杜衛(wèi)華,范宗興,王皓宇,郝海生,劉 巖,趙學(xué)明,秦 彤,朱化彬
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193)
爪蟾卵母細(xì)胞抽提物可誘導(dǎo)牛胎兒成纖維細(xì)胞發(fā)生部分重編程
杜衛(wèi)華,范宗興,王皓宇,郝海生,劉 巖,趙學(xué)明,秦 彤,朱化彬*
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193)
應(yīng)用非洲爪蟾卵母細(xì)胞抽提物處理和牛胎兒成纖維細(xì)胞(Japanese Black cattle fetal fibroblasts,JBCFF),觀察處理前后細(xì)胞的形態(tài)學(xué)變化,同時用免疫熒光染色法檢測組蛋白的乙酰化狀態(tài)和OCT4蛋白的表達(dá),并對其多能性標(biāo)志基因的mRNA表達(dá)水平進(jìn)行定量分析。結(jié)果表明,與未處理細(xì)胞相比,經(jīng)抽提物處理和牛胎兒成纖維細(xì)胞組蛋白H3K9乙?;潭扰c未處理組無顯著差異;培養(yǎng)5~6 d后細(xì)胞聚集形成“克隆簇”中堿性磷酸酶和Oct4蛋白染色陽性;同時也檢測到Oct4和Nanog基因在其中的表達(dá),而Sox2基因未見表達(dá);且Oct4、Nanog基因表達(dá)量隨處理后細(xì)胞培養(yǎng)時間的延長(4、5、6 d)而呈依次上升趨勢??梢?,爪蟾卵母細(xì)胞抽提物能誘導(dǎo)和牛胎兒成纖維細(xì)胞發(fā)生部分重編程,恢復(fù)其發(fā)育全能性,這對牛誘導(dǎo)性干細(xì)胞制備方法的探索和體細(xì)胞克隆及轉(zhuǎn)基因克隆牛效率的提高具有一定的借鑒意義。
爪蟾;卵母細(xì)胞抽提物;牛胎兒成纖維細(xì)胞;重編程;多能性基因
細(xì)胞抽提物誘導(dǎo)是近年來發(fā)展迅速的一種體細(xì)胞重編程方法,其利用卵母細(xì)胞、干細(xì)胞或不同類型細(xì)胞的提取物誘導(dǎo)體細(xì)胞,使其發(fā)生重編程,恢復(fù)部分全能性或表現(xiàn)其他細(xì)胞類型的典型特征[1]。N.Kikyo等[2]用非洲爪蟾(Xenopuslaevis)卵母細(xì)胞抽提物處理爪蟾上皮細(xì)胞,發(fā)現(xiàn)體細(xì)胞的蛋白組成發(fā)生變化,以TATA盒結(jié)合蛋白為代表的一類蛋白從細(xì)胞中擦除,以O(shè)CR2為代表的抽提物特有蛋白整合入體細(xì)胞內(nèi),自此開創(chuàng)了抽提物誘導(dǎo)體細(xì)胞重編程研究的先河。用非洲爪蟾卵母細(xì)胞抽提物處理人239T細(xì)胞[3]、豬[4]和小鼠[5-6]胎兒成纖維細(xì)胞時,均發(fā)現(xiàn)多能性標(biāo)志基因Oct4和Sox2表達(dá),爪蟾特有的組蛋白B4和核纖層蛋白III整合到體細(xì)胞中,體細(xì)胞本身的組蛋白H3K9去乙?;⑿纬深惻咛ジ杉?xì)胞樣的“克隆簇”,發(fā)生部分重編程。另外,蠑螈卵母細(xì)胞抽提物也能使體細(xì)胞發(fā)生同樣變化,具有去分化恢復(fù)多能性的趨勢[7];西伯利亞鱘卵母細(xì)胞抽提物處理能誘導(dǎo)豬胎兒成纖維細(xì)胞中H3K9的甲基化水平降低和組蛋白乙酰化水平升高[8]。Y.Liu等[9]研究發(fā)現(xiàn)爪蟾卵母細(xì)胞抽提物誘導(dǎo)供體細(xì)胞重編程后形成的“克隆簇”細(xì)胞,且該細(xì)胞顯著提高克隆胚胎的囊胚發(fā)育率[10]。來自兩棲動物卵母細(xì)胞或激活后牛卵母細(xì)胞的抽提物可誘導(dǎo)乳腺癌細(xì)胞重編程,引起腫瘤抑制基因啟動子去甲基化,使沉默基因重新表達(dá),為癌癥的治療提供了新思路[11-12]。
哺乳動物卵母細(xì)胞也常用于同種屬間的重編程研究,小鼠卵母細(xì)胞抽提物處理體細(xì)胞后,細(xì)胞核重塑,H3K9完全去甲基化,H3K9、H3K14部分乙?;?;且重編程后的體細(xì)胞有助于后續(xù)克隆胚胎的發(fā)育[13]。豬GV期卵母細(xì)胞抽提物可誘導(dǎo)激活多能性標(biāo)志基因的表達(dá),細(xì)胞呈“克隆樣”生長,并能在體內(nèi)或體外發(fā)育為3個原始胚層[14];而MⅡ卵母細(xì)胞抽提物則引起H3K9去乙?;蚑ATA框結(jié)合蛋白的消失,卻沒有明顯的形態(tài)學(xué)變化,說明GV期和MⅡ期卵母細(xì)胞都具有誘導(dǎo)體細(xì)胞重編程能力,但其中不同的因子發(fā)揮不同的作用[15]。抽提物誘導(dǎo)重編程方法操作簡便,不僅可以獲得所需類型的細(xì)胞,而且抽提物作為脫離細(xì)胞的獨立成分,更宜于重編程相關(guān)因子的識別,探求重編程的機(jī)制。
目前抽提物誘導(dǎo)體細(xì)胞重編程的機(jī)制尚未明確,而對大家畜,牛體細(xì)胞重編程的研究仍鮮有報道。本研究利用非洲爪蟾卵母細(xì)胞抽提物與和牛胎兒成纖維細(xì)胞共孵育,誘導(dǎo)和牛胎兒成纖維細(xì)胞重編程,探索牛iPS細(xì)胞的重編程方法,為體細(xì)胞克隆牛和轉(zhuǎn)基因牛生產(chǎn)效率的提高奠定基礎(chǔ)。
1.1 材料
性成熟非洲爪蟾來源于中國科學(xué)院遺傳發(fā)育研究所動物實驗中心。
1.2 和牛胎兒成纖維細(xì)胞的建立和培養(yǎng)
取妊娠40日齡的和牛胎兒,去頭尾、四肢和內(nèi)臟后將軀干組織采用貼壁法建立成纖維細(xì)胞系。將組織塊剪切成碎沫,移至培養(yǎng)瓶底壁并分散均勻,倒置培養(yǎng)瓶,旋緊瓶蓋倒置于37.5 ℃的CO2培養(yǎng)箱中6~8 h;加入常規(guī)培養(yǎng)液(含20% FBS的DMEM),輕輕翻轉(zhuǎn)培養(yǎng)瓶,讓培養(yǎng)液浸潤組織塊,置培養(yǎng)箱培養(yǎng);當(dāng)有鋪滿瓶底50%以上成纖維細(xì)胞爬出,用0.25%胰蛋白酶(0.02% EDTA)消化傳代或凍存。
1.3 爪蟾卵母細(xì)胞抽提物的提取
選擇性成熟雌性非洲爪蟾,背部淋巴囊處淺表注射PMSG(1 IU·μL-1)100 μL,提取抽提物前1 d,同一位置注射HCG(5 IU·μL-1)100 μL,16~22 h后,收集卵母細(xì)胞。挑選輪廓清晰、形態(tài)統(tǒng)一的卵母細(xì)胞,添加2%半胱氨酸,去除卵膠膜;移除膠膜液,用0.25×MMR漂洗3次,1×MMR(100 mmol·L-1NaCl+2 mmol·L-1KCl+1 mmol·L-1MgSO4+ 2 mmol·L-1CaCl2+0.1 mmol·L-1EDTA+5 mmol·L-1Hepes)漂洗1次;細(xì)胞裂解液(2.5 mmol·L-1MgCl2+ 50 mmol·L-1KCl+10 mmol·L-1Hepes+250 mmol·L-1Sucrose)漂洗2次后,將卵移入含1 mmol·L-1二巰基蘇糖醇和1 mmol·L-1蛋白酶抑制劑的細(xì)胞裂解液中;800 r·min-1離心10~15 s,移去裂解液;添加抑酶肽、亮肽素、蛋白酶抑制劑(終濃度5 μg·mL-1)到卵頂部;4 ℃、10 000 r·min-1離心15 min后,液體分為3層,抽取中間層粗提物至預(yù)冷的離心管中;再次添加抑酶肽、亮肽素、蛋白酶抑制劑到卵頂部(終濃度5 μg·mL-1),4 ℃、10 000 r·min-1離心15 min,同樣移出抽提物至預(yù)冷離心管,添加甘油,4 ℃混勻后分裝,液氮冷凍,保存于-80 ℃?zhèn)溆谩?/p>
1.4 爪蟾卵母細(xì)胞抽提物處理JBCFF
將生長良好的第4代JBCFF接種于24孔板中,至50%~60%匯片時,用預(yù)冷的PBS清洗后添加濃度為7 μg·mL-1的digitonin溶液200 μL·孔-1,迅速冰上作用2 min;預(yù)冷的PBS清洗后,添加包含ATP-再生體系的爪蟾卵母細(xì)胞抽提物250 μL·孔-1,23 ℃條件下與細(xì)胞共孵育1 h;吸去抽提物,加入含2 mmol·L-1CaCl2的常規(guī)培養(yǎng)液,孵育2 h后移除封閉液,分別于常規(guī)培養(yǎng)液(DMEM+10% FBS)或干細(xì)胞培養(yǎng)液(0.1 mmol·L-12-巰基乙醇+1% MEM/NEAA+1 mmol·L-1谷氨酰胺+0.3 μmol·L-1核苷酸+103IU·mL-1LIF+5% FBS+10% 血清替代物+1% 青鏈霉素+ DMEM)中繼續(xù)培養(yǎng),隔天換液以清除死細(xì)胞。
1.5 組蛋白H3K9和Oct4免疫熒光染色
經(jīng)過抽提物處理和未處理的JBCFF(同一來源、同一代數(shù))分別于干細(xì)胞培養(yǎng)液中孵育24 h后,分別進(jìn)行其組蛋白H3K9和Oct4免疫熒光染色。吸除培養(yǎng)液,加入4%多聚甲醛,室溫固定20 min;清洗3次,含0.5% TritonX-100的PBS與細(xì)胞共孵育30 min;10%山羊血清封閉細(xì)胞30 min后,于兔抗H3K9的多抗(1∶200稀釋于含1% BSA的PBS)中室溫孵育1 h;清洗后,室溫下于FITC標(biāo)記的山羊抗兔IgG(1∶200稀釋于1% BSA的PBS)避光放置1 h;然后用10 μg·mL-1的PI室溫作用5 min,在熒光顯微鏡下觀察。試驗重復(fù)3次,每次隨機(jī)選取3個視野拍照,并用Image-pro Plus軟件分析結(jié)果。Oct4蛋白的免疫熒光染色,一抗為兔抗Oct4多抗(1∶100稀釋于含1% BSA的PBS)其余則與H3K9染色相同。
1.6 堿性磷酸酶染色
經(jīng)過抽提物處理和未處理的JBCFF(同一來源、同一代數(shù)),分別置于常規(guī)培養(yǎng)液和干細(xì)胞培養(yǎng)液中培養(yǎng)6~7 d后,進(jìn)行堿性磷酸酶染色。細(xì)胞經(jīng)PBS清洗后,加入4%多聚甲醛,室溫固定30 min;清洗后加入500 μL BCIP/NBT染色工作液,室溫避光染色30 min;移除染色液,PBS清洗2~3次,鏡下觀察,拍照。
1.7 抽提物處理細(xì)胞中多能性相關(guān)基因的PCR和qPCR檢測
以抽提物處理后6 d形成“克隆簇”的細(xì)胞為試驗組,抽提物處理后用常規(guī)培養(yǎng)液培養(yǎng)的細(xì)胞、未處理的JBCFF(同一來源、同一代數(shù))分別置于常規(guī)培養(yǎng)液和干細(xì)胞培養(yǎng)液中培養(yǎng)6 d后,均作為對照組進(jìn)行PCR反應(yīng)。多能性標(biāo)志基因Oct4、Sox2、Nanog為目標(biāo)基因,GAPDH為內(nèi)參基因。參考GenBank中牛(Bostaurus)Oct4基因序列(NM_174580.2)、Sox2基因序列(NM_001105463.1)、Nanog基因序列(NM_001025344.1)和GAPDH基因序列(NM_001034034),采用primer 5.0軟件設(shè)計引物(表1)。采用20 μL擴(kuò)增體系,PCR條件為94 ℃預(yù)變性5 min;94 ℃變性30 s,56 ℃退火30 s,72 ℃延伸30 s,30個循環(huán)。2%瓊脂糖凝膠檢測PCR產(chǎn)物。
表1 引物序列
Table 1 Primer sequences
基因Genes引物序列(5′?3′)Primersequences產(chǎn)物大小/bpProductsizeOct4F:ACAATTTGCCAAGCTCCTAAAG,R:TCTCACTCGGTTCTCGATACT285Sox2F:CGGCAACCAGAAGAACAG,R:AATCCGGGTGTTCCTTCAT231NanogF:ACACCCTCGACACGGACACT,R:TGACCGGGACCGTCTCTTC146GAPDHF:GCAAGTTCAACGGCACAG,R:GTTCACGCCCATCACAA253
選擇抽提物處理4、5、6 d的JBCFF進(jìn)行多能性基因Oct4和Nanog實時熒光定量PCR檢測。分別提取細(xì)胞總RNA,反轉(zhuǎn)錄為cDNA,以cDNA為模板進(jìn)行梯度稀釋后選定最佳模板濃度,以牛GAPDH基因為內(nèi)參,進(jìn)行qPCR,測定Oct4、Nanog表達(dá)水平。按照ABI定量試劑說明書,反應(yīng)體系20 μL,反應(yīng)條件為95 ℃預(yù)變性30 s,95 ℃變性5 s ,60 ℃退火34 s,72 ℃延伸30 s, 40個循環(huán)。利用7500 System SDS軟件(V 1.4.0),根據(jù)2-ΔΔCT方法,對定量結(jié)果進(jìn)行分析。
2.1 JBCFF系的建立和培養(yǎng)
采用組織塊貼壁法建立JBCFF系,組織塊貼壁1~2 d后,可見零星細(xì)胞從組織塊周邊爬出(圖1A),4~5 d后大量成纖維細(xì)胞長出,同時伴隨有少量上皮細(xì)胞出現(xiàn),6~7 d細(xì)胞至70%~80%匯合時傳代。根據(jù)成纖維細(xì)胞與上皮細(xì)胞對胰蛋白酶的敏感性不同,經(jīng)傳代培養(yǎng)逐漸純化,獲得純化的JBCFF(圖1B)。
2.2 爪蟾卵母細(xì)胞抽提物處理后JBCFF形態(tài)變化
選擇7 μg·mL-1digitonin處理JBCFF(圖2A),透化后細(xì)胞表面可見大量黑點(圖2B),抽提物處理后細(xì)胞稍有回縮,但形態(tài)正常,肉眼可見20%~30%細(xì)胞死亡或脫落(圖2C)。繼續(xù)培養(yǎng)2~3d后,細(xì)胞狀態(tài)恢復(fù),開始快速增殖,4~5 d細(xì)胞開始聚集生長,6~7 d細(xì)胞形成“克隆簇”(圖2D)。對照組,未處理細(xì)胞(同一來源、同一代數(shù))在干細(xì)胞培養(yǎng)液中(圖2E)和常規(guī)培養(yǎng)液培養(yǎng)(圖2G)后,以及抽提物處理細(xì)胞經(jīng)常規(guī)培養(yǎng)液培養(yǎng)后(圖2F),均正常生長,未見細(xì)胞聚集,成簇生長。
A.組織塊貼壁長出的原代細(xì)胞;B.第5代和牛胎兒成纖維細(xì)胞A.Primary cells around the bovine fetal tissue;B.F5 JBCFF圖1 和牛胎兒成纖維細(xì)胞(JBCFF) 100×Fig.1 The construction of Japanese Black cattle fetal fibroblasts 100×
A.抽提物處理前細(xì)胞;B.抽提物處理中細(xì)胞;C.抽提物處理后細(xì)胞;D.抽提物處理后6 d 細(xì)胞形成“克隆簇”;E.干細(xì)胞培養(yǎng)液培養(yǎng)6 d的未處理細(xì)胞;F.常規(guī)培養(yǎng)液培養(yǎng)6 d的抽提物處理細(xì)胞;G.常規(guī)培養(yǎng)液培養(yǎng)6 d的未處理細(xì)胞A.JBCFF before extracts treatment;B.JBCFF during the treatment with extracts;C.JBCFF after extracts treatment;D.Cells colony formed 6 days after extracts treatment;E.JBCFF without extracts treatment cultured with stem cell medium for 6 days as control;F.JBCFF treated with extracts and cultured with common cell medium for 6 days as control;G.JBCFF without extracts treatment cultured with common cell medium for 6 days as control圖2 爪蟾卵母細(xì)胞抽提物處理的JBCFF 100×Fig.2 JBCFF treated with Xenopus laevis oocytes extracts 100×
2.3 爪蟾卵母細(xì)胞抽提物處理后JBCFF的組蛋白H3K9免疫熒光染色
組蛋白H3K9染色結(jié)果表明(圖3),經(jīng)抽提物處理后的JBCFF在干細(xì)胞培養(yǎng)液中培養(yǎng)24 h后,其組蛋白H3K9乙?;潭?H3K9相對表達(dá)量(263±0.26))低于未經(jīng)抽提物處理的對照組(295±1.31),但二者差異不顯著(P>0.05)。
2.4 抽提物處理后JBCFF的堿性磷酸酶染色
抽提物處理6 d后,JBCFF成簇生長(圖4A);堿性磷酸酶染色后“克隆簇”呈陽性(圖4B),而其它未形成克隆簇的細(xì)胞幾乎沒有著色,呈陰性。而3個對照組細(xì)胞(干細(xì)胞培養(yǎng)液培養(yǎng)的抽提物未處理細(xì)胞、常規(guī)培養(yǎng)液培養(yǎng)的抽提物處理和未處理細(xì)胞),則染色呈陰性(圖4C、D、E)。
A.經(jīng)抽提物處理的JBCFF;B.經(jīng)抽提物處理JBCFF的組蛋白H3K9熒光染色;C.經(jīng)抽提物處理的JBCFF細(xì)胞核PI染色;D.普通光下的抽提物未處理的JBCFF;E.抽提物未處理JBCFF的組蛋白H3K9熒光染色;F.抽提物未處理的JBCFF細(xì)胞核PI染色A.JBCFF treated with extracts;B.H3K9 immunofluorescence staining of JBCFF treated with extracts;C.PI staining of JBCFF treated with extracts;D.JBCFF untreated with extracts;E.H3K9 immunofluorescence staining of JBCFF without treatment extracts;F.PI staining of JBCFF without treatment of extracts圖3 JBCFF的H3K9免疫熒光染色100×Fig.3 JBCFF with H3K9 Immunofluorescence 100×
A.抽提物處理后6 d細(xì)胞形成“克隆簇”;B.“克隆簇”細(xì)胞堿性磷酸酶染色陽性;C.干細(xì)胞培養(yǎng)液培養(yǎng)的抽提物未處理細(xì)胞堿性磷酸酶陰性;D.常規(guī)培養(yǎng)液培養(yǎng)的抽提物處理細(xì)胞堿性磷酸酶染色陰性;E.常規(guī)培養(yǎng)液培養(yǎng)的抽提物未處理細(xì)胞堿性磷酸酶陰性A.JBCFF colony formed 6 days after extracts treatment;B.Positive reaction of cell colony with alkaline phosphatase staining;C.Negative reaction of JBCFF without extracts treatment cultured with stem cell medium for 6 days as control;D.Negative reaction of JBCFF treated with extracts and cultured with common cell medium for 6 days as control;E.Negative reaction of JBCFF without extracts treatment cultured with common cell medium for 6 days as control圖4 JBCFF堿性磷酸酶染色100×Fig.4 JBCFF stained with alkaline phosphatase 100×
2.5 Oct4蛋白的表達(dá)分析
抽提物處理6 d后,和牛胎兒成纖維細(xì)胞成簇生長(圖5A);Oct4免疫熒光染色發(fā)現(xiàn),“克隆簇”呈綠色,染色呈陽性(圖5B),而其它未形成克隆簇細(xì)胞沒有著色,染色呈陰性(圖5D、E)。經(jīng)干細(xì)胞培養(yǎng)液和常規(guī)培養(yǎng)液培養(yǎng)的同一來源、同時培養(yǎng)的未處理細(xì)胞Oct4免疫熒光染色未著色,染色結(jié)果呈陰性。
2.6 爪蟾卵母細(xì)胞抽提物處理細(xì)胞中多能性相關(guān)基因的表達(dá)檢測
采用RT-PCR檢測試驗組和對照組細(xì)胞中多能性標(biāo)志基因Oct4、Sox2、Nanog的表達(dá)情況,結(jié)果顯示,抽提物處理后6 d形成“克隆簇”的細(xì)胞有Oct4、Nanog基因表達(dá),Sox2基因未見表達(dá),對照組均無上述基因表達(dá)(圖6),說明抽提物處理和牛胎兒成纖維細(xì)胞經(jīng)過重編程,具有干細(xì)胞的多能性。
收集抽提物處理后4、5和6 d的細(xì)胞,采用定量PCR檢測Oct4、Nanog基因的表達(dá)水平,結(jié)果表明,處理后5 d的細(xì)胞中Oct4表達(dá)量顯著高于處理后4 d細(xì)胞(P<0.05,圖8);Nanog基因表達(dá)量也升高,但差異不顯著(P>0.05,表2)。而處理后6 d細(xì)胞中Oct4和Nanog基因的表達(dá)量均極顯著高于其它兩組(P<0.01,表2)。
A.抽提物處理6 d細(xì)胞形成“克隆簇”;B.“克隆簇”細(xì)胞中Oct4免疫熒光染色陽性;C.“克隆簇”細(xì)胞的細(xì)胞核PI染色;D.未處理細(xì)胞6 d未形成“克隆簇”;E.非“克隆簇”細(xì)胞中Oct4免疫熒光染色陰性;F.非“克隆簇”細(xì)胞的細(xì)胞核PI染色A.JBCFF colony formed 6 days after extracts treatment;B.Oct4 immunofluorescence staining of JBCFF treated with extracts;C.PI staining of JBCFF treated with extracts;D.JBCFF untreated with extracts without formation of colony;E.Oct4 immunofluorescence staining of JBCFF without colony formation;F.PI staining of JBCFF without colony formation圖5 胎兒成纖維細(xì)胞Oct4免疫熒光染色100×Fig.5 JBCFF stained with Oct4 immunofluorescence 100×
表2 抽提物處理后不同天數(shù)的JBCFF中Oct4和Nanog基因表達(dá)
Table 2 Expression level ofOct4 andNanoggenes in JBCFF treated with extracts at different days
培養(yǎng)天數(shù)/dDaysOct4Nanog41.8±2.01a0.9±0.64a54.3±1.58b1.2±2.17a6145.1±1.24A16.2±3.21A
a、b.P<0.05;A.P<0.01
A.抽提物處理后6 d形成“克隆簇”細(xì)胞;B.常規(guī)培養(yǎng)液培養(yǎng)的抽提物處理細(xì)胞;C.干細(xì)胞培養(yǎng)液培養(yǎng)的抽提物未處理細(xì)胞;D.常規(guī)培養(yǎng)液培養(yǎng)的抽提物未處理細(xì)胞A.JBCFF colony formed 6 days after extracts treatment;B.JBCFF treated with extracts and cultured with common cell medium for 6 days as control;C.JBCFF without extracts treatment cultured with stem cell medium for 6 days as control;D.JBCFF without extracts treatment cultured with common cell medium for 6 days as control圖6 抽提物處理細(xì)胞中Oct4和Nanog基因的RT-PCR檢測Fig.6 Expression analysis of Oct4 and Nanog genes in JBCFF treated with extracts by RT-PCR
體細(xì)胞重編程是指通過一定方法將已分化的體細(xì)胞逆轉(zhuǎn)回原始多能狀態(tài),獲得的多能性細(xì)胞有巨大的分化潛力,在再生醫(yī)學(xué)研究方面有巨大的應(yīng)用前景。研究表明,卵母細(xì)胞或干細(xì)胞中存在某些因子可誘導(dǎo)體細(xì)胞恢復(fù)發(fā)育全能性,因此其提取物可用于體外誘導(dǎo)體細(xì)胞發(fā)生重編程[16]。細(xì)胞抽提物早期用于真核生物DNA復(fù)制、染色質(zhì)重塑研究[17-19],而現(xiàn)在抽提物被廣泛用于體細(xì)胞重編程[13,20-23]和提高體細(xì)胞克隆效率[24]的研究。非洲爪蟾卵母細(xì)胞因其體積大、易于獲得、抽提物制備方便而成為研究抽提物誘導(dǎo)體細(xì)胞重編程的首選材料[3,9,11,15,25]。本文利用爪蟾卵母細(xì)胞抽提物誘導(dǎo)JBCFF重編程,旨在獲得重編程細(xì)胞系,為后續(xù)體細(xì)胞克隆提供試驗材料,同時為研究體細(xì)胞重編程的分子機(jī)制提供試驗基礎(chǔ)。本研究參考相關(guān)文獻(xiàn)[4,9],選擇適合非洲爪蟾細(xì)胞生長的23 ℃為處理溫度,處理時間為1 h,處理完畢后添加含Ca2+的培養(yǎng)基以封閉細(xì)胞膜上透化過程中形成的可逆孔道,處理后的體細(xì)胞形態(tài)正常,生長良好,初步建立了穩(wěn)定的抽提物處理體系,然后對處理后的體細(xì)胞進(jìn)行重編程能力的相關(guān)檢測。
組蛋白H3K9是表觀遺傳修飾的重要位點,H3K9去乙?;c異染色質(zhì)形成和抑制基因轉(zhuǎn)錄活性相關(guān)[26]。在爪蟾胚胎發(fā)育中,去乙?;l(fā)生在母源積累的核心組蛋白整合到胚胎染色質(zhì)上,胚胎發(fā)育階段的去乙酰化被認(rèn)為是細(xì)胞重新分化的必要準(zhǔn)備[27],本試驗中非洲爪蟾卵母細(xì)胞抽提物處理的JBCFF,培養(yǎng)24 h后檢測到其組蛋白H3K9的乙?;潭扰c未處理組間差異不顯著,而X.R.Xiong等[28]認(rèn)為牛卵母細(xì)胞抽提物能誘導(dǎo)牦牛成纖維細(xì)胞中H3K9乙?;潭壬撸摻Y(jié)果的不同可能與卵母細(xì)胞抽提物的來源、抽提物供體與受體細(xì)胞間種屬的差異等因素有關(guān),因此還需要進(jìn)一步研究。
抽提物處理的細(xì)胞用干細(xì)胞培養(yǎng)基培養(yǎng)4~5 d后,細(xì)胞開始聚集生長,6~7 d形成“克隆簇”,同時“克隆簇”對堿性磷酸酶染色呈陽性,而同樣培養(yǎng)條件下未處理的體細(xì)胞未見形態(tài)學(xué)改變,該結(jié)果與文獻(xiàn)[3-4,10,20]等一致。細(xì)胞成簇生長被認(rèn)為是干細(xì)胞和誘導(dǎo)性多潛能干細(xì)胞的典型特征,因此本研究中JBCFF經(jīng)爪蟾卵母細(xì)胞抽提物處理后形成的“克隆簇”呈現(xiàn)出一定的干細(xì)胞特征。然而同一條件下,未成簇生長的細(xì)胞染色呈陰性,說明同種細(xì)胞、不同個體的重編程能力有所不同。同類研究中,也有未見“克隆簇”樣細(xì)胞形成的報道[9,22,25],推測可能是由于不同的細(xì)胞類型、培養(yǎng)條件和處理體系導(dǎo)致細(xì)胞間重編程能力的差異,造成試驗結(jié)果不同。
Oct4、Sox2、Nanog是保證多能性細(xì)胞自我更新和維持未分化狀態(tài)最重要的3個因子,Oct4通過激活或抑制多種基因表達(dá)來實現(xiàn)對細(xì)胞多能性的維護(hù),Sox2可維持Oct4的表達(dá)量,與Oct4共同發(fā)揮作用,Nanog功能與Oct4類似,主要是幫助細(xì)胞獲得多能性。最近有研究表明Nanog對于誘導(dǎo)牛iPS細(xì)胞至關(guān)重要[29],因此推測Nanog基因?qū)S持牛細(xì)胞多能性有突出作用,因而被認(rèn)為是干細(xì)胞的多能性標(biāo)記物,本研究對這3個基因的表達(dá)檢測發(fā)現(xiàn),形成“克隆簇”細(xì)胞表達(dá)Oct4、Nanog,并且熒光染色檢測到Oct4蛋白的表達(dá);未形成克隆簇細(xì)胞和未處理細(xì)胞均未見上述基因和蛋白的表達(dá);該結(jié)果與O.Ganier等[5]和S.Em等[30]的研究結(jié)果相似,說明JBCFF經(jīng)抽提物處理后發(fā)生重編程,恢復(fù)部分全能性。但是,“克隆簇”細(xì)胞中未檢測到Sox2基因的表達(dá),與文獻(xiàn)[4,9,31]的研究不同,可能是由于不同細(xì)胞類型重編程能力不同,或是抽提物處理體系不同所致。進(jìn)一步采用實時熒光定量PCR檢測抽提物處理后不同天數(shù)(4、5、6 d)的細(xì)胞中Oct4、Nanog基因的表達(dá)量變化,發(fā)現(xiàn)其隨著培養(yǎng)天數(shù)增加表達(dá)量呈上升趨勢,這與“克隆簇”生長狀態(tài)一致,形成“克隆簇”的細(xì)胞被重編程恢復(fù)到部分多能狀態(tài),隨著形成“克隆簇”細(xì)胞數(shù)量的增加,多能性標(biāo)志基因Oct4、Nanog的表達(dá)量也隨著升高。
綜上表明,本研究應(yīng)用爪蟾卵母細(xì)胞抽提物處理和牛胎兒成纖維細(xì)胞,誘導(dǎo)了體細(xì)胞重編程,使細(xì)胞恢復(fù)到較低的分化狀態(tài),其中形成“克隆簇”的細(xì)胞可能是重編程效果較好的細(xì)胞。
[1] HALLEY-STOTT R P,PASQUE V,GURDON J B.Nuclear reprogramming[J].Development,2013,140(2):2468-2471.
[2] KIKYO N,WADE P A,GUSCHIN D,et al.Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal atpase iswi[J].Science,2000,289(5488):2360-2362.
[3] HANSIS C,BARRETO G,MALTRY N,et al.Nuclear reprogramming of human somaticcells byXenopusegg extract requires Brg1[J].CurrBiol,2004,14(16):1475-1480.
[4] MIYAMOTO K,F(xiàn)URUSAWA T,OHNUKI M,et al.Reprogramming events of mammalian somatic cells induced byXenopuslaevisegg extracts[J].MolReprodDev,2007,74(10):1268-1277.
[5] GANIER O,BOCQUET S,PEIFFER I,et al.Synergic eeprogramming of mammalian cells by combined exposure to MitoticXenopusegg extracts and transcription factors[J].ProcNatlAcadSciUSA,2011,108(42):17331-17336.
[6] RATHBONE A J,LIDDELL S,CAMPBELL K H S.Proteomic analysis of early reprogramming events in murine somatic cells incubated withXenopuslaevisoocyte extracts demonstrates network associations with induced pluripotency markers[J].CellReprogram,2013,15(4):269-280.
[7] BIAN Y,ALBERIO R,ALLEGRUCCI C,et al.Epigenetic marks in somatic chromatin are remodelled to resemble pluripotent nuclei by amphibian oocyte extracts[J].Epigenetics,2009,4(3):194-202.
[8] KIM S Y,KIM T S,PARK S H,et al.Siberian sturgeon oocyte extract induces epigenetic modifications of porcine somatic cells and improves developmental competence of SCNT embryos[J].Asian-AustralasJAnimSci,2014,27(2):266-277.
[9] LIU Y,OSTRUP O,LI J,et al.Cell colony formation induced byXenopusegg extract as a marker for improvement of cloned blastocyst formation in the pig[J].CellReprogram,2011,13(6):521-526.
[10] LIU Y,OSTRUP O,LI J,et al.Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated withXenopusegg extract and/or digitonin[J].Zygote,2012,20(1):61-66.
[11] ALLEGRUCCI C,RUSHTON M D,DIXON J E,et al.Epigenetic reprogramming of breast cancer cells with oocyte extracts[J].MolCancer,2011,10(1):7.
[12] WANG Z H,DAO R N,BAO L R,et al.Epigenetic reprogramming of human lung cancer cells with the extract of bovine parthenogenetic oocytes[J].JCellMolMed,2014,18(9):1807-1815.
[13] BUI H T,WAKAYAMA S,KISHIGAMI S,et al.The cytoplasm of mouse germinal vesicle stage oocytes can enhance somatic cell nuclear reprogramming[J].Development,2008,135(23):3935-3945.
[14] BUI H T,KWON D N,KANG M H,et al.Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes[J].Development,2012,139(23):4330-4340.
[15] MIYAMOTO K,TSUKIYAMA T,YANG Y,et al.Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells[J].BiolReprod,2009,80(5):935-943.
[16] HAN J,SIDHU K.Embryonic stem cell extracts:use in differentiation and reprogramming[J].RegenMed,2011,6(2):215-227.
[17] WOLFFE A P,SCHILD C.Xenopuslaevis:practical uses in cell and molecular biology[J].MethodsCellBiol,1991(36):541-549.
[18] ADAM S A,STERNE-MARR R,GERACE L.Nuclear protein import using digitonin-ermeabilized cells[J].MethodsEnzymol,1992(219):97-110.
[19] SOPHIE M,JEAN M L,ALAN H,et al.DNA replication and chromatin assembly usingXenopuseggs or embryos[J].AdvMolBiol,1999:196-226.
[20] FREBERG C T,DAHL J A,TIMOSKAINEN S,et al.Epigenetic reprogramming of Oct4 and Nanog regulatory regions by embryonal carcinoma cell extract[J].MolBiolCell,2007,18(5):1543-1553.
[21] MIYAMOTO K,YAMASHITA T,TSUKIYAMA T,et al.Reversible membrane permeabilization of mammalian cells treated with digitonin and its use for inducing nuclear reprogramming byXenopusegg extracts[J].ClonStemCells,2008,10(4):535-542.
[22] TANG S,WANG Y,ZHANG D,et al.Reprogramming donor cells with oocyte extracts improves in vitro development of nuclear transfer embryos[J].AnimReprodSci,2009,115(1-4):1-9.
[23] HAN J,SACHDEV P S,SIDHU K S.A combined epigenetic and non-genetic approach for reprogramming human somatic cells[J].PLoSONE,2010,5(8):e12297.
[24] ?STRUP O,PEDERSEN H S,HOLM H M,et al.Analysis of nucleolar morphology and protein localization as an indicator of nuclear reprogramming[J].MethodsMolBiol,2015(1222):161-174.
[25] RATHBONE A J,F(xiàn)ISHER P A,LEE J H,et al.Reprogramming of ovine somatic cells withXenopusLaevisoocyte extract prior to SCNT improves live birth rate[J].CellReprogram,2010,12(5):609-616.
[26] RICE J C,ALLIS C D.Histone methylation versus histone acetylation:new insights into epigenetic regulation[J].CurrOpinCellBiol,2001,13(3):263-273.[27] WOLFFE A P.Nucleosome positioning and modification:Chromatin structures that potentiate transcription[J].TrendsBiochemSci,1994,19(6):240-244.
[28] XIONG X R,LI J,F(xiàn)U M,et al.Oocyte extract improves epigenetic reprogramming of yak fibroblast cells and cloned embryo development[J].Theriogenology,2013(79):462-469.
[29] SUMER H,LIU J,MALAVER-ORTEGA L F,et al.Nanog is a key factor for induction of pluripotency in bovine adult fibroblasts[J].JAnimSci,2011,89(9):2708-2716.
[30] EM S,KATARIA M,YADAY P S B,et al.Expression profile of developmentally important genes between hand-made cloned buffalo embryos produced from reprogramming of donor cell with oocytes extract and selection of recipient cytoplast through brilliant cresyl blue staining and in vitro fertilized embryos[J].JAssistReprodGenet,2014,31(11):1541-1552.
[31] XU Y N,GUAN N,WANG Z D,et al.ES cell extract-induced expression of pluripotent factors in somatic cells[J].AnatRec(Hoboken),2009,292(8):1229-1234.
(編輯 程金華)
Reprogramming of Japanese Black Cattle Fetal Fibroblasts Treated withXenopuslaevisOocytes Extracts
DU Wei-hua,F(xiàn)AN Zong-xing,WANG Hao-yu,HAO Hai-sheng, LIU Yan,ZHAO Xue-ming,QIN Tong,ZHU Hua-bin*
(InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China)
In order to reprogram the Japanese Black cattle fetal fibroblasts(JBCFF),theXenopuslaevisoocyte extracts was used to incubation with the cells in present study.After 24 hours of culture in medium,there was no significant difference in acetylation of histone H3K9 between the JBCFF treated with extracts and the cells untreated by immunofluorescence assay.The well-defined colony structures of JBCFF treated with extracts were formed with the continuous culture for 5-6 d and the alkaline phosphatase staining of the cells colony was positive.Similarly,the OCT4 protein was detected in the cells colony.Additionally,Oct4 andNanogmRNA expression,two pluripotency marker genes,were detected in those cells by RT-PCR,butSox2 gene expression was not detected.Furthermore,qPCR results showed that the expression levels ofOct4 andNanoggenes in colony cells increased with days of culture(4,5,6 d ) after extracts treatment.In conclusion,theXenopuslaevisoocyte extracts could induce the partial reprogramming of the JBCFF into a low differentiated state.
Xenopuslaevis;oocyte extract;bovine fetal fibroblast;reprogramming;pluripotency marker genes
10.11843/j.issn.0366-6964.2015.09.009
2015-01-26
基本科研業(yè)務(wù)費重點項目(2013ywf-zd-2);國家科技支撐項目(2012BAD12B01-2);家畜胚胎工程與繁殖創(chuàng)新團(tuán)隊(ASTIP-IAS06-2015)
杜衛(wèi)華(1974-),女,山西晉中人,博士,副研究員,主要從事家畜胚胎工程研究,E-mail:dwh@iascaas.net.cn
*通信作者:朱化彬,博士,研究員,E-mail:zhuhuabin@caas.cn
S823.2
A
0366-6964(2015)09-1549-08