韓文松
(陜西理工學(xué)院 材料科學(xué)與工程學(xué)院, 陜西 漢中 723000)
聚酰亞胺/凹凸棒土復(fù)合薄膜的制備與性能研究
韓文松
(陜西理工學(xué)院 材料科學(xué)與工程學(xué)院, 陜西 漢中 723000)
首先將3-氨丙基三乙氧基硅烷與凹凸棒土進(jìn)行反應(yīng),得到氨基改性的凹凸棒土(A-ATT),再將A-ATT按不同比例與酐封端的聚酰胺酸進(jìn)行反應(yīng),最后經(jīng)熱酰胺化過(guò)程,得到一系列聚酰亞胺/凹凸棒土復(fù)合薄膜。采用紅外光譜(FT-IR)、動(dòng)態(tài)光散射(DLS)、紫外光譜(UV-vis)、熱重分析(TGA)、和動(dòng)態(tài)機(jī)械熱分析儀(DMTA)對(duì)合成的改性凹凸棒土和聚酰亞胺/凹凸棒土復(fù)合薄膜進(jìn)行了表征。UV-vis光譜表明,通過(guò)向聚酰亞胺薄膜中添加A-ATT可以改變聚酰亞胺薄膜的透光性。TGA測(cè)試結(jié)果表明,隨著A-ATT含量的增加,聚酰亞胺/凹凸棒土復(fù)合薄膜的熱穩(wěn)定性有所提高。由機(jī)械性能測(cè)試可知,當(dāng)加入少量A-ATT時(shí),聚酰亞胺/凹凸棒土復(fù)合薄膜的楊氏模量和拉伸性能有所提高,當(dāng)A-ATT含量大于2.0%時(shí),聚酰亞胺/凹凸棒土復(fù)合薄膜的機(jī)械性能有所下降。
聚酰亞胺; 凹凸棒土; 改性; 聚酰亞胺/凹凸棒土復(fù)合薄膜
近幾十年來(lái),有機(jī)-無(wú)機(jī)納米復(fù)合材料受到人們的廣泛關(guān)注,各種各樣的無(wú)機(jī)納米粒子被引入到聚合物中,以提高聚合物材料的物理和機(jī)械性能[1-3]。凹凸棒土(attapulgite,又名Palygorskite)是一種含水富鎂硅酸鹽粘土礦物,具有層鏈狀結(jié)構(gòu),其晶體呈針狀、纖維狀或者纖維狀集合體。凹凸棒土儲(chǔ)量豐富、價(jià)格低廉并且具有特殊的分散、耐高溫、抗鹽堿等性能和較強(qiáng)的吸附脫色能力,因而在很多領(lǐng)域都得到了廣泛應(yīng)用[4-5]。
聚酰亞胺作為一種特種工程材料,具有優(yōu)異的機(jī)械性能、電性能、熱性能、耐腐蝕性、耐磨性、良好的化學(xué)穩(wěn)定性等[6-8],已被廣泛應(yīng)用在航空、航天、微電子、納米、液晶、分離膜、激光等領(lǐng)域[9-11]。近年來(lái)人們用各種各樣的無(wú)機(jī)納米粒子來(lái)改性聚酰亞胺,但利用凹凸棒土改性聚酰亞胺卻很少。凹凸棒土具有很大的比表面積和大量的—OH末端官能團(tuán),將其改性后與聚酰亞胺復(fù)合,可以顯著地提高聚酰亞胺薄膜的耐熱性能、力學(xué)性能和機(jī)械性能。
筆者先將凹凸棒土用3-氨丙基三乙氧基硅烷進(jìn)行改性,再將改性后的凹凸棒土與聚酰胺酸中的酸酐基團(tuán)進(jìn)行反應(yīng),最后經(jīng)過(guò)熱酰胺化過(guò)程得到聚酰亞胺/凹凸棒土復(fù)合薄膜,并對(duì)聚酰亞胺/凹凸棒土復(fù)合薄膜的性能用紫外光譜、動(dòng)態(tài)機(jī)械熱分析儀、熱重分析等方法進(jìn)行了表征。
1.1 實(shí)驗(yàn)試劑和儀器
凹凸棒土(ATT,分析純)購(gòu)自江蘇淮源有限公司,使用前用酸進(jìn)行處理;3-氨丙基三乙氧基硅烷(APTES,分析純),均苯四甲酸酐(PMDA,分析純),4,4′-二胺基二苯醚(ODA,分析純),N-甲基吡咯烷酮(NMP),無(wú)水乙醇,丙酮,均購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司;其它試劑均為分析純。
傅立葉紅外光譜(FT-IR)在Nicolet Magana IR750型傅立葉變換紅外光譜儀(Nicolet Instrument Corporation,USA)上測(cè)定,波長(zhǎng)范圍為500~4 000 cm-1;動(dòng)態(tài)光散射(DLS)在BI-200SM型廣角動(dòng)靜態(tài)激光光散射儀(Brookhaven Instrument Corporation,USA)上測(cè)定;UV-vis使用日本Simadzu公司UV-2450型紫外可見光度計(jì)測(cè)定;熱性能采用TA Instruments SDT Q600系列熱重分析儀,在氮?dú)庵羞M(jìn)行測(cè)定,升溫速率為20 ℃/min;機(jī)械性能由Rheometric Scientific DMTA-V型動(dòng)態(tài)機(jī)械熱分析儀測(cè)定。
1.2 凹凸棒土(ATT)的改性
將3.0 g ATT、6 mL的APTES和100 mL的丙酮中加入到250 mL的三口瓶中。將其超聲振蕩80 min,然后在磁力攪拌下在60 ℃反應(yīng)10 h。之后,將混合物降溫過(guò)濾,并用乙醇洗滌。最后將得到的產(chǎn)物在40 ℃干燥12 h,得氨基改性的ATT(A-ATT)。
1.3 聚酰亞胺/凹凸棒土復(fù)合薄膜的制備
將1.05倍過(guò)量的均苯酐與ODA以NMP為溶劑,在室溫下反應(yīng)12 h,得到酐封端的聚酰胺酸(PAA),氨基改性凹凸棒土的質(zhì)量分別為PAA質(zhì)量的0.2%,0.5%,1.0%,1.5%和2.0%。將此PAA和A-ATT的混合液室溫下再反應(yīng)4 h,得PAA/ATT的混合溶液。反應(yīng)結(jié)束后,將反應(yīng)產(chǎn)物倒在玻璃板上。首先在60 ℃下處理2 h使大部分溶劑揮發(fā),再控制烘箱溫度經(jīng)80,100,120,140,160,180,200 ℃程序熱處理使亞胺化,最后剝下薄膜,得到聚酰亞胺/凹凸棒土復(fù)合薄膜。并將上述制備的不同A-ATT改性的聚酰亞胺薄膜分別命名為0.5% ATT@PI,1.0% ATT@PI,1.5% ATT@PI和2.0% ATT@PI,純聚酰亞胺薄膜的制備過(guò)程與上述復(fù)合材料薄膜的制備過(guò)程基本相同,制備過(guò)程如圖1所示。
圖1 聚酰亞胺/凹凸棒土復(fù)合薄膜的制備
2.1 紅外光譜
圖2 ATT和A-ATT的紅外光譜圖
ATT和A-ATT的化學(xué)結(jié)構(gòu)用紅外光譜進(jìn)行了表征,如圖2所示。圖2(a)為ATT的紅外光譜圖,在3 615~3 411 cm-1處出現(xiàn)了一個(gè)寬的伸縮振動(dòng)吸收峰,這是由于在ATT的表面含有各種各樣的—OH官能團(tuán)(Mg—OH,Al—OH)。在1 645 cm-1處尖的吸收峰為O—H的彎曲振動(dòng)吸收峰。在1 027 cm-1處的吸收峰為ATT中Si—O鍵的伸縮震動(dòng)吸收峰,在790 cm-1處的吸收峰為Si—O—Si的伸縮振動(dòng)吸收峰。將ATT用APTES改性后,在2 935 cm-1處出現(xiàn)了甲基和亞甲基的伸縮振動(dòng)吸收峰,在3 556和3 620 cm-1處出現(xiàn)了氨基的伸縮振動(dòng)吸收峰,如圖2(b)所示[12-13]。通過(guò)上面的分析可以看出,APTES確已與ATT反應(yīng),A-ATT已成功合成。
2.2 粒徑和粒徑分布
ATT和A-ATT的粒徑和粒徑分布用動(dòng)態(tài)光散射進(jìn)行測(cè)定,結(jié)果如圖3所示。可以看出ATT和A-ATT的粒徑大小分別為60.8和112 nm,并且它們的粒徑分布是不同的。ATT的粒徑分布非常窄,經(jīng)過(guò)APTES改性后粒徑分布變寬,粒徑分布的尖峰向大的分子尺寸方向移動(dòng)。這是因?yàn)锳-ATT的分子尺寸比ATT的分子尺寸要大,這也進(jìn)一步證明了APTES確已與ATT發(fā)生了反應(yīng)。從圖3還可以看出所有粒子的尺寸都較小,這也說(shuō)明ATT和A-ATT都具有較好的分散性[14-15]。
圖3 ATT和A-ATT的粒徑和粒徑分布曲線
2.3 透光率
PI和ATT@PI復(fù)合膜的透光率由紫外光譜儀測(cè)定。圖4為PI和ATT@PI復(fù)合膜的紫外-可見透射光譜。從圖4中可以看出,所有ATT/PI復(fù)合膜的透光率均低于90%,0.5% ATT@PI,1.0% ATT@PI,1.5% ATT@PI,2.0% ATT@PI和PI在550 nm處的透過(guò)率分別為76%,71%,67%,62%和50%,0.5% ATT@PI,1.0% ATT@PI和1.5% ATT@PI的透過(guò)率優(yōu)于純PI,而2.0% ATT@PI的透過(guò)率比PI差。這是因?yàn)楫?dāng)ATT的含量較少時(shí),它可以很好地分散于PI基體中,當(dāng)ATT的含量較多的時(shí)候,部分ATT粒子可以發(fā)生團(tuán)聚,從而使復(fù)合薄膜的透光率有所下降[16]。PI和ATT@PI復(fù)合膜的紫外反射光譜如圖5所示,可以看出隨著波長(zhǎng)的減小,PI和ATT@PI復(fù)合膜的紫外吸收峰強(qiáng)度在550 nm處顯著減小[17]。這一結(jié)果與紫外吸收光譜的結(jié)果正好一致。因此通過(guò)在聚酰亞胺基體中添加A-ATT可以顯著改變ATT@PI復(fù)合膜在紫外和近紫外區(qū)光的吸收性能。
圖4 PI和ATT@PI復(fù)合膜的紫外通過(guò)光譜 圖5 PI和ATT@PI復(fù)合膜的紫外反射光譜
2.4 熱性能測(cè)試
PI和ATT@PI復(fù)合膜的熱性能用TGA在氮?dú)庵羞M(jìn)行測(cè)試。圖6是PI和ATT@PI復(fù)合膜的TGA曲線圖??梢钥闯鏊械那€都非常相似,曲線都呈現(xiàn)出三個(gè)階段的熱失重。第一階段:50~300 ℃之前的熱失重是由于薄膜本身吸收的水分和少量A-ATT分解造成的。第二階段:430~600 ℃的熱失重是由于PI本身骨架結(jié)構(gòu)分解造成的。第三階段:600~950 ℃的熱失重是由于粘附在ATT表面的PI分解造成的。圖6還可看出,試樣的熱性能按照下面的順序變化:2.0% ATT@PI>1.5% ATT@PI>1.0% ATT@PI>0.5% ATT@PI>PI。這說(shuō)明通過(guò)加入少量的A-ATT可以改善聚酰亞胺的熱性能[18-20]。
2.5 機(jī)械性能
PI和ATT@PI復(fù)合膜的拉伸性能由動(dòng)態(tài)機(jī)械熱分析儀進(jìn)行測(cè)定。測(cè)試時(shí)首先將一定厚度的PI和SiO2@PI雜化薄膜制成10 mm×1 mm的樣品,在常溫空氣中進(jìn)行。圖7分別為1.0% ATT@PI,PI和2.0% ATT@PI的拉伸曲線圖,圖中曲線斜率就是材料的楊氏模量。從圖中可看出,PI的楊氏模量和拉伸性能介于1.0% ATT@PI和2.0% ATT@PI之間。通過(guò)加入1.0%的A-ATT,聚酰亞胺膜的楊氏模量和拉伸性能顯著提升,這是因?yàn)锳-ATT和PI基體之間具有化學(xué)鍵作用,提高了材料的機(jī)械性能。但是當(dāng)A-ATT含量超過(guò)2.0%時(shí),容易發(fā)生團(tuán)聚,導(dǎo)致其在PI基體中不能很好地分散,表現(xiàn)為材料的力學(xué)性能下降[21-22]。通過(guò)上面的分析可以得出,少量A-ATT的加入可以改善聚酰亞胺材料的機(jī)械性能。
圖6 PI和ATT@PI復(fù)合膜的熱穩(wěn)定性 圖7 PI和ATT@PI復(fù)合膜的機(jī)械性能
本文通過(guò)APTES對(duì)ATT表面進(jìn)行修飾,先得到A-ATT,再將A-ATT與酐封端聚酰胺酸反應(yīng),經(jīng)熱酰胺化過(guò)程得到一系列的ATT@PI復(fù)合膜。研究表明,在聚酰亞胺基體中加入少量的A-ATT無(wú)機(jī)粒子可以改善聚酰亞胺的透光性。當(dāng)加入少量的A-ATT時(shí),ATT@PI復(fù)合膜的耐熱性有所提高。當(dāng)A-ATT含量小于2.0%時(shí),ATT@PI復(fù)合膜的機(jī)械性能隨著A-ATT含量的增加而提高。當(dāng)A-ATT的含量大于2.0%時(shí),ATT@PI復(fù)合膜的機(jī)械性能有所下降。這些結(jié)果對(duì)發(fā)展高性能聚酰亞胺材料具有重要意義。
[1] BEHRENDT J M,FOSTER A B,McCAIRN M C,et al.Hybrid inorganic-organic composite nanoparticles from crosslinkable polyfluorenes[J].Journal of Materials Chemistry C,2013,1(20):3297-3304.
[2] KANG E S,JUNG K H,PARK D H,et al.Thermo-optic characteristics in transparent glass fabric reinforced composite using inorganic-organic hybrid materials[J].Journal of Sol-Gel Science and Technology,2012,62(3):333-337.
[3] RIEDIL R.Nanoscaled inorganic materials by molecular design[J].Chemical Society Reviews,2012,41(15):5029-5031.
[4] BAO,Yu-bin,LI Qiu-ying,XUE Peng-fei,et al.Effect of electrostatic heterocoagulation of PVM/MA grafted carbon black and attapulgite nanorods on electrical and mechanical behaviors of waterborne polyurethane nanocomposites[J].Colloid and Polymer Science,2012,290(15):1527-1536.
[5] JIA Lei,ZHOU Feng,LIU Wei-min.Janus nanoparticle magic:selective asymmetric modification of Au-Ni nanoparticles for its controllable assembly onto attapulgite nanorods[J].Chemical Communications,2012,48(99):12112-12114.
[6] CHAO Dan-ming,ZHANG Jun-feng,LIU Xin-cai,et al.Synthesis of novel poly (amic acid) and polyimide with oligoanilinein the main chain and their thermal,electrochemical,and dielectric properties[J].Polymer,2010,51(20):4518-4524.
[7] CHANG Kai-shiun,HUANG Yun-hsuan,Lee Kueir-rarn,et al.Free volume and polymeric structure analyses of aromatic polyamide membranes:A molecular simulation and experimental study[J].Journal of Membrane Science,2010,354(1):93-100.
[8] WANG Kun-li,LIU Yi-liang,LEE Jian-wei,et al.Nonvolatile electrical switching and write-once read-many-times memory effects in functional polyimides containing triphenylamine and 1,3,4-oxadiazole moieties[J].Macromolecules,2010,43(17):7159-7164.
[9] CHEN Chih-jung,YEN Hung-ju,CHEN Wen-chang,et al.Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties[J].Journal of Materials Chemistry,2012,22(28):14085-14093.
[10] LU Yun-hua,HU Zhi-zhi,XIAO Guo-yong,et al.Preparation of OMMT and Light-Colored and Transparent PI/OMMT Hybrid Composite Films[J].Advanced Materials Research,2013,634:1985-1989.
[11] LIAW Der-jang,WANG Kung-li,HUANG Ying-chi,et al.Advanced polyimide materials:Syntheses,physical properties and applications[J].Progress in Polymer Science,2012,37(7):907-974.
[12] CHEN Lu-lu,ZHAI Yun,DING Hong-yan,et al.Preparation,characterization and thermoelectricity of ATT/TiO2PANI nano-composites doped with different acids[J].Composites:Part B,2013,45(1):111-116.
[13] WANG Cheng-shuang,WANG Yu-ting,LIU Wei-jing,et al.Natural fibrous nanoclay reinforced soy polyol-based polyurethane[J].Materials Letters,2012,78(1):85-87.
[14] HE Chun-bai,HU Yi-ping,YIN Li-chen,et al.Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles[J].Biomaterials,2010,31(13):3657-3666.
[15] WEBER B,HOCHHAUS G,ADAMS W,et al.A stability analysis of a modified version of the chi-square ratio statistic:implications for equivalence testing of aerodynamic particle size distribution[J].The AAPS Journal,2013,15(1):1-9.
[16] ZANG Yong-yun,XIE Dan,CHEN Yu,et al.Electrical and thermal properties of a carbon nanotube/polycrystalline BiFeO3/Pt photovoltaic heterojunction with CdSe quantum dots sensitization[J].Nanoscale,2012,4(9):2926-2930.
[17] BITTNERA A,SCHMITTB A,BITTNER R J,et al.Characterization of stacked sol-gel films:comparison of results derived from scanning electron microscopy,UV-vis spectroscopy and ellipsometric porosimetry[J].Thin Solid Films,2012,520(6):1880-1884.
[18] HAN Wen-song,LIN Bao-ping,ZHOU Yi-dan,et al.Synthesis and properties of UV-curable hyperbranched polyurethane acrylate oligomers containing photoinitiator[J].Polymer Bulletin,2012,68(3):729-743.
[19] HAN Wen-song. Synthesis and properties of networking waterborne polyurethane/silica nanocomposites by addition of poly (ester amine) dendrimer[J]. Polymer Composites,2013,34(2):156-163.
[20] CHEN Dong-zhi,LIU Yan,HUANG Chi.Synergistic effect between POSS and fumed silica on thermal stabilities and mechanical properties of room temperature vulcanized (RTV) silicone rubbers[J].Polymer Degradation and Stability,2012,97(3):308-315.
[21] WANG Jian-feng,CHENG Qun-feng,TANG Zhi-yong.Layered nanocomposites inspired by the structure and mechanical properties of nacre[J].Chemical Society Reviews,2012,41(3):1111-1129.
[22] ROUZIC J L,DELOBELLE P,CRETIN B,et al.Simultaneous measurement of Young’s modulus and Poisson’s ratio at microscale with two-modes scanning microdeformation microscopy[J].Materials Letters,2012,68(1):370-373.
[責(zé)任編輯:謝 平]
Preparation and performance study of ATT@PI composites
HAN Wen-song
(School of Materials Science and Engineering,Shaanxi University of Technology, Hanzhong 723000, China)
The attapulgite was modified by using 3-aminopropyl triethoxysilane (APTES) as coupling agent and the amino modified attapulgite (A-ATT) was prepared at first. Then, the A-ATT reacted with the anhydride groups of polyamide acid. Finally, a series of ATT@PI composites were obtained by thermal imidization. The structures and properties of the A-ATT and ATT@PI composites were characterized by Fourier transform infrared spectrometer (FT-IR), laser light scattering, UV-vis spectra, thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). UV-vis spectra results showed that the optical transparency of the ATT@PI composites could be changed by adding A-ATT to the polyimide matrix. The TGA results showed that the thermal stabilities of the ATT@PI composites can be improved by adding a small amount of A-ATT. Moreover, the Young’s modulus and tensile strength of ATT@PI composites can be improved by adding a small amount of A-ATT, whereas weakened by more than 2% A-ATT loading.
polyimide; attapulgite; nanocomposites; modification
1673-2944(2015)02-0006-05
2014-11-08
陜西省教育廳科學(xué)研究計(jì)劃項(xiàng)目(2013JK0681)
韓文松(1973—),男,山東省日照市人,陜西理工學(xué)院講師,博士,主要研究方向?yàn)楣δ芨叻肿硬牧稀?/p>
TQ316.6+2;O631
A