

    (8)

    whereViis the perturbation interaction,

    (9)

    And the exchange scattering amplitude is given by

    (10)

    2.2 Partial wave expansions

    To evaluate the scattering amplitude, we perform standard partial wave expansions. The distorted wave for the incident electron with outgoing (+) boundary condition is expanded as

    (11)

    (12)

    In this work, all continuum waves are normalized toδ(k-k′). For a plane wave, the radial componentχl(k,r)/krin Eqs. (11) and (12) is a standard spherical Bessel functionjl(kr) .

    The initial and final bound states can be expressed as

    , f ).

    (13)

    Inthescatteringamplitude(8),theperturbationpotentialisthelastremainingquantitywhichneedstobeexpanded.Thefirsttermintheperturbationpotential(9)canbeexpandedas

    (14)

    (15)

    Theexpansions(14)and(15)thenyield

    (16)

    wheretheradialfactorAlT(r1,r2) is given by

    (17)

    2.3Calculationofthedifferentialcrosssections

    Thedifferentialcrosssectionforelectronimpactexcitationofatomsisgivenby

    (18)

    wheretheprefactorNdenotes the number of electrons in the subshell from which one electron is excited.

    With the expansions given in the above subsection, the direct scattering amplitude is given by

    ×

    AlT(r1,r2)φNiLi(r2)χli(ki,r1)×F1F2

    (19)

    whereF1andF2are given by

    (20)

    and

    (21)

    ToperformtheintegralsoverpolaranglesinEqs. (20)and(21),wehaveusedtherelations

    (22)

    and

    (23)

    whereC(l1l2l3;m1m2m3) is a Clebsch-Gordan coefficient.

    The product ofF1andF2can be further simplified as

    ;000)C(lTLiLf;000)×

    C(lfgLf;μfμgMf),

    (24)

    whereW(l1l2l3l4;l5l6) is a Racah coefficient, and we have used

    C(l1l2l3;m1m2m3)C(l3l4l5;m3m4m5)=

    C(l1gl5;m1μgm5).

    (25)

    Furthermore,byusing

    C(l1l2l3;m1m2m3)=

    (26)

    wecanrewriteC(lfgLf;μfμgMf) in Eq. (24) as

    C(lfLfg;μf,-Mf,-μg).

    (27)

    Consequently,

    ;000)C(lTLiLf;000)

    ×C(lfLfg;μf,-Mf,μf-Mf)δμi+Mi,Mf-μf.

    (28)

    SubstitutingEq. (28)intoEq. (19),wefinallyobtain

    ;μi,Mi,μi+

    Mi)×C(lfLfg;μf,-Mf,μf-Mf)C(lflilT;000)

    AlT(r1,r2)φNiLi(r2)χli(ki,r1).

    (29)

    Similarly,theexchangescatteringamplitudeisgivenby

    C(liLig;μi,Mi,μi+Mi)×C(Lflfg;-Mf,-μf,-Mf-μf)C(LflilT;000)C(lTLilf;000)×W(LflilfLi;lTg)

    χlf(kf,r2)AlT(r1,r2)φNiLi(r2)χli(ki,r1).

    (30)

    2.4Distortingpotentials

    IntheDWBAmodel,thedistortingpotentialsUiandUfwhich are used in Eq. (5) to evaluate the wave functions for the projectile in the initial and final states respectively play an important role in the numerical calculations, since the calculated DCSs are sensitive to the distorted wave functions describing the projectile. Unfortunately, neitherUinorUfis determined directly by the formalism. Here, we use static potentials which take the form as

    (31)

    Asshownpreviously,VA+(r) in Eq. (31) is the atomic potential used to evaluate eigenstate wave functionsΦiandΦffor the bound electron in the initial and final states, respectively. Obviously, the distorting potentials given by Eq.(31) for electron impact excitation of atoms are neutral asymptotically.

    2.5 Calibration of DWBA

    To evaluate the total cross sections for electron impact excitation, Tongetal.[7]employed an empirical formula

    (32)

    where

    (33)

    with △Eis the excitation energy for a given transition andεis the eigenenergy of the corresponding excited state in atomic hydrogen. The parametersβ,γandδin Eq. (33) have been obtained initially by fitting the TCS to the convergent-close coupling (CCC) results for hydrogen from 1s to 2p and further tested fore+He+(1s) →e+He+(2p). However, it has been found that, with the parameters given in Ref. [7], the formula Eq. (32) fails to predict the correct values of the TCS for excitation of other atoms and ions. Even for H and He+, the TCS for excitation to other excited states reproduced by Eq. (32) are much higher than the CCC data and the shape of the TCS as a function of incident energy does not agree with the CCC very well, either.

    To adjust the overall difference in magnitude, we introduce a prefactor to modify the empirical formula, which is given by

    (34)

    Itshouldbenotedthat,inEq. (34),εdenotes the eigenenergy of the corresponding excited state in target atoms or ions. In the present work, we apply the same fitting procedure as in Ref. [7] to obtain the parameters. For excitations of H and He+from 1s to 2s, the parameters we obtained areβ= 0.7638,γ= 1.1759, andδ= 0.6706, which are different from those in Ref. [7]. It has been found that with this set of parameters, the TCS reproduced by Eq. (34) are in better agreement with CCC in shape. These parameters are further tested by comparing the predicted excitation cross section with CCC for excitations of H and He+from 1s to 3s and 4s. For excitations of H and He+from 1s tonp (n=2, 3 and 4), the parameters areβ= 1.32,γ= -1.08, andδ= -0.04. The prefactor α is then determined by matching the TCS from Eq. (34) with the CCC data at high energies.

    It should also be noted that the TCS of CCC are not available for most atoms or ions. Hence, the applicability of the above fitting procedure to excitation of other atoms and ions is quite limited. Fortunately, both the DCS and the TCS of DWBA are reliable at high energies. Therefore, the prefactorαcan be obtained by matching the TCS from Eq. (34) with the DWBA results at high energies, say 1000 eV, provided that the parametersβ,γand δ remain the same for all target atoms and ions.

    (35)

    TocalibratetheDWBAatlowenergies,wedefineanormalizationfactor

    C(Ei)=σM-Tong(Ei)/σDWBA(Ei).

    (36)

    BymultiplyingtheDCSofDWBAbythenormalizationfactorateachincidentenergy,oneobtainsthecalibratedDWBAas

    .

    (37)

    3 Results and discussion

    ToobtainthenormalizationfactorstocalibratetheDCSofDWBA,wecalculatetheTCSfromtheempiricalformulaofEq. (34)andtheTCSofDWBA.TheresultsareshowninFigs. 1and2forexcitationsofHandHe+,respectively.ThecorrespondingCCCresults[15]arealsoplottedforcomparison.ItcanbeseenthattheCCCdataforexcitationfrom1sto2sarereproducedverywellforbothHandHe+whileforexcitationfrom1sto2pslightdifferencesexist.Whereas,theagreementbetweentheTCSofTongandCCCcanbeimprovediftheTCSofTongat1000eVisfittedtoCCCratherthanDWBA.ThereasonthatwefittheTCSofTongat1000eVtoDWBAinsteadofCCCisthatDWBAresultsarealwaysavailable.

    Fig.1 TCSs (left vertical axis) and normalization factors of DWBA (right vertical axis) for excitation of H from (a) 1s to 2s and (b) 1s to 2p at incident energies from the excitation energy of 10.2 eV to 1000 eV. Dotted curve, total cross sections of DWBA; Solid curve, total cross sections calculated using the empirical formula Eq. (34); Chain curve, normalization factor given by Tong/DWBA; Solid circles, CCC data[15]

    Fig.2 TCSs (left vertical axis) and normalization factors of DWBA (right vertical axis) for excitation of He+ from (a) 1s to 2s and (b) 1s to 2p at incident energies from the excitation energy of 40.8 eV to 1000 eV. Dotted curve, total cross sections of DWBA; Solid curve, total cross sections calculated using the empirical formula of Eq. (34); Chain curve, normalization factor given by Tong/DWBA; Solid circles, CCC data[15]

    TheabsoluteexperimentalmeasurementsofKhakooet al.[16]forelectronimpactexcitationofthe12S → 22S + 22PlevelsofHatincidentenergiesof50and100eVprovidetheexcellentpossibilityofastringenttestforthepresentcalibrationprocedure.ItisillustratedinFig. 3thatthecalibratedDWBADCSsfollowtheexperimentaldataverywelloverthewholeangularregionforbothincidentenergies.Toseethecontributionsfromtheexcitationsof12S → 22Sand12S → 22Pseparately,thecorrespondingtheoreticalDCSsofthecalibratedDWBAarealsoplottedinFig. 3forcomparison.Onecanseethattheexcitationof1sto2pdominatestheforwardscatteringforangularregionfrom0oto45oat50eVand0oto30oat100eV.Ontheotherhand,theexcitationof1sto2scannotbeneglectedintheregionoflargerscatteringangles.

    Fig.3 Comparison of the DCSs of the calibrated DWBA with experimental measurements of Khakoo et al.[16] for excitation of H from ground state to n=2 state at incident energies of (a) 50 eV and (b) 100 eV

    InFig. 4weshowtheDCSsofDWBAweightedbythenormalizationfactorsforexcitationsofHfrom1sto2sand1sto2patincidentenergiesof15, 25, 50and100eV,respectively.TheslopesofDCSsforbothexcitationsof1sto2sand1sto2pchangemorerapidlyatlargerscatteringanglesasincidentenergydecreases.Inadditiontotheslopechange,extraminimaarereproducedbytheDWBAaround70oforexcitationof1sto2pand100ofor1sto2pat15eV.

    Fig.4 Calibrated DCSs of DWBA for excitation of H from (a) 1s to 2s and (b) 1s to 2p at incident energies of 15, 25, 50, and 100 eV, respectively

    Fig. 5showsthesimilarresultsforexcitationsofHe+atenergiesbelow100eV.ComparedtotheexcitationofH,enhancedbackwardscatteringDCSsarepredictedbytheDWBAduetolargerCoulombattractiontothescatteredelectronsincelargeanglescatteringtakesplacewhentheprojectileisclosertothenuclearofHesuchthatitseesmorechargethanthenuclearchargeofH.Asaresult,aminimumappearsintheDCSsforbothexcitationof1sto2sand1sto2pat45and60eV.BothofthedepthsandpositionsoftheminimuminDCSshavesignificantphysicalimportancesincetheyreflectthestructureinformationofthetargets.Inaddition,withtheincreaseofincidentenergy,theangleatwhichtheslopechangesdoesnotmoveasmuchasthatforH,whichevenalmostremainsfixedat110ofortheexcitationofHe+from1sto2p,asshowninFig. 5(b).

    Fig.5 Calibrated DCSs of DWBA for excitation of He+ from (a) 1s to 2s and (b) 1s to 2p at incident energies of 45, 60, 80, and 100 eV, respectively

    4 Conclusions

    WepresentamethodtocorrecttheoverestimateofDWBAontheTCSsforelectronimpactexcitationofHandHe+.ThepurposeofthisworkistoapplythecalibratedDWBAtosimulatethecorrelatedmomentumdistributionsforlaser-inducednonsequentialdoubleionizationofHe.Thecalibrationmethodisbasedontwoassumptions: (1)therelativeangulardistributionsoftheDCSspredictedbytheDWBAatlowincidentenergiesarefairlyaccurate,and(2)theTCSsreproducedbytheDWBAathighincidentenergiesarereliable.ThevalidityofthecalibrationmethodisconfirmedbytheagreementbetweentheDCSsobtainedbythecalibratedDWBAandtheabsoluteexperimentalmeasurementsforexcitationsofHfromthegroundstateton=2state.ThecalculatedDCSswiththecalibratedDWBAforexcitationsofHandHe+from1sto2sand1sto2pbelow100eVarealsopresentedandthestructureoftheDCSsisanalyzed.

    [1] Madison D H, Shelton W N. Distorted-wave approximation and its application to the differential and integrated cross sections for electron-mpact excitation of the 21P state of Helium [J].Phys.Rev. A, 1973, 7: 499.

    [2] Bartschat K, Madison D H. Electron impact excitation of rare gases: differential cross sections and angular correlation parameters for neon, argon, krypton and xenon [J].J.Phys. B, 1987, 20: 5839.

    [3] Madison D H, Winters K H. A second-order distorted-wave model for the excitation of the 21P state of helium by electron and positron impact [J].J.Phys. B, 1983, 16: 4437.

    [4] Zeman V, Bartschat K. Electron-impact excitation of the (2p53s) and (2p53p) states of neon [J].J.Phys. B, 1997, 30: 4609.

    [5] Bray I, Stelbovics A T. Convergent close-coupling calculations of electron-hydrogen scattering [J].Phys.Rev. A, 1992, 46: 6995.

    [6] Khakoo M A, Wrkich J, Larsen M,etal. Differential cross sections and cross-section ratios for the electron-impact excitation of the neon 2p53s configuration [J].Phys.Rev. A, 2002, 65: 062711.

    [7] Tong X M, Zhao Z X, Lin C D. Correlation dynamics between electrons and ions in the fragmentation of D2 molecules by short laser pulses [J].Phys.Rev. A, 2003, 68: 043412.

    [8] Liang Y Q, Chen Z G, Madison D H,etal. Calibration of distorted wave Born approximation for electron impact excitation of Ne and Ar at incident energies below 100 eV [J].J.Phys. B, 2011, 44: 085201.

    [9] Staudte A, Ruiz C, Schoffler M,etal. Binary and recoil collisions in strong field double ionization of helium [J].Phys.Rev.Lett., 2007, 99: 263002.

    [10] Rudenko A, Jesus V L B de, Ergler Th,etal. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm [J].Phys.Rev.Lett., 2007, 99: 263003.

    [11] Weber Th, Giessen H, Weckenbrock M,etal. Correlated electron emission in multiphoton double ionization [J].Nature, 2000, 405: 658.

    [12] Chen Z J, Liang Y Q, Lin C D. Quantum theory of recollisional (e, 2e) process in strong field nonsequential double ionization of helium [J].Phys.Rev.Lett., 2010, 104: 253201.

    [13] Chen Z J, Liang Y Q, Lin C D. Quantitative rescattering theory of correlated two-electron momentum spectra for strong-field nonsequential double ionization of helium [J].Phys.Rev. A, 2010, 82: 063417.

    [14] Tong X M, Lin C D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime [J].J.Phys. B, 2005, 38: 2593.

    [15] See Bray I, CCC-database, http://atom.curtin.edu.au/CCC-WWW/index.html.

    [16] Khakoo M A, Larsen M, Paolini B,etal. Absolute differential cross sections for the electron impact excitation of the 12S→22S+22Plevels of atomic hydrogen at 50 and 100 eV [J].Phys.Rev.Lett., 1999, 82: 3980.

    Calculation of differential cross sections for electron impact excitation of H and He+

    LAI Zhuo-Jin, CHEN De-Feng, PAN Lin-Qing, JIANG Xiao-Han, XU Yong-Liang, CHEN Zhang-Jin

    (College of Science, Shantou University, Shantou 515063, China)

    We present the distorted wave Born approximation (DWBA) for electron impact excitation and a method to calibrate the DWBA. With the calibrated DWBA, the differential cross sections (DCSs) for excitation of H and He+from 1s to 2s and 2p are calculated and the results are compared with the absolute experimental measurements for H at incident energies of 50 eV and 100 eV. It has been found that the theoretical results are in very good agreement with experiment, which confirms the validity of the calibration procedure. This work prepares an efficient theoretical method for numerical simulations of non-sequential double ionization of He in strong laser pulse in which laser-induced electron impact excitation of He+is involved.

    Electron impact excitation; Distorted wave Born approximation; Differential cross sections

    2014-2-4

    國(guó)家自然科學(xué)基金(11274219);廣東省高等學(xué)校人才引進(jìn)項(xiàng)目;教育部留學(xué)回國(guó)人員啟動(dòng)基金項(xiàng)目;汕頭大學(xué)科研啟動(dòng)經(jīng)費(fèi)項(xiàng)目

    賴(lài)卓勁 (1992—),男,廣東人,主要從事原子與分子物理研究.

    陳長(zhǎng)進(jìn). E-mail: chenzj@stu.edu.cn

    103969/j.issn.1000-0364.2015.08.013

    O562.5

    A

    1000-0364(2015)08-0603-08

    猜你喜歡
    汕頭大學(xué)氫原子微分
    擬微分算子在Hp(ω)上的有界性
    一維模型氫原子在啁啾激光場(chǎng)中的閾上電離
    《汕頭大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    汕頭大學(xué)14項(xiàng)教學(xué)案例獲評(píng)省級(jí)在線(xiàn)教學(xué)優(yōu)秀案例
    汕頭大學(xué)7個(gè)專(zhuān)業(yè)入選國(guó)家級(jí)一流本科專(zhuān)業(yè)建設(shè)點(diǎn)
    上下解反向的脈沖微分包含解的存在性
    《汕頭大學(xué)學(xué)報(bào)》投稿須知
    關(guān)于氫原子躍遷問(wèn)題的難點(diǎn)突破
    借助微分探求連續(xù)函數(shù)的極值點(diǎn)
    對(duì)氫原子能量吸收的再認(rèn)識(shí)お
    精品少妇久久久久久888优播| 男女免费视频国产| 老女人水多毛片| 水蜜桃什么品种好| 精品国产国语对白av| 2018国产大陆天天弄谢| 成人手机av| 亚洲av中文av极速乱| 热99久久久久精品小说推荐| 久久人人爽人人片av| 免费大片18禁| 国产伦精品一区二区三区视频9| 欧美日韩成人在线一区二区| 狠狠婷婷综合久久久久久88av| 欧美激情国产日韩精品一区| 亚洲不卡免费看| 免费黄网站久久成人精品| 自线自在国产av| 午夜福利视频在线观看免费| 婷婷成人精品国产| 日本猛色少妇xxxxx猛交久久| av一本久久久久| 亚洲精品av麻豆狂野| 肉色欧美久久久久久久蜜桃| 涩涩av久久男人的天堂| 性色av一级| 简卡轻食公司| 久久久久网色| 欧美日韩av久久| 另类精品久久| 午夜影院在线不卡| 免费高清在线观看视频在线观看| 视频区图区小说| 精品久久蜜臀av无| 色婷婷av一区二区三区视频| 亚洲精品,欧美精品| 另类亚洲欧美激情| 日韩电影二区| 欧美成人午夜免费资源| 中文字幕制服av| 嘟嘟电影网在线观看| 飞空精品影院首页| 水蜜桃什么品种好| 在线 av 中文字幕| 亚洲婷婷狠狠爱综合网| 最近中文字幕高清免费大全6| 多毛熟女@视频| 日韩制服骚丝袜av| 街头女战士在线观看网站| 国产av码专区亚洲av| 国产不卡av网站在线观看| 自线自在国产av| 中文字幕亚洲精品专区| 飞空精品影院首页| 18禁观看日本| 欧美丝袜亚洲另类| 久久久久精品性色| 一本久久精品| 久久 成人 亚洲| av国产久精品久网站免费入址| 高清欧美精品videossex| 少妇猛男粗大的猛烈进出视频| 丰满迷人的少妇在线观看| 国产成人精品婷婷| 人人妻人人澡人人看| 街头女战士在线观看网站| 伊人亚洲综合成人网| 欧美精品人与动牲交sv欧美| 91国产中文字幕| 久久99精品国语久久久| 大香蕉久久成人网| 最新中文字幕久久久久| 色婷婷av一区二区三区视频| 五月玫瑰六月丁香| 少妇人妻 视频| 天天操日日干夜夜撸| 成人亚洲欧美一区二区av| 亚洲,欧美,日韩| 久久亚洲国产成人精品v| 久久久久久久亚洲中文字幕| 中文字幕人妻熟人妻熟丝袜美| 亚洲美女搞黄在线观看| 在线观看人妻少妇| h视频一区二区三区| 少妇的逼水好多| 国产成人一区二区在线| kizo精华| 欧美变态另类bdsm刘玥| 99久久人妻综合| 国产视频内射| 精品99又大又爽又粗少妇毛片| videos熟女内射| 亚洲三级黄色毛片| 欧美 日韩 精品 国产| 日本欧美视频一区| kizo精华| 在线天堂最新版资源| 国产精品无大码| 国产国拍精品亚洲av在线观看| 搡老乐熟女国产| 亚洲精品色激情综合| 国产精品秋霞免费鲁丝片| 国产亚洲午夜精品一区二区久久| 国产国语露脸激情在线看| 国产精品偷伦视频观看了| 亚洲欧美精品自产自拍| 91午夜精品亚洲一区二区三区| 99精国产麻豆久久婷婷| 国产在线视频一区二区| 免费看不卡的av| 在线精品无人区一区二区三| 国产又色又爽无遮挡免| 男人添女人高潮全过程视频| 涩涩av久久男人的天堂| 精品亚洲成国产av| 国产成人精品一,二区| 久久久久久久大尺度免费视频| 亚洲欧美日韩另类电影网站| 免费黄色在线免费观看| 丝袜脚勾引网站| videossex国产| 91精品国产国语对白视频| 一二三四中文在线观看免费高清| 国产视频首页在线观看| 一级毛片 在线播放| 国产极品粉嫩免费观看在线 | 欧美日韩视频精品一区| 亚洲丝袜综合中文字幕| 中文字幕亚洲精品专区| 国产69精品久久久久777片| 少妇 在线观看| av在线老鸭窝| 久久精品国产亚洲av涩爱| 国产片特级美女逼逼视频| 毛片一级片免费看久久久久| 国产片特级美女逼逼视频| 啦啦啦啦在线视频资源| 水蜜桃什么品种好| av福利片在线| 精品国产乱码久久久久久小说| 汤姆久久久久久久影院中文字幕| 亚洲av成人精品一二三区| 免费久久久久久久精品成人欧美视频 | 美女国产视频在线观看| 亚洲欧洲日产国产| 国产高清有码在线观看视频| 亚洲av电影在线观看一区二区三区| 日韩强制内射视频| 成人漫画全彩无遮挡| 黄色怎么调成土黄色| 亚洲国产最新在线播放| videossex国产| 18禁在线无遮挡免费观看视频| xxxhd国产人妻xxx| 亚洲综合精品二区| 久久午夜福利片| 久久国产亚洲av麻豆专区| 午夜福利视频精品| 日日撸夜夜添| 夫妻午夜视频| 国产成人精品婷婷| 又粗又硬又长又爽又黄的视频| 亚洲av.av天堂| 亚洲av男天堂| 欧美少妇被猛烈插入视频| 欧美精品国产亚洲| 中文字幕最新亚洲高清| 欧美日韩国产mv在线观看视频| a级毛片黄视频| 欧美xxxx性猛交bbbb| 韩国av在线不卡| 一边摸一边做爽爽视频免费| 国产亚洲av片在线观看秒播厂| 精品人妻在线不人妻| 亚洲国产精品999| 夫妻性生交免费视频一级片| 精品熟女少妇av免费看| 人妻夜夜爽99麻豆av| 边亲边吃奶的免费视频| 久久精品久久久久久噜噜老黄| 中文精品一卡2卡3卡4更新| 黄片播放在线免费| 好男人视频免费观看在线| 国产乱来视频区| 中文字幕亚洲精品专区| 高清毛片免费看| 人妻 亚洲 视频| 最近中文字幕2019免费版| 少妇丰满av| 青春草亚洲视频在线观看| 男人爽女人下面视频在线观看| 亚洲欧美清纯卡通| 欧美xxxx性猛交bbbb| 国产在线一区二区三区精| 国产午夜精品一二区理论片| 国产免费现黄频在线看| 国产精品偷伦视频观看了| 亚洲综合色网址| 国产黄片视频在线免费观看| 国产成人a∨麻豆精品| 亚洲成人手机| 国产在视频线精品| 亚洲欧美一区二区三区国产| 欧美日韩亚洲高清精品| 亚洲av成人精品一区久久| 亚洲精品一区蜜桃| 国产淫语在线视频| kizo精华| 成年人免费黄色播放视频| 免费观看在线日韩| 99视频精品全部免费 在线| 日韩一本色道免费dvd| 午夜av观看不卡| 成人国语在线视频| 一级毛片电影观看| 成人漫画全彩无遮挡| 中文字幕av电影在线播放| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 男的添女的下面高潮视频| 亚洲伊人久久精品综合| 精品久久蜜臀av无| 亚洲国产精品一区三区| 高清欧美精品videossex| 亚洲欧美日韩另类电影网站| 性色av一级| 久久久a久久爽久久v久久| 18+在线观看网站| 久久av网站| 亚洲精品美女久久av网站| 欧美精品人与动牲交sv欧美| 人妻夜夜爽99麻豆av| 中文欧美无线码| 成人国产av品久久久| 久久久精品区二区三区| 乱码一卡2卡4卡精品| 国产精品99久久久久久久久| freevideosex欧美| 国产精品一国产av| 人人妻人人澡人人看| 亚洲av福利一区| 一本久久精品| 少妇 在线观看| 午夜影院在线不卡| 午夜福利,免费看| 最近中文字幕2019免费版| 精品国产一区二区三区久久久樱花| 天堂中文最新版在线下载| 成人国产麻豆网| 国产高清国产精品国产三级| 国产精品久久久久成人av| 欧美 日韩 精品 国产| 久久这里有精品视频免费| 夫妻性生交免费视频一级片| 欧美亚洲 丝袜 人妻 在线| 高清av免费在线| 插阴视频在线观看视频| 久久精品久久久久久久性| 成人综合一区亚洲| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 黑人高潮一二区| 亚洲精品av麻豆狂野| 国产成人aa在线观看| 日本欧美视频一区| 女人久久www免费人成看片| 亚洲精品乱码久久久久久按摩| 亚洲综合色网址| 老司机亚洲免费影院| 国产不卡av网站在线观看| 精品视频人人做人人爽| 亚洲成色77777| 亚洲天堂av无毛| 国产亚洲午夜精品一区二区久久| 午夜老司机福利剧场| 在线亚洲精品国产二区图片欧美 | freevideosex欧美| 99热网站在线观看| 久久97久久精品| 999精品在线视频| 国产午夜精品一二区理论片| 天堂中文最新版在线下载| 亚洲av.av天堂| 国产免费视频播放在线视频| 亚洲精品第二区| 大又大粗又爽又黄少妇毛片口| 成年美女黄网站色视频大全免费 | 国产精品国产三级国产专区5o| 日韩视频在线欧美| 欧美日韩综合久久久久久| 亚洲美女视频黄频| 国产精品熟女久久久久浪| 国产精品久久久久久精品古装| 国产成人午夜福利电影在线观看| 99国产综合亚洲精品| 91aial.com中文字幕在线观看| 国国产精品蜜臀av免费| 日本av手机在线免费观看| 少妇人妻精品综合一区二区| 午夜免费观看性视频| 久久免费观看电影| 制服人妻中文乱码| 亚洲成人一二三区av| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| 国产成人91sexporn| 成人18禁高潮啪啪吃奶动态图 | 性色av一级| 国产伦理片在线播放av一区| 男女啪啪激烈高潮av片| 亚洲欧洲日产国产| 欧美精品亚洲一区二区| 久久精品熟女亚洲av麻豆精品| 久久久久国产网址| 久久久亚洲精品成人影院| 一级毛片 在线播放| 国语对白做爰xxxⅹ性视频网站| 最近的中文字幕免费完整| 一个人免费看片子| 久久女婷五月综合色啪小说| 色婷婷av一区二区三区视频| 国产精品熟女久久久久浪| 精品久久久噜噜| 亚洲av日韩在线播放| 97超视频在线观看视频| 欧美精品国产亚洲| 久久青草综合色| 欧美3d第一页| 伦精品一区二区三区| 午夜日本视频在线| 久久久久人妻精品一区果冻| 天堂俺去俺来也www色官网| 两个人免费观看高清视频| 18在线观看网站| 欧美国产精品一级二级三级| 亚洲欧美一区二区三区国产| av专区在线播放| 天天操日日干夜夜撸| 久久影院123| 建设人人有责人人尽责人人享有的| 亚洲精品久久成人aⅴ小说 | 成人国产麻豆网| 黄色一级大片看看| 国产欧美日韩综合在线一区二区| 91久久精品国产一区二区成人| 国产乱人偷精品视频| 最近中文字幕2019免费版| 免费久久久久久久精品成人欧美视频 | 国产精品一区二区三区四区免费观看| 22中文网久久字幕| 国产精品人妻久久久影院| 综合色丁香网| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 人妻少妇偷人精品九色| 99久久精品一区二区三区| 欧美日韩成人在线一区二区| 国产成人av激情在线播放 | 国产一区有黄有色的免费视频| 三级国产精品欧美在线观看| 一级毛片电影观看| 晚上一个人看的免费电影| 欧美日本中文国产一区发布| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 国产精品一二三区在线看| 免费看光身美女| 日韩制服骚丝袜av| 国内精品宾馆在线| 一级毛片aaaaaa免费看小| 少妇被粗大猛烈的视频| 下体分泌物呈黄色| 久久鲁丝午夜福利片| 少妇的逼好多水| 亚洲人成网站在线播| 最新的欧美精品一区二区| 欧美日韩视频高清一区二区三区二| 国产黄色视频一区二区在线观看| 亚洲在久久综合| av免费在线看不卡| 黄色怎么调成土黄色| 99热这里只有是精品在线观看| 蜜桃久久精品国产亚洲av| 久久鲁丝午夜福利片| 精品国产一区二区久久| 国语对白做爰xxxⅹ性视频网站| 一级爰片在线观看| 汤姆久久久久久久影院中文字幕| 观看美女的网站| 精品亚洲乱码少妇综合久久| 一级毛片黄色毛片免费观看视频| 一级a做视频免费观看| 一级黄片播放器| 国产成人freesex在线| 国产成人免费观看mmmm| 亚洲人与动物交配视频| 在线精品无人区一区二区三| 少妇人妻 视频| 春色校园在线视频观看| 日韩在线高清观看一区二区三区| 九九久久精品国产亚洲av麻豆| 丝袜脚勾引网站| 十八禁网站网址无遮挡| av免费在线看不卡| 免费黄色在线免费观看| 亚洲成色77777| 色吧在线观看| 99久久精品国产国产毛片| 亚洲精品456在线播放app| 亚洲,欧美,日韩| 男人操女人黄网站| 国产精品熟女久久久久浪| 另类亚洲欧美激情| 亚洲国产av新网站| 免费观看的影片在线观看| 日韩精品免费视频一区二区三区 | 成年av动漫网址| 日本-黄色视频高清免费观看| 9色porny在线观看| 高清毛片免费看| 日韩人妻高清精品专区| 久久久久久久精品精品| 一个人免费看片子| 这个男人来自地球电影免费观看 | 插阴视频在线观看视频| 日韩电影二区| 精品久久久久久久久亚洲| 性色avwww在线观看| 国产淫语在线视频| av免费观看日本| 97精品久久久久久久久久精品| 国产一区二区三区综合在线观看 | 国产一区二区在线观看日韩| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 亚洲精品视频女| 国精品久久久久久国模美| 天天影视国产精品| 国产熟女午夜一区二区三区 | 免费看不卡的av| 69精品国产乱码久久久| 春色校园在线视频观看| 高清视频免费观看一区二区| 亚洲国产av影院在线观看| av女优亚洲男人天堂| 人妻制服诱惑在线中文字幕| 国产精品国产三级国产av玫瑰| 99热6这里只有精品| 熟女电影av网| 精品一区在线观看国产| 黑人巨大精品欧美一区二区蜜桃 | 久久久久久久久久人人人人人人| 97在线视频观看| 欧美成人精品欧美一级黄| 中文字幕人妻丝袜制服| 在线观看国产h片| 精品亚洲乱码少妇综合久久| 22中文网久久字幕| 久久韩国三级中文字幕| 99久久精品一区二区三区| 看非洲黑人一级黄片| 男人爽女人下面视频在线观看| 伊人久久精品亚洲午夜| 日韩三级伦理在线观看| 国产av一区二区精品久久| 国产免费福利视频在线观看| 国产黄片视频在线免费观看| 日韩一区二区视频免费看| 久久久久久伊人网av| 欧美3d第一页| 伊人亚洲综合成人网| 精品卡一卡二卡四卡免费| 日韩在线高清观看一区二区三区| 各种免费的搞黄视频| 国产精品蜜桃在线观看| 亚洲国产精品一区二区三区在线| 美女内射精品一级片tv| 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 熟妇人妻不卡中文字幕| 91久久精品电影网| 精品国产国语对白av| 亚洲无线观看免费| 各种免费的搞黄视频| 蜜桃国产av成人99| 天天躁夜夜躁狠狠久久av| 国产成人免费无遮挡视频| 亚洲国产精品999| 国产精品欧美亚洲77777| av在线老鸭窝| 少妇被粗大猛烈的视频| 国产69精品久久久久777片| 亚洲欧美一区二区三区黑人 | 成年人免费黄色播放视频| 免费不卡的大黄色大毛片视频在线观看| 久久久精品区二区三区| 国产成人精品无人区| 国产在视频线精品| 黄色配什么色好看| 国产片内射在线| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 亚洲国产毛片av蜜桃av| 又大又黄又爽视频免费| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 免费av不卡在线播放| 日本爱情动作片www.在线观看| 午夜免费男女啪啪视频观看| 国产男人的电影天堂91| 在线观看一区二区三区激情| 亚洲怡红院男人天堂| 特大巨黑吊av在线直播| 日本av免费视频播放| 国产精品99久久99久久久不卡 | 欧美日韩一区二区视频在线观看视频在线| 99九九在线精品视频| 亚洲中文av在线| 视频中文字幕在线观看| 国产又色又爽无遮挡免| 国产一区亚洲一区在线观看| 新久久久久国产一级毛片| 亚洲美女黄色视频免费看| 国产精品久久久久久精品电影小说| 不卡视频在线观看欧美| 精品一区在线观看国产| 精品一区二区三卡| 中国三级夫妇交换| 三上悠亚av全集在线观看| 全区人妻精品视频| 制服人妻中文乱码| 一区二区日韩欧美中文字幕 | 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕| 日韩欧美精品免费久久| 久久婷婷青草| 菩萨蛮人人尽说江南好唐韦庄| 飞空精品影院首页| 黄片无遮挡物在线观看| 韩国av在线不卡| 免费人妻精品一区二区三区视频| 国产成人aa在线观看| 国产女主播在线喷水免费视频网站| 夜夜骑夜夜射夜夜干| 波野结衣二区三区在线| 国产黄片视频在线免费观看| 免费看不卡的av| 精品久久久久久久久av| 国产成人精品一,二区| 99热网站在线观看| 成年av动漫网址| 如日韩欧美国产精品一区二区三区 | 亚洲精品国产色婷婷电影| 欧美97在线视频| 色吧在线观看| 老熟女久久久| 日韩中字成人| 亚洲精品中文字幕在线视频| 久久久午夜欧美精品| a 毛片基地| 在线看a的网站| 春色校园在线视频观看| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 欧美人与善性xxx| 国产精品一区二区在线不卡| 久久这里有精品视频免费| 亚洲国产欧美在线一区| 少妇精品久久久久久久| 亚洲av福利一区| 两个人免费观看高清视频| av一本久久久久| 亚洲国产精品999| 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 成人黄色视频免费在线看| 日韩一区二区三区影片| 婷婷色麻豆天堂久久| 国产精品一区www在线观看| 人妻夜夜爽99麻豆av| 五月天丁香电影| 亚洲国产精品一区二区三区在线| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 精品卡一卡二卡四卡免费| 色94色欧美一区二区| 午夜福利视频精品| 久久久国产精品麻豆| 黄色毛片三级朝国网站| 国产精品一区二区三区四区免费观看| 黄色怎么调成土黄色| 在线精品无人区一区二区三| 久久综合国产亚洲精品| 亚洲性久久影院| 综合色丁香网| av专区在线播放| 五月玫瑰六月丁香| 精品一区二区三卡| 一级a做视频免费观看| 一区二区日韩欧美中文字幕 | 精品国产露脸久久av麻豆| 人妻人人澡人人爽人人| 肉色欧美久久久久久久蜜桃| 日韩欧美精品免费久久| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 高清黄色对白视频在线免费看| 中文乱码字字幕精品一区二区三区| 两个人的视频大全免费| 丝袜脚勾引网站|