• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      綿羊胚胎發(fā)育中后期骨骼肌BTG2/3的表達動態(tài)及其與Myostatin的關(guān)系

      2015-03-22 10:51:01劉瑞鑿吳明明王慧華朱才業(yè)趙福平魏彩虹杜立新
      畜牧獸醫(yī)學報 2015年11期
      關(guān)鍵詞:烏珠穆沁成肌細胞特克

      劉瑞鑿,劉 真,吳明明,2,王慧華,朱才業(yè),張 莉,趙福平,魏彩虹*,杜立新*

      綿羊胚胎發(fā)育中后期骨骼肌BTG2/3的表達動態(tài)及其與Myostatin的關(guān)系

      劉瑞鑿1,劉 真1,吳明明1,2,王慧華1,朱才業(yè)1,張 莉1,趙福平1,魏彩虹1*,杜立新1*

      (1.中國農(nóng)業(yè)科學院北京畜牧獸醫(yī)研究所,北京 100193;2.中國農(nóng)業(yè)大學動物科技學院,北京 100193)

      旨在探究綿羊胚胎中后期骨骼肌BTG2/3(B cell translocation gene 2/3)的動態(tài)表達情況,探索肌肉生長抑制素(Myostatin,MSTN)基因?qū)ζ浔磉_的影響。以特克賽爾(Texel)和烏珠穆沁(Ujimqin)綿羊85、100、120和135 d 4個不同發(fā)育階段的胎兒背最長肌為研究對象,利用Real-time PCR技術(shù)分別檢測MSTN及BTG2/3的表達差異;選取100 d各胚胎半膜肌、背最長肌、半腱肌和股四頭肌檢測不同組織BTG2/3的表達差異;構(gòu)建穩(wěn)定慢病毒干擾載體pFU-GW-myostatin,分別感染處于增殖和分化階段的綿羊成肌細胞,檢測BTG2/3表達水平變化。結(jié)果顯示,隨著胚胎生長,特克賽爾羊胎兒MSTN表達量持續(xù)下降,而烏珠穆沁羊胎兒先下降后上升,特克賽爾羊胎兒BTG2表達量呈先升高后降低趨勢,而烏珠穆沁羊表現(xiàn)出先降低后升高再降低的趨勢;BTG3的表達量在特克賽爾羊與BTG2表達趨勢相同,而烏珠穆沁羊則與BTG2相反;100 d胎兒4種不同骨骼肌組織中,特克賽爾羊與烏珠穆沁羊相比,背最長肌和半腱肌中BTG2表達量極顯著偏高(P<0.01),而半膜肌和背最長肌中BTG3表達量極顯著偏低(P<0.01);慢病毒干擾載體對成肌細胞具有較高的感染和干擾效率,增殖和分化階段的成肌細胞被MSTN干擾后,BTG2和BTG3表達量極顯著降低(P<0.01)。綜上表明,BTG2和BTG3對綿羊胎兒中后期骨骼肌發(fā)育有重要作用,可能參與myostatin調(diào)節(jié)通路。本研究對綿羊胚胎發(fā)育過程的分子機制研究具有重要意義。

      BTG2/3;特克賽爾;烏珠穆沁;胎兒;myostatin干擾

      BTG/TOB家族被稱為“APRO”,首先在哺乳動物被發(fā)現(xiàn),在細胞生長中起到抗增殖的作用,影響細胞分化、發(fā)育和凋亡[1]。BTG/TOB家族成員(BTG1、Tob1/2、ANA、PC3B)的異常表達,造成細胞增殖受抑制[2-6]。BTG2和BTG3是BTG/TOB家族的重要成員,他們都能與CAF1和CCR4等相關(guān)因子結(jié)合[4,7],BTG2還可與PRMT1和HOXB9相互作用[8-9],而BTG3并未發(fā)現(xiàn)有此功能。

      BTG2在細胞分裂G0/G1期開始表達[10],之后表達量下降。BTG2基因含有p53野生型基因的反應元件[11],p73和p53可誘導與人類具有同源性的BTG2基因[12]。利用高密度芯片技術(shù)對基因的表達趨勢進行研究,發(fā)現(xiàn)BTG2基因?qū)毎姆只?、增殖和凋亡起調(diào)節(jié)作用[13]。更多的研究證明PC3/BTG/TOB還共同參與了胚胎干細胞、肌細胞和造血干細胞等多種細胞的分化發(fā)育[14-15]。BTG3在G1期表達量最高,G1-S期表現(xiàn)出峰值[16]。BTG3表達缺失與肺癌的發(fā)生有關(guān)[17],也能增強BMP誘導的骨形成[18]。肌肉生長抑制素(Myostatin,MSTN) 基因是TGF-β超家族成員,是骨骼肌生長的負調(diào)控因子,為生長發(fā)育性狀的候選基因。近期多項研究結(jié)果表明,BTG2與小尾寒羊多脊柱性狀相關(guān),BTG3對豬骨骼肌生長具有重要作用[19-21],但未見BTG/TOB家族與綿羊肌肉發(fā)育相關(guān)的報道。

      胚胎期是動物生長發(fā)育的關(guān)鍵階段,決定了其早期甚至成年期生長發(fā)育的表型性狀。特克賽爾羊為引入肉用品種綿羊,具有典型的雙肌表型;烏珠穆沁羊是肉脂兼用型本地品種綿羊。兩品種生長發(fā)育性狀存在明顯差異,是研究綿羊肌肉生長發(fā)育的理想模型。本研究以特克賽爾羊和烏珠穆沁羊為研究對象,通過綿羊不同日齡階段胎兒BTG2/3基因的表達趨勢,分析其在綿羊肌肉發(fā)育的作用;并通過慢病毒載體下調(diào)MSTN基因表達,分析基因干擾對BTG2和BTG3在成肌細胞增殖和分化中的表達影響,初步揭示MSTN與BTG/TOB家族的關(guān)系,為BTG/TOB家族在綿羊肌肉發(fā)育的功能研究提供基礎(chǔ)資料。

      1 材料與方法

      1.1 材料

      特克賽爾羊(Texel)為山西省右玉縣宏宇種羊場從國外引進原種肉羊;烏珠穆沁羊(Ujimqin)來自內(nèi)蒙古自治區(qū)錫林郭勒烏珠穆沁羊業(yè)有限責任公司。上述羊場均為種養(yǎng)繁育場,實施肉羊標準化飼養(yǎng),飼喂標準及環(huán)境基本一致。

      Trizol購自Invitrogen公司(美國);DEPC水、反轉(zhuǎn)錄試劑盒購自TaKaRa公司(日本); DMEM/F12培養(yǎng)液、胎牛血清、0.25%胰酶、雙抗和PBS購自Gibco公司(美國);I 型膠原酶(Sigma,美國);CO2培養(yǎng)箱(Thermo,美國);離心機(Eppendorf 5430R,德國);倒置顯微鏡(Nikon TE2000-U,日本);實時熒光定量PCR儀(ABI7500,美國);培養(yǎng)瓶(Corning,美國)。

      1.2 方法

      1.2.1 樣品采集及RNA提取 分別在特克賽爾和烏珠穆沁母羊妊娠第85、100、120和135天進行剖腹產(chǎn),各階段分別取3只胚胎。立即取背最長肌于液氮中保存,用于不同階段背最長肌RNA分析。100日齡各胚胎另取半膜肌、半腱肌和股四頭肌于液氮中保存,用于不同組織RNA分析。

      采用Trizol一步法提取總RNA。肌肉組織放入盛有液氮的研缽中充分研磨,與1 mL Trizol共同加入無RNA酶的1.5 mL離心管;細胞樣先用1 mL PBS清洗兩次,24孔板加入200 μL Trizol,反復吹打,使細胞溶解。之后按照生產(chǎn)商提供的方法提取。檢測總RNA的質(zhì)量及完整性。

      1.2.2 成肌細胞的分離及分化培養(yǎng) 無菌條件取出背最長肌,70%酒精處理5~10 s;用組織鑷及剪刀小心去除非肌肉組織,用剪刀將剝離的肌肉剪成約1 mm3的小塊,加入2 g·L-1的I型膠原酶,37 ℃消化30 min。吹打均勻后,靜止沉淀5 min,吸取上層細胞懸液置于離心管中,1 000 r·min-1離心5 min,棄上清;加入含20% FBS的DMEM/F12基礎(chǔ)培養(yǎng)基(生長培養(yǎng)基),移液器吹打成單細胞懸液,移入培養(yǎng)瓶中,37 ℃ 5% CO2培養(yǎng)箱中培養(yǎng),采用差速貼壁法進行細胞純化。細胞接種于培養(yǎng)瓶1 h后,將未貼壁細胞移入另一培養(yǎng)瓶中進行培養(yǎng),重復一次,則后貼壁培養(yǎng)的細胞為較純的成肌細胞,24 h后進行首次換液,換液后可去血細胞與其他肌源細胞等。

      處理成單細胞后按每孔1.0×106個細胞密度將肌細胞接種于6孔板,待細胞貼壁后,將基礎(chǔ)培養(yǎng)基換為含2%馬血清的DMEM/F12培養(yǎng)基(分化培養(yǎng)基),置于37 ℃,5% CO2培養(yǎng)箱中培養(yǎng)。一般48 h后會看到細胞形態(tài)變化,72 h后可看到明顯肌管。

      1.2.3MSTN慢病毒干擾載體及其感染方法 基于本實驗室的前期報道[22],選用位點322設(shè)計綿羊MSTNsiRNA,利用靶位點設(shè)計序列,Sense:5′- TaaGACGATGACTACCACGTTACTCGAGTAA-CGTGGTAGTCATCGTCttTTTTTTC-3′,Antis-ense:5′-TCGAGAAAAAAaaGACGATGACTAC-CACGTTACTCGAGTAACGTGGTAGTCATCG-TCttA-3′,并由上海吉凱基因化學技術(shù)有限公司進行pFU-GW-myostatin慢病毒包裝。

      感染前24 h接種1×106個細胞于6孔培養(yǎng)板中。感染前棄去原有培養(yǎng)基,更換轉(zhuǎn)染試劑(1 μL濃度為5 μg·mL-1的polybrene,10 μL滴度為109TU·mL-1的慢病毒載體,900 μL的增強轉(zhuǎn)染試劑)。8~12 h以后觀察細胞狀態(tài)。如果細胞狀態(tài)與未感染組無明顯差異,表明慢病毒對細胞沒有明顯毒性作用,除去上清,更換為新鮮培養(yǎng)基培養(yǎng)。感染72 h后,觀察熒光表達情況并收集細胞。

      1.2.4 實時熒光定量PCR 用PrimeScript?1st Strand cDNA Synthesis Kit(TaKaRa,日本)試劑盒合成cDNA,試驗操作按產(chǎn)品說明書進行。以cDNA為模板,引物參照本實驗室前期設(shè)計的序列(表1),β-actin作為內(nèi)參基因。ABI 7500熒光定量PCR儀進行qPCR試驗,利用Power SYBR?Green PCR Master Mix試劑盒(ABI,美國)進行qPCR反應,每個樣品設(shè)3個重復,反應體系為20 μL:2×SYBR Premix ExTaq10 μL,上下游引物(10 μmol·L-1)各0.4 μL, cDNA模板100 ng,加入滅菌蒸餾水至20 μL。反應條件:95 ℃預變性10 min;95 ℃變性15 s,60 ℃退火延伸30 s,40個循環(huán)。

      表1 Real-time PCR引物序列

      Table 1 Primer sequences for Real-time PCR analysis

      目的基因Targetgene引物序列(5′?3′)Primersequence擴增產(chǎn)物/bpPCRproductBTG2F:CTATTCTCAGAGACCTGTAGATGTTR:GCATTACAGCAAGGCAAGGGTCGGT145BTG3F:AGTCACTACCCTCCTCCCATTCCR:GGCTTATTCTACCTTCGCTCAACA199MSTNF:TTTTGCCCAAGGCTCCTCCR:CCGTCGTAACGTGGTAGTCATCG108β?actinF:TTCCAGCCTTCCTTCCTGR:CCGTGTTGGCGTAGAGGT109

      1.2.5 數(shù)據(jù)分析 數(shù)據(jù)分析用SAS 9.2軟件,單因素方差分析及t檢驗完成。

      2 結(jié) 果

      2.1 特克賽爾和烏珠穆沁羊不同日齡胎兒背最長肌MSTN、BTG2/3的表達趨勢

      用Trizol一步法提取肌肉組織總RNA,將提取的總RNA進行瓊脂糖凝膠電泳分析,結(jié)果顯示,28S、18S清晰可見,且28S條帶亮度約為18S的兩倍(圖略)。經(jīng)紫外分光光度儀測定,所提取總RNA的A260 nm/A280 nm值均為1.8~2.0,表明無蛋白和酚等污染,可用于后續(xù)試驗。

      烏珠穆沁和特克賽爾羊不同日齡胎兒的背最長肌MSTN和BTG2/3 的Real-time PCR檢測結(jié)果顯示,對于MSTN基因,特克賽爾羊胎兒MSTN表達量持續(xù)下降,而烏珠穆沁羊胎兒呈先下降后上升趨勢,100 d表達量最低,且與特克賽爾羊差異顯著(P<0.05)(圖1A);對于BTG2基因,特克賽爾羊胎兒BTG2表達量先升高后降低,100 d表達量達到頂峰,135日齡表達最低;而烏珠穆沁羊胎兒85 d表達量最高,100 d出現(xiàn)第一次低谷,120 d有另一個高峰,出生前即135 d表達量最低(圖1B);對于BTG3基因,特克賽爾羊胎兒表現(xiàn)出與BTG2相同的趨勢,烏珠穆沁羊胎兒表現(xiàn)出與BTG2相反的趨勢——100 d表達最高,85及120 d表達最低(圖1C)。

      A.背最長肌MSTN表達量變化;B.背最長肌BTG2表達量變化;C.背最長肌BTG3表達量變化。*代表差異顯著(P<0.05),** 代表差異極顯著(P<0.01)。下同A.Changes for expression of MSTN;B.Changes for expression of BTG2;C.Changes for expression of BTG3.Analysis of variance was performed and significant variations are indicated by the *(P<0.05) and **(P<0.01).The same as below圖1 特克賽爾和烏珠穆沁羊不同日齡胎兒背最長肌MSTN、BTG2和BTG3的表達趨勢Fig.1 Expression of MSTN,BTG2 and BTG3 in longissimus dorsi at different fetal stages in Texel and Ujimqin

      2.2 特克賽爾和烏珠穆沁羊100日齡胎兒不同骨骼肌中BTG2/3的差異表達

      烏珠穆沁和特克賽爾羊胎兒100 d不同骨骼肌組織BTG2/3 Real-time PCR檢測結(jié)果顯示,對于BTG2基因,特克賽爾羊背最長肌和半腱肌的相對表達量極顯著高于烏珠穆沁羊(P<0.01),而半膜肌熒光顯微鏡觀察結(jié)果顯示,細胞綠色熒光表達效率在95%以上,且傳代后仍有高強度熒光表達,觀察和股四頭肌兩種綿羊差異不顯著(圖2A);對于BTG3基因,烏珠穆沁羊背最長肌和半膜肌的相對表達量極顯著高于特克賽爾羊(P<0.01),而半腱肌和股四頭肌兩種綿羊差異不顯著(圖2B)。

      2.3 慢病毒載體干擾效果驗證

      MSTN慢病毒干擾載體轉(zhuǎn)染成肌細胞72 h后,轉(zhuǎn)染前后成肌細胞形態(tài),沒有發(fā)生明顯變化。

      BM.半膜??;BZ.背最長??;BJ.半腱肌;GST.股四頭肌BM.Semimembranosus;BZ.Longissimus dorsi;BJ.Semitendinosus;GST.Quadriceps femoris圖2 特克賽爾和烏珠穆沁羊 100日齡胎兒不同骨骼肌BTG2、BTG3差異表達Fig.2 Expression of BTG2 and BTG3 in the skeletal muscle at fetal 100 d of age in Texel and Ujimqin

      增殖和分化階段感染成肌細胞,MSTNqPCR檢測結(jié)果顯示,增殖和分化階段感染后的細胞MSTN表達量極顯著低于空白對照(P<0.01),且增殖階段MSTN表達量約4倍于分化階段,差異極顯著(P<0.01)(圖3),說明成肌分化過程抑制MSTN表達,與前期研究相符[23]。

      圖3 慢病毒干擾MSTN后差異表達Fig.3 Expression analysis of MSTN after transfected by lentiviral vectors

      2.4MSTN干擾對BTG2、BTG3表達的影響

      成肌細胞增殖和分化階段進行慢病毒感染,BTG2/3 Real-time PCR檢測結(jié)果表明,與空白對照相比,增殖階段MSTN干擾后,BTG2和BTG3表達量均下調(diào),差異極顯著(P<0.01);分化階段MSTN干擾后,BTG2和BTG3表達量同樣降低,差異極顯著(P<0.01)(圖4);且兩基因增殖階段表達量極顯著高于分化階段(P<0.01)。結(jié)果提示MSTN會直接或間接促進BTG2和BTG3表達。

      si-MSTN BTG2.MSTN干擾后BTG2表達量;CON BTG2.對照組BTG2表達量;si-MSTN BTG3.MSTN干擾后BTG3表達量;CON BTG3.對照組BTG3表達量si-MSTN BTG2.BTG2 expression level after MSTN interference;CON BTG2.BTG2 expression level after control;si-MSTN BTG3.BTG3 expression level after MSTN interference;CON BTG3.BTG3 expression level of control圖4 MSTN干擾對BTG2、BTG3影響Fig.4 Impact of MSTN interference on BTG2 and BTG3

      3 討 論

      BTG/Tob家族成員可通過正向或負向調(diào)節(jié)多種信號通路作用于細胞周期循環(huán),實現(xiàn)抗增殖特性[24];多種信號通路也可以靶向BTG/Tob因子,影響其表達、穩(wěn)定性、活性甚至蛋白定位[1]。目前,對BTG/Tob家族的了解主要集中在癌癥發(fā)生。視黃酸處理乳腺癌細胞后,引起B(yǎng)TG2表達活性升高,進而通過降低CDK4活性導致癌細胞周期異常[25];腎癌組織中由于DNA甲基化引起B(yǎng)TG3啟動子失活,導致其表達量降低[26]。MSTN基因是TGF-β超家族成員,骨骼肌生長的負調(diào)控因子。在MSTN的作用下,成肌細胞的細胞周期聚集在G0/G1階段從而停止生長[27-28]。迄今為止,已經(jīng)發(fā)現(xiàn)綿羊、牛、狗、小鼠及德國一名兒童攜帶有遺傳突變而功能失活的MSTN基因,產(chǎn)生肌肉急劇增加的雙肌表型[29-33]。近年來多項研究表明,BTG2/3與肌肉發(fā)育有關(guān),但其間關(guān)系及表達調(diào)控機制仍知之甚少。本研究檢測BTG2/3基因在綿羊胚胎發(fā)育中后期骨骼肌表達模式,并分析其在特克賽爾及烏珠穆沁羊兩品種的差異表達;為了揭示BTG2/3在胚胎骨骼肌作用,利用慢病毒感染方法探討B(tài)TG2/3與MSTN之間的關(guān)系。

      特克賽爾羊為引入肉用品種羊,具有典型的雙肌表型;烏珠穆沁羊原產(chǎn)內(nèi)蒙古,屬肉脂兼用型本地品種羊[34]。胚胎期各日齡階段特克賽爾羊背最長肌重量顯著大于烏珠穆沁羊,且120日齡顯著高于100日齡[35]。MSTN表達水平結(jié)果顯示,特克賽爾羊隨胎兒日齡增加而持續(xù)下降(圖1A),烏珠穆沁羊隨胎兒日齡呈先下降后上升趨勢,100 d表達量最低,且與特克賽爾羊差異顯著(P<0.05),提示兩品種綿羊胎兒背最長肌重量可能受到MSTN調(diào)控,胎兒100 日齡可能是綿羊胎兒發(fā)育的重要時期。特克賽爾羊的BTG2表達豐度在胎兒100 d出現(xiàn)峰值,隨后表達下調(diào),而烏珠穆沁羊100 d出現(xiàn)低谷,與特克賽爾羊差異極顯著(P<0.01),其他日齡階段差異不顯著(圖1B)。特克賽爾羊的BTG3表達豐度同樣在胎兒100 d出現(xiàn)高峰,有趣的是烏珠穆沁羊相同階段表達量也出現(xiàn)高峰,且5倍于特克賽爾羊表達水平,表現(xiàn)出與BTG2完全相反的趨勢。特克賽爾羊胚胎期各日齡階段肌纖維密度連續(xù)下降,烏珠穆沁羊呈先上升后下降趨勢,100日齡具有折點[36],提示兩品種綿羊纖維密度的變化可能與BTG2/3的共同調(diào)節(jié)密切相關(guān)。X.L.Ren等研究結(jié)果顯示,BTG3可能與癌細胞的入侵和遷移相關(guān),下調(diào)BTG3促進細胞增殖[37]。提示BTG3可能與烏珠穆沁羊胚胎中后期生長特性有關(guān)。

      背最長肌不同發(fā)育階段BTG2和BTG3表達檢測可知,綿羊胎兒100 d兩基因表達差異極顯著(P<0.01),可選擇此階段不同骨骼肌組織表達型進行檢測。結(jié)果顯示,BTG2基因在特克賽爾羊背最長肌和半腱肌表達水平極顯著高于烏珠穆沁羊(P<0.01),而BTG3基因在烏珠穆沁羊背最長肌和半膜肌表達量極顯著高于特克賽爾羊(P<0.01),兩基因在股四頭肌表達差異不顯著。研究發(fā)現(xiàn),BTG2/3抑制細胞循環(huán)G1/S期[38],胚胎發(fā)育期的結(jié)果表明不同骨骼肌發(fā)育機制有差異,BTG2和BTG3在兩品種骨骼肌中發(fā)揮不同功能,BTG2對特克賽爾羊肌細胞的生長有較大作用;BTG3可能在烏珠穆沁羊胚胎骨骼肌發(fā)育中具有更重要作用。

      作為一種重要的研究工具,慢病毒載體免疫原性低,能感染分裂相和非分裂相細胞,將自身攜帶片段整合入宿主細胞基因組,起到穩(wěn)定表達效果[39-40]。pFU-GW-RNAi 慢病毒載體具有綠色熒光標記,對綿羊成肌細胞感染效率達95%以上。試驗組綿羊成肌細胞MSTN基因表達量在增殖和分化階段極顯著降低(P<0.01),說明慢病毒干擾載體pFU-GW-myostatin對MSTN具有明顯沉默效果;且增殖階段MSTN表達量高于分化階段(圖3),這與MSTN抑制成肌細胞分化有關(guān)[27]。MSTN表達下調(diào)后,增殖和分化細胞BTG2和BTG3基因表達量較對照組極顯著降低(P<0.01),表明兩基因不但在成肌細胞增殖階段,也在分化階段與細胞發(fā)育密切相關(guān)。與MSTN相同,兩基因在增殖階段表達量極顯著高于分化階段(P<0.01),說明BTG2和BTG3可能主要作用于成肌細胞增殖階段,抑制細胞分化。MSTN可能通過BTG/Tob家族成員抑制綿羊成肌分化。

      100 d胚胎期,烏珠穆沁羊BTG2表達趨勢與MSTN相同(圖1A,B),成肌細胞MSTN干擾后BTG2表達量極顯著降低,說明兩基因具有正向調(diào)控機制,共同抑制綿羊胚胎期骨骼肌生長。烏珠穆沁羊背最長肌BTG3表達量極顯著高于特克賽爾羊,且表現(xiàn)出與BTG2和MSTN相反的趨勢,而成肌細胞MSTN干擾后BTG3表達量也極顯著降低,提示BTG3可能受到MSTN正向調(diào)控,但機體內(nèi)可能受到多種因子調(diào)控,二者之間相互關(guān)系及相互作用機制可通過免疫共沉淀等方法進一步研究。

      4 結(jié) 論

      本研究檢測了BTG2/3在特克賽爾和烏珠穆沁綿羊胚胎中后期背最長肌的表達模式、分析了BTG2/3在特克賽爾和烏珠穆沁羊胎兒100 d 4種不同骨骼肌中的表達差異,發(fā)現(xiàn)BTG2/3在綿羊胎兒中后期背最長肌不同發(fā)育階段表達量具有顯著差異。另外利用基因干擾技術(shù)驗證了BTG2/3可能參與Myostatin信號通路。本研究對綿羊胚胎發(fā)育的分子機制及不同品種綿羊胚胎發(fā)育的分子水平差異具有重要意義,且對BTG2/3在綿羊胚胎期發(fā)育作用具有重要補充。

      [1] MAUXION F,CHEN C Y,SERAPHIN B,et al.Btg/Tob factors impact deadenylases[J].TrendsBiochemSci,2009,34(12):640-647.

      [2] MATSUDA S,KAWAMURA-TSUZUKU J,OHSUGI M,et al.Tob,a novel protein that interacts with p185erbb2,is associated with anti-proliferative activity[J].Oncogene,1996,12(4):705-713.

      [3] YOSHIDA Y,MATSUDA S,IKEMATSU N,et al.Ana,a novel member of tob/btg1 family,is expressed in the ventricular zone of the developing central nervous system[J].Oncogene,1998,16(20):2687-2693.

      [4] IKEMATSU N,YOSHIDA Y,KAWAMURA-TSUZUKU J,et al.Tob2,a novel anti-proliferative Tob/Btg1 family member,associates with a component of the Ccr4 transcriptional regulatory complex capable of binding cyclin-dependent kinases[J].Oncogene,1999,18(52):7432-7441.

      [5] BUANNE P,CORRENTE G,MICHELI L,et al.Cloning of Pc3b,a novel member of the Pc3/Btg/Tob family of growth inhibitory genes,highly expressed in the olfactory epithelium[J].Genomics,2000,68(3):253-263.

      [6] ROUAULT J P,RIMOKH R,TESSA C,et al.Btg1,a member of a new family of antiproliferative genes[J].EMBOJ,1992,11(4):1663-1670.

      [7] ROUAULT J P,PREVOT D,BERTHET C,et al.Interaction of Btg1 and p53-regulated Btg2 gene products with Mcaf1,the murine homolog of a component of the yeast Ccr4 transcriptional regulatory complex[J].JBiolChem,1998,273(35):22563-22569.

      [8] LIN W J,GARY J D,YANG M C,et al.The mammalian immediate-early Tis21 protein and the leukemia-associated Btg1 protein interact with a protein-arginine N-methyltransferase[J].JBiolChem,1996,271(25):15034-15044.

      [9] PREVOT D,VOELTZEL T,BIROT A M,et al.The leukemia-associated protein Btg1 and the p53-regulated protein Btg2 interact with the homeoprotein Hoxb9 and enhance its transcriptional activation[J].JBiolChem,2000,275(1):147-153.

      [10] ROUAULT J P,F(xiàn)ALETTE N,GUEHENNEUX F,et al.Identification of Btg2,an antiproliferative p53-dependent component of the dna damage cellular response pathway[J].NatGenet,1996,14(4):482-486.

      [11] DURIEZ C,F(xiàn)ALETTE N,AUDOYNAUD C,et al.The human Btg2/Tis21/Pc3 gene:genomic structure,transcriptional regulation and evaluation as a candidate tumor suppressor gene[J].Gene,2002,282(1-2):207-214.

      [12] ZHU J,JIANG J,ZHOU W,et al.The potential tumor suppressor p73 differentially regulates cellular p53 target genes[J].CancerRes,1998,58(22):5061-5065.

      [13] 韓立霞,孫少華,白瑞景,等.B細胞異位基因2(Btg2)多態(tài)性與河北小尾寒羊多脊椎性狀的關(guān)聯(lián)分析[J].農(nóng)業(yè)生物技術(shù)學報,2010,18(1):81-86. HAN L X,SUN S H,BAI R J,et al.Association between polymorphism of B-cell translocation gene 2(Btg2) and multi-vertebrae traits of Hebei small tail han sheep[J].JournalofAgriculturalBiotechnology,2010,18(1):81-86.(in Chinese)

      [14] KAMAID A,GIRALDEZ F.Btg1 and Btg2 gene expression during early chick development[J].DevDyn,2008,237(8):2158-2169.

      [15] GUARDAVACCARO D,CORRENTE G,COVONE F,et al.Arrest of G(1)-S progression by the p53-inducible gene Pc3 is rb dependent and relies on the inhibition of cyclin D1 transcription[J].MolCellBiol,2000,20(5):1797-1815.

      [16] RODIER A,MARCHAL-VICTORION S,ROCHARD P,et al.Btg1:a triiodothyronine target involved in the myogenic influence of the hormone[J].ExpCellRes,1999,249(2):337-348.

      [17] YONEDA M,SUZUKI T,NAKAMURA T,et al.Deficiency of antiproliferative family protein ana correlates with development of lung adenocarcinoma[J].CancerSci,2009,100(2):225-232.

      [18] MIYAI K,YONEDA M,HASEGAWA U,et al.Ana deficiency enhances bone morphogenetic protein-induced ectopic bone formation via transcriptional events[J].JBiolChem,2009,284(16):10593-10600.

      [19] MATSUDA S,ROUAULT J,MAGAUD J,et al.In search of a function for the Tis21/Pc3/Btg1/Tob family[J].FEBSLett,2001,497(2-3):67-72.

      [20] FENG Z,TANG Z L,LI K,et al.Molecular characterization of the Btg2 and Btg3 genes in fetal muscle development of pigs[J].Gene,2007,403(1-2):170-177.[21] TANG Z,LI Y,WAN P,et al.Longsage analysis of skeletal muscle at three prenatal stages in tongcheng and landrace pigs[J].GenomeBiol,2007,8(6):R115.

      [22] LU J,SUN D,XU L,et al.Selection of an effective small interference RNA to silence myostatin gene expression in sheep fibroblast cells[J].BiochemGenet,2012,50(11-12):838-847.

      [23] 魏彩虹,王 皓,杜立新,等.烏珠穆沁羊成肌細胞的誘導分化及相關(guān)基因表達[J].農(nóng)業(yè)生物技術(shù)學報,2012,20(3):283-288. WEI C H,WANG H,DU L X,et al.Induced differentiation and related gene expression of Ujumqin sheep myoblast cellsinvitro[J].JournalofAgriculturalBiotechnology,2012,20(3):283-288.(in Chinese)

      [24] WINKLER G S.The mammalian anti-proliferative Btg/Tob protein family[J].JCellPhysiol,2010,222(1):66-72.

      [25] DONATO L J,SUH J H,NOY N.Suppression of mammary carcinoma cell growth by retinoic acid:the cell cycle control gene Btg2 is a direct target for retinoic acid receptor signaling[J].CancerRes,2007,67(2):609-615.

      [26] MAJID S,DAR A A,AHMAD A E,et al.Btg3 tumor suppressor gene promoter demethylation,histone modification and cell cycle arrest by genistein in renal cancer[J].Carcinogenesis,2009,30(4):662-670.

      [27] LANGLEY B,THOMAS M,BISHOP A,et al.Myostatin inhibits myoblast differentiation by down-regulating MyoD expression[J].JBiolChem,2002,277(51):49831-49840.

      [28] JOULIA D,BERNARDI H,GARANDEL V,et al.Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin[J].ExpCellRes,2003,286(2):263-275.

      [29] SCHUELKE M,WAGNER K R,STOLZ L E,et al.Myostatin mutation associated with gross muscle hypertrophy in a child[J].NEnglJMed,2004,350(26):2682-2688.

      [30] MCPHERRON A C,LAWLER A M,LEE S J.Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J].Nature,1997,387(6628):83-90.

      [31] JOHNSON P L,MCEWAN J C,DODDS K G,et al.A directed search in the region of GDF8 for quantitative trait loci affecting carcass traits in texel sheep[J].JAnimSci,2005,83(9):1988-2000.

      [32] MOSHER D S,QUIGNON P,BUSTAMANTE C D,et al.A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs[J].PLoSGenet,2007,3(5):e79.

      [33] GROBET L,MARTIN L J,PONCELET D,et al.A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle[J].NatGenet,1997,17(1):71-74.

      [34] 國家畜禽遺傳資源委員會.中國畜禽遺傳資源志·羊志[M].北京:中國農(nóng)業(yè)出版社,2011. China National Commission of Animal Genetic Resource.Animal Genetic Resources in China· Sheep and Goat[M].Beijing:Chinese Agticultral Press,2011.(in Chinese)

      [35] 任航行.Texel與烏珠穆沁綿羊妊娠中、后期胎兒骨骼肌基因表達譜及組織學分析[D].北京:中國農(nóng)業(yè)科學院,2010. REN H X.Profiles of gene expression and histological analysis in fetal skeletal muscle between Texel and Ujumqin sheep(Ovisaries) during the second half of gestation[D].Beijing:Chinese Academy of Agricultural Sciences,2010.(in Chinese)

      [36] REN H,LI L,SU H,et al.Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep[J].BMCGenomics,2011(12):411.

      [37] REN X L,ZHU X H,LI X M,et al.Down-regulation of BTG3 promotes cell proliferation,migration and invasion and predicts survival in gastric cancer[J].JCancerResClinOncol,2015,141(3):397-405.

      [38] TIRONE F.The gene Pc3(Tis21/Btg2),prototype member of the Pc3/Btg/Tob family:regulator in control of cell growth,differentiation,and DNA repair[J].JCellPhysiol,2001,187(2):155-165.

      [39] STEWART S A,DYKXHOORN D M,PALLISER D,et al.Lentivirus-delivered stable gene silencing by RNAi in primary cells[J].RNA,2003,9(4):493-501.

      [40] DELENDA C.Lentiviral vectors:optimization of packaging,transduction and gene expression[J].JGeneMed,2004(6):S125-138.

      (編輯 郭云雁)

      Expression Trend ofBTG2/3 in the Mid to Late Embryonic Skeletal Muscle of Sheep and the Relationship betweenBTG2/3 andMSTN

      LIU Rui-zao1,LIU Zhen1,WU Ming-ming1,2,WANG Hui-hua1,ZHU Cai-ye1,ZHANG Li1,ZHAO Fu-ping1,WEI Cai-hong1*,DU Li-xin1*

      (1.InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China;2.CollegeofAnimalScienceandTechnology,ChinaAgriculturalUniversity,Beijing100193,China)

      The aim of this study was to analyze the expression of the sheepBTG2/3 genes in the mid to late embryonic skeletal muscle and to investigate the relationship betweenMSTNandBTG2/3.Longissimusdorsiof 85 dpc(day postconception),100 dpc,120 dpc and 135 dpc in Texel and Ujimqin sheep were collected as tested subjects.Real-time PCR was used to detect the expression ofMSTNandBTG2/3 in thelongissimusdorsi.Semimembranosus,longissimusdorsi,semitendinosus and quadriceps femoris of 100 dpc in the Texel and Ujimqin sheep were selected to detect the expression ofBTG2/3.Lentiviral vectors pFU-GW-myostatin were constructed to infect sheep myoblasts at the proliferation and differentiation stage stably and the expression ofBTG2/3 were detected at different stages.The results showed that a downward expression trend was emerged ofMSTNin Texel fetuses,whereas the expression level in Ujimqin increased after decline at 100 dpc.The expression ofBTG2 andBTG3 in Texel had downward trend after rising on 100 dpc,butBTG2 represented decrease-increase-decrease trend andBTG3 represented opposite trend toBTG2 in Ujimqin.Expression levels in different muscle on 100 dpc in the Texel and Ujimqin showed that,BTG2 gene expression was significantly higher(P<0.01) in Texellongissimusdorsiand semitendinosus than that in Ujimqin,andBTG3 gene expression was significantly lower(P<0.01) in Texel semimembranosus andlongissimusdorsithan that in Ujimqin.Transfection and interference efficiency of lentiviral vector were very high.After transfected myoblast at proliferation and differentiation stage,respectively,expression levels ofBTG2 andBTG3 also were decreased significantly(P<0.01) at both stages.The results indicate thatBTG2 andBTG3 play an important role in sheep skeletal muscle growth from the mid to late embryonic stage and may be involved in myostatin regulatory pathway.Our study provide an insight into the molecular regulation mechanism of embryonic development in sheep.

      BTG2/3;Texel;Ujimqin;fetus;myostatin interference

      10.11843/j.issn.0366-6964.2015.11.002

      2014-11-28

      優(yōu)質(zhì)肉、毛羊新品種(系)選育與關(guān)鍵技術(shù)研究及示范(2011BAD28B05-2);肉羊產(chǎn)業(yè)體系崗位科學家

      劉瑞鑿(1988-),男,河北雞澤人,碩士,主要從事動物遺傳育種方面的研究,E-mail:rzliu1988@sina.com

      *通信作者:魏彩虹,副研究員,E-mail:weicaihong@caas.cn;杜立新,教授,E-mail:lxdu@263.net

      S826;S813.3

      A

      0366-6964(2015)11-1916-08

      猜你喜歡
      烏珠穆沁成肌細胞特克
      “大學生”紅毛猩猩的人獸奇緣:愛悠悠恨悠悠
      Ang Ⅱ誘導大鼠成肌細胞萎縮模型的構(gòu)建
      烏珠穆沁部圖林·哆考
      中國音樂(2021年5期)2021-04-17 07:10:17
      湖北
      商都縣烏珠穆沁羔羊與杜烏F1羔羊初生重3月齡斷乳重對比
      猩猩變“人”之后
      成肌細胞原代培養(yǎng)及臨床應用前景*
      8-羥鳥嘌呤可促進小鼠骨骼肌成肌細胞的增殖和分化
      歐特克(中國)軟件研發(fā)有限公司正式成立
      智能制造(2015年3期)2015-04-02 18:03:15
      烏珠穆沁蒙古袍構(gòu)成及文化傳承性研究
      絲綢(2015年8期)2015-02-28 14:56:35
      龙口市| 南江县| 临洮县| 泸西县| 红河县| 新绛县| 尼玛县| 甘南县| 增城市| 尤溪县| 余姚市| 乡宁县| 依兰县| 吴堡县| 清镇市| 和平县| 北京市| 金寨县| 铜梁县| 玉环县| 自贡市| 松原市| 正宁县| 吉木乃县| 绥芬河市| 佳木斯市| 保德县| 溆浦县| 双城市| 炎陵县| 景德镇市| 嘉荫县| 远安县| 南丰县| 邮箱| 都江堰市| 榆林市| 芮城县| 无为县| 望奎县| 台东市|