馮 杰,鄧子輝,張金英,薛 輝,梁 辰,李建華,顏光濤
解放軍總醫(yī)院,北京 1008531基礎(chǔ)所生化研究室;2生化科
瘦素在海人酸誘導(dǎo)小鼠顳葉癲癇海馬損傷中的作用
馮 杰1,鄧子輝1,張金英1,薛 輝1,梁 辰1,李建華1,顏光濤2
解放軍總醫(yī)院,北京 1008531基礎(chǔ)所生化研究室;2生化科
目的探討瘦素(Leptin)與顳葉癲癇發(fā)生、發(fā)展過程的關(guān)系。方法外源Leptin注射C57BL/6J小鼠后,右側(cè)海馬微量注射200 ng海人酸(kainic acid,KA)誘導(dǎo)顳葉癲癇,記錄小鼠癲癇評(píng)分,1周后觀察小鼠海馬病理變化,包括Western blot檢測(cè)Bax的表達(dá)水平,尼式染色(Nissl staining)觀察海馬Hilus區(qū)神經(jīng)元丟失,免疫熒光檢測(cè)Hilus區(qū)星形膠質(zhì)細(xì)胞活化與增殖。結(jié)果在200 ng KA誘導(dǎo)的顳葉癲癇模型基礎(chǔ)上,10 mg/kg外源Leptin預(yù)處理后,癲癇評(píng)分增加約52%,Bax表達(dá)水平升高約75%(P<0.05),海馬Hilus區(qū)神經(jīng)元丟失嚴(yán)重,星形膠質(zhì)細(xì)胞過度活化。結(jié)論Leptin增加了KA誘導(dǎo)的神經(jīng)元凋亡,加重KA誘導(dǎo)的神經(jīng)病理過程。
瘦素;海人酸;顳葉癲癇;星形膠質(zhì)細(xì)胞;神經(jīng)元;海馬Hilus
顳葉癲癇(temporal lobe epilepsy,TLE)占難治性癲癇60%以上,異常同步放電起源于顳葉,其中內(nèi)側(cè)顳葉癲癇是顳葉癲癇的主要類型,內(nèi)側(cè)顳葉癲癇的病灶位于顳葉內(nèi)側(cè)結(jié)構(gòu),包括海馬、海馬旁回及杏仁核,是最常見的一種局部型癲癇綜合征[1]。顳葉癲癇主要的病理表現(xiàn)是海馬硬化和異常的海馬形態(tài),并且常發(fā)生特征性的病理改變,包括神經(jīng)元的丟失和星形膠質(zhì)細(xì)胞活化。星形膠質(zhì)細(xì)胞活化聚集形成瘢痕,神經(jīng)元丟失最終導(dǎo)致海馬萎縮硬化[2]。顳葉癲癇的早期損傷主要包括海馬Hilus、CA1和CA3區(qū)神經(jīng)元的丟失,導(dǎo)致異常的突觸間的連接,在外界刺激下神經(jīng)元異常同步放電從而誘發(fā)癲癇。瘦素(Leptin)是由肥胖基因(obese gene,OB)編碼的16 kU的蛋白,包含167個(gè)氨基酸,血液中是去除21個(gè)氨基酸信號(hào)肽的多肽[3]。瘦素主要由脂肪細(xì)胞分泌的,具有調(diào)節(jié)能量代謝等生物學(xué)功能。研究發(fā)現(xiàn),瘦素受體(ObR)在腦內(nèi)很多部位表達(dá)[4],包括下丘腦、海馬等,瘦素通過其受體可影響大腦神經(jīng)元和膠質(zhì)細(xì)胞凋亡或增殖。本研究探討瘦素和神經(jīng)元丟失、星形膠質(zhì)細(xì)胞活化的關(guān)系,從而認(rèn)識(shí)瘦素對(duì)顳葉癲癇的病理發(fā)展的作用。
1材料 C57BL/6J小鼠(SPF級(jí),60只),8周齡,雄性,體質(zhì)量20 ~ 22 g,購自解放軍總醫(yī)院醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物中心;標(biāo)準(zhǔn)飼料(10% KJ%fat,北京中興飼料);海人酸(kainic acid,KA)(Sigma Chemical Co. St Louis,MO,USA);人重組Leptin(Peprotech公司);三羥甲基氨基甲烷(Tris堿)(北京益利精細(xì)化學(xué)品公司);腦立體定位儀(ZS-B/C,北京眾實(shí)迪創(chuàng)科技發(fā)展有限責(zé)任公司);5μl微量進(jìn)樣器Microliter Syringes(上海高鴿工貿(mào)有限公司);乙醚(北京益利精細(xì)化學(xué)品公司);甲苯胺藍(lán)(Sigma Chemical Co. St Louis,MO,USA);RIPA裂解液、BCA蛋白定量試劑盒、Western Blot超敏發(fā)光液(北京普利萊基因技術(shù)公司);一抗:Bax(Epitomics公司),β-actin(Santa Cruz)膠質(zhì)纖維酸性蛋白(GFAP,Cell Signaling Technology Inc. #3670)、瘦素受體(ObR,Santa Cruz Biotechnology);二抗:山羊抗鼠Alexa Fluor(R)488,山羊抗兔Alexa Fluor(R) 555(1∶400,Cell Signaling Technology Inc.)、山羊抗兔IgG/辣根酶標(biāo)記(北京中衫金橋公司);Hochest33342(Sigma);檸檬酸鹽緩沖液(北京普利萊基因技術(shù)公司)。
2顳葉癲癇小鼠模型的建立[5]將C57BL/6J小鼠分為0.9%氯化鈉注射組(對(duì)照組,10只),Leptin注射組(Leptin,10只),海人酸注射組(KA組,20只),Leptin + KA注射組(LepKA組,20只)。將小鼠乙醚麻醉后,置于腦立體定位儀上,以大腦bregma為原點(diǎn)的海馬定位注射坐標(biāo):-2.0、-1.8、-2.3 (右側(cè)海馬),進(jìn)行單側(cè)注射海人酸200 ng(100 ng/ μl,2 μl)后,速度2 μl/5 min,注射結(jié)束留注射器5 min,縫合頭皮,碘伏消毒,放入籠中飼養(yǎng)1周。對(duì)照組以0.9%氯化鈉注射液代替海人酸,其余步驟和注射方式同海人酸;Leptin組以(10 mg/ kg)代替海人酸,其余步驟和注射方式同海人酸;LepKA組,在注射海人酸30 min前,小鼠腹腔注射Leptin(10 mg/kg),然后進(jìn)行右側(cè)海馬微量注射海人酸。
3行為學(xué)評(píng)分 0.9%氯化鈉注射液、Leptin、海人酸注射后4 h,根據(jù)Racine分級(jí)標(biāo)準(zhǔn)[6]進(jìn)行癇性評(píng)分:0分:無驚厥;1分:咀嚼運(yùn)動(dòng)、眨眼、胡須顫抖等面部肌肉抽搐;2分:頸部肌肉抽搐,節(jié)律點(diǎn)頭;3分:單側(cè)前肢震顫,頸部肌肉痙攣;4分:雙前肢陣攣,后肢站立;5分:身體持續(xù)性強(qiáng)直,跌倒伴陣攣。記錄小鼠癲癇評(píng)分,作平均值。
4Western blot檢測(cè)Bax 小鼠處死后,取腦剝離右側(cè)海馬,放入RIPA蛋白裂解液,勻質(zhì)離心提取總蛋白,BCA法蛋白定量。蛋白上樣量為50 μg,在質(zhì)量分?jǐn)?shù)為10%的SDS-PAGE上進(jìn)行垂直電泳,然后電轉(zhuǎn)移到硝酸纖維素膜上(100 V,100 min),將硝酸纖維素膜放入含5%脫脂奶粉(TBST溶解)塑料袋中,放入搖床37℃封閉1 h,將稀釋好的一抗,Bax(1∶1 000)、β-actin(1∶500),4℃封閉過夜。取出后放室溫30 min,TBS/T漂洗膜3次× 10 min,加入稀釋好的二抗(1∶3 000),37℃孵育30 min,TBS/T漂洗硝酸纖維素膜3次×10 min,加入發(fā)光液,暗室曝光。掃描后,使用Image Plus 6.0軟件,分析其灰度值,3次獨(dú)立實(shí)驗(yàn)求平均值。
5尼式染色(Nissl staining) 4 μm石蠟切片脫蠟至水,用磷酸鹽緩沖溶液洗2 min,放1%甲苯胺藍(lán)溶液中室溫20 min,用梯度酒精依次脫水,結(jié)果尼式小體呈深藍(lán)色顆粒,細(xì)胞核呈淡藍(lán)色,背景基本無色。
6免疫熒光雙染法觀察ObR和GFAP共表達(dá)注射海人酸后的小鼠冠狀面石蠟切片(4 μm)脫蠟至水,檸檬酸鹽緩沖溶液高壓修復(fù)5 min,5%山羊血清封閉,加入一抗瘦素受體(ObR)和膠質(zhì)纖維酸性蛋白4℃過夜,漂洗后,加二抗Alexa Fluor (R) 488,Alexa Fluor (R) 555,37℃孵育40 min,Hochest 33342染核,置于激光共聚焦顯微鏡下觀察拍照,ObR顯紅色熒光,GFAP顯綠色熒光,細(xì)胞核顯淡藍(lán)色。
7免疫熒光法觀察海馬Hilus區(qū)GFAP的表達(dá)和形態(tài)變化 4 μm石蠟切片脫蠟至水,檸檬酸鹽緩沖溶液高壓修復(fù)5 min,5%的山羊血清封閉,GFAP(1∶400) 4℃過夜,漂洗后,山羊抗鼠Alexa Fluor (R)488二抗37℃孵育40 min,Hochest33342染核,置于顯微鏡下觀察并拍照,GFAP顯綠色,細(xì)胞核顯淡藍(lán)色。
8統(tǒng)計(jì)學(xué)方法 采用GraphPad Prism軟件進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)以表示,組間比較用t檢驗(yàn), P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1顳葉癲癇肥胖小鼠行為學(xué)評(píng)分 對(duì)照組和Leptin組小鼠行為評(píng)分為0,無癲癇樣發(fā)作,LepKA組Racine行為學(xué)評(píng)分為4.1分,顯著高于KA組2.7分,癲癇加約52%。見圖1。
2Leptin降低了顳小鼠海馬的抗凋亡能力對(duì)照組與Leptin組間Bax表達(dá)水平無差異,KA誘導(dǎo)模型后,Bax表達(dá)水平明顯增加(aP<0.01),在進(jìn)行KA誘導(dǎo)前,外源給予Leptin預(yù)處理組(LepKA組)Bax表達(dá)水平相對(duì)于模型組升高了約75%(P<0.01)。見圖2。
3光鏡下觀察神經(jīng)元丟失情況 Leptin加重顳葉癲癇小鼠模型海馬Hilus區(qū)神經(jīng)元丟失,小鼠冠狀面切片(4 μm)尼式染色顯示KA組海馬Hilus區(qū)神經(jīng)元發(fā)生丟失,與KA組相比,Leptin預(yù)處理明顯加重海馬Hilus區(qū)神經(jīng)元的丟失(LepKA組),同時(shí)可觀察到Hilus區(qū)變得彌散。見圖3。
4KA處理后海馬Hilus區(qū)瘦素受體與星形膠質(zhì)細(xì)胞共定位 激光共聚焦鏡下觀察模型組小鼠海馬免疫熒光染色顯示ObR與GFAP共定位,星形膠質(zhì)細(xì)胞表達(dá)ObR,Leptin可通過ObR作用于星形膠質(zhì)細(xì)胞,影響了星形膠質(zhì)細(xì)胞的形態(tài)。見圖4。
5Leptin處理后星形膠質(zhì)細(xì)胞變化 免疫熒光顯示,對(duì)照組與Leptin組間無差異,與KA組相比,Leptin預(yù)處加重了星形膠質(zhì)細(xì)胞的活化和形態(tài)的改變,LepKA組中海馬Hilus區(qū)活化的星形膠質(zhì)細(xì)胞變長加粗,Leptin預(yù)處理加重了顳葉癲癇的病理特征。見圖5。
圖 1 瘦素預(yù)處理后對(duì)海人酸誘導(dǎo)顳葉癲癇小鼠抽搐評(píng)分的影響(aP<0.05, vs Saline組;bP<0.05, vs KA組,每組n=8)Fig. 1 Effect of leptin pretreatment on seizure scores of mice after KA-induced TLE (aP<0.05, vs Saline group, n=8;bP<0.05, vs KA group, n=8)
圖 2 瘦素預(yù)處理后對(duì)海人酸誘導(dǎo)海馬凋亡蛋白Bax表達(dá)的影響(aP<0.05, vs Saline組;bP<0.05, vs KA組,每組n=4)Fig. 2 Effect of leptin pretreatment on KA-induced expression of hippocampal apoptosis protein Bax (aP<0.05, vs Saline group, n=4;bP<0.05, vs KA group, n=4)
圖 3 瘦素預(yù)處理后對(duì)海人酸誘導(dǎo)的海馬Hilus區(qū)神經(jīng)元丟失的影響Fig. 3 Effect of leptin pretreatment on KA-induced neuron loss of hippocampal Hilus region
圖 4 瘦素受體和活化的星形膠質(zhì)細(xì)胞共表達(dá)Fig. 4 Coexpression of ObRs and reactive astrocytes
圖 5 瘦素預(yù)處理后對(duì)海人酸誘導(dǎo)的海馬Hilus區(qū)星形膠質(zhì)細(xì)胞活化的影響Fig. 5 Effect of leptin pretreatment on KA-induced astrocyte activation of hippocampal Hilus region
癲癇是神經(jīng)系統(tǒng)中僅次于腦血管疾病的第二大病種,大部分可以用藥物控制,30%癲癇患者會(huì)發(fā)展為難治性癲癇,其中顳葉癲癇占很大部分。顳葉癲癇常見的病理學(xué)改變是海馬硬化、萎縮、海馬特定部位神經(jīng)元丟失,膠質(zhì)細(xì)胞增生[7]。苔蘚纖維出芽是人類顳葉癲癇的典型病理特征,苔蘚纖維是齒狀回顆粒細(xì)胞的軸突,正常情況下苔蘚纖維是同海馬Hilus區(qū)和CA3區(qū)錐體細(xì)胞的樹突建立聯(lián)系,在海人酸誘導(dǎo)損傷的情況下,Hilus區(qū)神經(jīng)元和CA3區(qū)神經(jīng)元顯著丟失,苔蘚纖維與靶細(xì)胞失去聯(lián)系,觸發(fā)苔蘚纖維異常出芽與自身胞體和樹突形成自身反饋的興奮性突觸,另外內(nèi)分子層的傳入纖維起始于Hilus區(qū)神經(jīng)元,Hilus區(qū)神經(jīng)元的丟失使苔蘚狀纖維發(fā)芽構(gòu)成新的傳入通路,形成異常的自反饋,在癲癇反復(fù)發(fā)作中起到重要作用[8-10],海馬Hilus區(qū)在癲癇的發(fā)作中也起著重要作用。本研究采用海人酸誘導(dǎo)的顳葉癲癇小鼠模型,重點(diǎn)觀察小鼠海馬Hilus區(qū)的病理變化。
瘦素是一種主要由脂肪細(xì)胞分泌并釋放入血的多肽類激素,其可通過血腦屏障作用于中樞神經(jīng)系統(tǒng)調(diào)節(jié)能量代謝[11]。近年絕大部分研究表明,瘦素具有減輕神經(jīng)損傷的作用,如在腦缺血、阿爾茨海默病、帕金森病,谷氨酸誘導(dǎo)的癲癇中均有保護(hù)作用[12-14]。少量研究表明,高瘦素水平對(duì)癲癇的發(fā)生具有促進(jìn)作用[15],但是具體原因還不清楚。根據(jù)Lynch等[15]的研究,本文章探討腹腔注射(10mg/kg)瘦素在海人酸誘導(dǎo)的顳葉癲癇模型中的作用以及可能的潛在機(jī)制。
本研究觀察了Hilus區(qū)的神經(jīng)元及星形膠質(zhì)細(xì)胞在顳葉癲癇小鼠海馬損傷中的變化。在海人酸誘導(dǎo)顳葉癲癇基礎(chǔ)上,瘦素預(yù)處理后小鼠的癲癇行為評(píng)分增加,病理顯示海馬Hilus區(qū)神經(jīng)元丟失加重,可能是由于小鼠海馬內(nèi)凋亡蛋白Bax表達(dá)顯著升高,導(dǎo)致神經(jīng)元抗凋亡能力下降。神經(jīng)元和膠質(zhì)細(xì)胞是人腦的主要構(gòu)成組分,膠質(zhì)細(xì)胞數(shù)量是神經(jīng)元的5 ~ 10倍,其中數(shù)量最多的是星形膠質(zhì)細(xì)胞,星形膠質(zhì)細(xì)胞平鋪并緊緊包裹著神經(jīng)元和血管,長期以來星形膠質(zhì)細(xì)胞被認(rèn)為主要對(duì)神經(jīng)元起營養(yǎng)和支持作用,對(duì)維持神經(jīng)元外的微環(huán)境起著至關(guān)作用[16]。星形膠質(zhì)細(xì)胞的活化與病理刺激的嚴(yán)重程度相關(guān),神經(jīng)膠質(zhì)酸性蛋白是星形膠質(zhì)細(xì)胞的特異性標(biāo)記物,在活化的星形膠質(zhì)細(xì)胞中顯著增加,常用來鑒別大腦損傷區(qū)與非損傷區(qū)的星形膠質(zhì)細(xì)胞[17]。在神經(jīng)元丟失后,星形膠質(zhì)細(xì)胞增殖活化既可以起到填充的作用,也可將損失部位隔離,但過度活化的星形膠質(zhì)細(xì)胞形成的瘢痕、星形膠質(zhì)細(xì)胞內(nèi)谷氨酸合成酶含量降低也是癲癇反復(fù)發(fā)作及難以治愈的重要因素[18-19]。本研究發(fā)現(xiàn),瘦素預(yù)處理后,顳葉癲癇小鼠海馬Hilus區(qū)GFAP表達(dá)增加,星形膠質(zhì)細(xì)胞過度活化,呈現(xiàn)反應(yīng)性星形膠質(zhì)細(xì)胞形態(tài)主要表現(xiàn)為細(xì)胞增生和細(xì)胞形態(tài)發(fā)生改變,包括胞體肥大變粗、突起增加、延長、聚集成簇。外源性給予一定量的瘦素會(huì)加重海人酸誘導(dǎo)的病理損傷,其可能原因是降低神經(jīng)元的抗凋亡能力,過度激活星形膠質(zhì)細(xì)胞。瘦素可能作為研究顳葉癲癇的新的切入點(diǎn)。
1 Arabadzisz D, Antal K, Parpan F, et al. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus[J]. Exp Neurol, 2005, 194(1):76-90.
2 Tang YY, Yu XF, Zhou B, et al. Short-term cognitive changes after surgery in patients with unilateral mesial temporal lobe epilepsy associated with hippocampal sclerosis[J]. J Clin Neurosci, 2014,21(8): 1413-1418.
3 Malendowicz LK, Rucinski M, Belloni AS, et al. Leptin and the regulation of the hypothalamic-pituitary-adrenal axis[J]. Int Rev Cytol, 2007, 263:63-102.
4 Marwarha G, Ghribi O. Leptin signaling and Alzheimer's disease[J]. Am J Neurodegener Dis, 2012, 1(3):245-265.
5 Sha LZ, Xing XL, Zhang D, et al. Mapping the Spatio-Temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy[J]. PLoS One, 2012, 7(6): e39152.
6 Racine RJ, Gartner JG, Burnham WM. Epileptiform activity and neural plasticity in limbic structures[J]. Brain Res, 1972, 47(1):262-268.
7 Howe KL, Dimitri D, Heyn C, et al. Histologically confirmed hippocampal structural features revealed by 3T Mr imaging: potential to increase diagnostic specificity of mesial temporal sclerosis[J]. AJNR Am J Neuroradiol, 2010, 31(9): 1682-1689.
8 Mathern GW, Pretorius JK, Babb TL. Quantified patterns of mossy fiber sprouting and neuron densities in hippocampal and lesional seizures[J]. J Neurosurg, 1995, 82(2): 211-219.
9 Wuarin JP, Dudek FE. Excitatory synaptic input to granule cells increases with time after kainate treatment[J]. J Neurophysiol,2001, 85(3): 1067-1077.
10 Barres BA, Barde Y. Neuronal and glial cell biology[J]. Curr Opin Neurobiol, 1995, 5 (5): 675-694.
11 Banks WA, Kastin AJ, Huang WT, et al. Leptin enters the brain by a saturable system Independent of insulin[J]. Peptides, 1996, 17(2):305-311.
12 梁辰,鄧子輝,張金英,等.瘦素降低全反式維甲酸誘導(dǎo)的SH-SY5Y細(xì)胞tau蛋白過度磷酸化[J].軍醫(yī)進(jìn)修學(xué)院學(xué)報(bào),2013,34(5):495-497.
13 Ghanizadeh A. Leptin as a new approach for treatment for autism and epilepsy, a hypothesis with clinical implications[J]. Brain Dev,2011, 33(1): 92.
14 韓銘,張金英,宋翠紅,等.瘦素減輕魚藤酮誘導(dǎo)的SH-SY5Y細(xì)胞損傷[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2014,35(2):170-173.
15 Lynch JJ, Shek EW, Castagné V, et al. The proconvulsant effects of leptin on glutamate receptor-mediated seizures in mice[J]. Brain Res Bull, 2010, 82(1/2): 99-103.
16 Vallon M, Chang J, Zhang H, et al. Developmental and pathological angiogenesis in the central nervous system[J]. Cell Mol Life Sci,2014, 71(18):3489-3506.
17 Zoltewicz JS, Scharf D, Yang B, et al. Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury[J]. Biomark Insights, 2012, 7:71-79.
18 Sosunov AA, Wu X, Mcgovern RA, et al. The mTOR pathway is activated in glial cells in mesial temporal sclerosis[J]. Epilepsia,2012, 53(Suppl 1): 78-86.
19 Eid T, Tu N, Lee T, et al. Regulation of astrocyte glutamine synthetase in epilepsy[J]. Neurochem Int, 2013, 63(7): 670-681.
Role of leptin in kainic acid-induced hippocampal injury of temporal lobe epilepsy in mice
FENG Jie1, DENG Zihui1, ZHANG Jinying1, XUE Hui1, LIANG Chen1, LI Jianhua1, YAN Guangtao21
Research Laboratory of Biochemistry, Basic Medical Institute;2Department of Clinic Biochemistry Chinese PLA General Hospital, Beijing 100853, China
YAN Guangtao. Email: yan301@263.net
ObjectiveTo study the association of leptin with the occurrence and development of temporal lobe epilepsy.MethodsAfter injection of exogenous leptin, a normal dose of kainic acid (KA, 200 ng per mouse) were microinjected into the right hippocampus of C57BL/6J mice to induce temporal lobe epilepsy. Then, seizures were scored with the Racine scores,the hippocampal pathogenesis of mice on day 7 after the KA injection were observed, the expression level of Bax was measured by Western blot, the neuron loss of hippocampal Hilus was detected by Nissl staining, and the astrocyte activation and proliferation of hippocampal Hilus were tested by immunofluorescence method.ResultsCompared with KA-induced model, seizure scores increased by about 52%, the expression of Bax significantly increased by about 75%, the neuron loss significantly accelerated, and astrocyte was over activated in the KA-induced model combined with the exogenous leptin (10 mg/kg) pretreatment.ConclusionLeptin pretreatment aggravates the neuron apoptosis and pathogenesis induced by KA.
leptin; kainic acid; temporal lobe epilepsy; astrocyte; neurons; hippocampal Hilus
R 742.1
A
2095-5227(2015)04-0388-05
10.3969/j.issn.2095-5227.2015.04.023
時(shí)間:2015-02-10 10:51
http://www.cnki.net/kcms/detail/11.3275.R.20150210.1051.002.html
2014-11-17
科技基礎(chǔ)性工作專項(xiàng)項(xiàng)目(2011FY130100);國家科技支撐計(jì)劃項(xiàng)目(2012BAK25B01)
Supported by the National Key Technology R&D Program(2012BAK25B01)
馮杰,男,2012級(jí)在讀碩士。研究方向:神經(jīng)退行性疾病的機(jī)制。Email: fengjie654321@126.com
顏光濤,男,主任,研究員,博士生導(dǎo)師。Email: yan301 @263.net