• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氫氧發(fā)動機模型真空羽流場試驗和仿真研究

    2015-03-20 08:23:50馬樹微賀碧蛟蔡國飆
    航天器環(huán)境工程 2015年2期
    關(guān)鍵詞:氫氧北京航空航天大學(xué)宇航

    馬樹微,吳 靖,賀碧蛟,蔡國飆

    (北京航空航天大學(xué) 宇航學(xué)院,北京100191)

    0 Introduction

    The exhaust flows of high-altitude engines assembled on launch vehicles would expand freely and produce a plume in the vacuum environment. In many cases, the plume backflow would probably impinge on the upper-stage to generate contamination, aerodynamic force and thermal effects. These undesirable effects may debase the capability of the vehicle or even lead to the flight mission failure. Therefore, the effects of the plume must be taken into account in a design.

    There are two main approaches for the plume researches, the numerical simulation and the experiment. In the early 1960s, G.A. Bird proposed the DSMC method[1-3], which directly simulates the physical phenomena that can be described by the Boltzmann equations. It has since been successfully applied to a wide range of high-altitude vacuum plume problems[4-10]. The experimental investigation includes the space flight and ground simulation experiments. The experimental data acquired from the space flight is actual and reliable but the data that can be obtained is limited and the cost is very expensive. On the other hand, the cost of the ground simulation experiments performed in a vacuum system is much lower and much larger amount of data can be acquired than what can be done by the space flight experiments.

    Experimental investigation in a ground vacuum system is a reliable and convenient method to assess the effect of the plume. Nevertheless, limited by the pumping capability due to the technological availability and the investment of vacuum systems, the ground experiments are mainly performed by employing cold gas expansions or neutral flows of resistojets with a low flow rate to maintain the high vacuum level[11-17]. It is impossible for an actual rocket engine to exhaust and maintain the vacuum in any current ground vacuum system.

    In this work, a 60 N scaled model thruster of hydrogen/ oxygen is designed and it exhausts in a vacuum chamber, simulating the second stage engine of the Chinese ‘CZ’ launch vehicle. The pressures of the plume field are measured. Then the experimental results are compared with the numerical simulation results based on the combined CFD and DSMC methods to validate the numerical simulation programs, demonstrating the powerful ability of the numerical approach to estimate the effects of the plume flows.

    1 Experimental investigation

    1.1 The scaled model thruster

    Two rocket engines with a thrust of 9×104N are used on the second stage of the Chinese ‘CZ’ launch vehicle. However, it is absolutely impossible to experimentally investigate the plume of the engines in a ground vacuum system. Therefore a scaled 60 N model thruster of hydrogen/oxygen is designed to produce the flow field of the plume. The model thruster has the same propellant, the same mixing ratio and the shrinked bell-nozzle profile as those of the actual rocket engine. The main technical parameters of the model thruster are listed in Table 1.

    Table 1 Main technical parameters of the scaled model thruster

    The thruser of hydrogen/oxygen that employs the torch igniting method is illustrated in Fig. 1. The compounding gas flow of hydrogen and oxygen with a mixing ratio of 0.9, enters the ignition chamber through a shear coaxial injector. The spark plug powered by a transformer which converts 220 V AC to 15 kV AC is employed to ignite the mixture of the ignition hydrogen and the ignition oxygen. Then the hydrogen-rich gas with temperatrue below 1000 K is generated and sent to the combustion chamber together with the rest flow of the oxygen, called the main oxygen, and burns and exhausts through the bell nozzle. The combustion chamber and the nozzle are manufactured with the material of red copper and mounted in a thermal storage constructure, whose thermal conductivity is exceptionally good, to sustain the high temperature of the combustion gas while the thruster working only for a short time. The injectors and the ignition chamber are manufatured and welded together with 304 stainless steel instead of red copper, because red copper would be annealed in the process of welding. The melting point of 304 stainless steel is about 1700 K, which is much higher than the temperature of the hydrogen-rich gas in the ignition chamber, while the melting point of the spark plug electrodes made of iridium alloy is about 2400 K.

    Fig. 1 Schematic diagram of hydrogen/oxygen thruster

    1.2 Vacuum facility

    The experiment is conducted in the Plume Effect Experimental System (PEES)[18-20]at Beihang University. The PEES, developed in 2011, is the first space-simulation experimental system designed specially to study the vacuum plume and its effects in China. The vacuum chamber is a horizontal cylindrical body of two elliptical head structure with the inner size of 5.2 m in diameter and 12.6 m in length, as illustrated in Fig. 2.

    Fig. 2 The vacuum chamber of PEES, Beihang University

    The present experiment is performed with the plumeabsorption pumps detached and both layers of the heat sinks cooled by liquid nitrogen. The vacuum pressure is monitored with a Pirani gauge and a hot cathode gauge mounted on the chamber wall. The pressure without the thruster exhaust can reach 10-4Pa.

    1.3 Measuring apparatus

    The pressures in front of the sonic nozzles of the ignition hydrogen, the ignition oxygen and the main oxygen are measured with three sputtered thin pressure transducers and their measuring range is 0 4.0 MPa, while that of thetransducer for the combustion chamber pressure is 0 2.0 MPa.The listed manufacturer’s accuracy of every pressure transducer is 0.25% of the full scale (FS). The latter may effectively measure the total pressure of the flows. The ratio of the chamber area to the throat area is 14.5:1. No contact measurement instruments such as the thermal couple are employed to measure the total temperature, which is too high to be measured in this way, however, it could be estimated by a thermal calculation.

    An array consisting of 15 parallel pitot tubes made of 304 stainless steel is employed to determine the pressure field of the plume. The inlets of the tubes are placed in a line with an interval of 20 mm. Each probe has an outside diameter of 5.0 mm and an inside diameter of 3.8 mm, as schematically shown in Fig. 3. The transducers attached to the tubes at symmetric positions with respect to the middle line have the same ranges of measurement with accuracy of 0.25% FS, and the ranges of the middle transducers and both sides ones are 30 kPa, 10 kPa, 5 kPa, 5 kPa, 5 kPa, 5 kPa, 1 kPa, 1 kPa, respectively. The array of pitot tubes is mounted on a traversing mechanism for making measurements at different distances from the outlet of the thruster nozzle.

    Fig. 3 Schematic diagram of pitot tube array with differential pressure transducers

    1.4 Test procedure

    During experiments, the traversing mechanism carrying the pitot tubes array is shifting along the thruster axis direction (X) to determine the pressure distribution in the radial direction (R) at different distances from the nozzle outlet. The measuring range is from 140 mm to 600 mm in the axial direction (X), and 140 mm in the radial direction (R). The relative positions of the thruster and the pitot tube array are optically adjusted before the test to keep the pitot tube array moving along the axis of the thruster.

    The vacuum chamber is initially pumped into a vacuum state without the nozzle exhaust to establish zero settings for the sputtered thin pressure transducer in the combustion chamber and the differential pressure transducers of the pitot tube array. The vacuum pressure as the zero point is lower than 10-4Pa, so the differential pressure read from the sensor could be taken as the actual pressure. A repeated short-time exhausting mode instead of a continuous mode is employed to maintain the dynamic vacuum with exhaust because of its large flow rate. As shown in Fig. 4, the ignition hydrogen pressure, the ignition oxygen pressure, the main oxygen pressure in front of the sonic nozzles and the chamber pressure reach steady states in about 100 ms after the main oxygen enters. Hence, the exhausting time is set as 300 ms to obtain a relatively steady plume field while maintaining the dynamic vacuum pressure. Since the hydrogen could not be absorbed by the liquid nitrogen heat sink, it would take a very long time to reduce the background pressure to the level below 10-4Pa after exhausting. As a compromise, the exhaust begins when the vacuum pressure is lower than 3.0×10-3Pa. The dynamic background pressure is about 3 Pa.

    Fig. 4 Representative pressure curves during an exhaust

    2 Numerical method

    The vacuum plume covers various flow regions, including the continuum, the transition, and the free molecular flow regions. The continuum flow is found in the core area of the plume. The transition flow and the free molecular flow are in the far areas of the plume. Therefore, the vacuum plume could not be described by one mathematical model alone. For the continuum flow, the governing equations are the N-S equations, which are solved by using the traditional Computational Fluid Dynamic (CFD) method. For the free molecular flow, the governing equation is the Boltzmann equation without the collision factor. However, for the transition flow, the governing equation is the full Boltzmann equation. The most widely used method for the solutions of the Boltzmann equation is the Direct Simulation Monte Carlo (DSMC) method. In this paper, a combined CFD-DSMC method is used for the numerical analysis[21]. For the CFD-DSMC method, the physical range for the CFD analysis is extended from the inside of the nozzle out into the free space beyond the point where, because of the rapid gas expansion, the continuum theory is considered valid. A DSMC analysis is performed for the flow region far downstream of the nozzle exit where the flow can no longer be described by the continuum theory. The DSMC analysis uses the boundary condition information from the corresponding CFD analysis at a surface where the continuum theory is applicable.

    In the DSMC calculation, the flow domain is first divided into a number of cells. Then the computational particles are placed into the cells. All particles carry the information of position, velocity, internal energy and weight factor. During each time step, all particles are handled in two loops. The outer loop extends over all grid cells in which all particles move and interact with the boundary surfaces; the inner loop extends over the particles within a cell in which particles collide with each other.

    The DSMC-based PWS (Plume Work Station) software[22], as a general simulation software developed by Beihang University, is employed in the current investigation for the plume effect simulation. The software is modularized, which includes the initial condition module, the boundary condition module, the parameter module and the mesh generation module. With these modules, various kinds of parameters can be transformed into the format adopted by the software, and then the data and the control interface are processed. The uniform data and the control interface provide a man-machine interaction environment. Users can make further modifications and define operation processes on the interface.

    3 Results and discussions

    3.1 Plume field of the scaled model thruster

    The measured pitot pressures are corrected by the flow angles acquired from the DSMC results to reduce the errors caused by parallel tubes. The pressure field of the plume obtained by the DSMC method is converted to the pressures behind the normal shock wave by Eq. (1), for comparisons with the experimental pitot pressures.

    Fig. 5 through Fig. 7 show the pressure distributions along the radial direction (R) at 140 mm, 350 mm, and 600 mm away from the nozzle exit plane, respectively. The upper horizontal axis and the right vertical axis represent the distance normalized by the exit diameter(X / De) and the plume pressure normalized by the chamber total pressurerespectively. The DSMC computational results are found in excellent agreement with the experimental data. The pressure profiles show convex shapes (except the one at 140 mm) and complicated shock waves produced by the bell nozzle are observed. When the distance away from the nozzle exit increases, the maximum pressure at each radial line shifts away from the axis, and the pressures near the axis decrease while the pressures far from the axis increase, resulting in profiles with a tendency to flatten. From the comparisons between the experimental and numerical simulation results of the model thruster, the approach combining CFD and DSMC shows a powerful ability to predict the plume pressures.

    Fig. 5 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 140 mm

    Fig. 6 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 350 mm

    Fig. 7 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 600 mm

    4 Conclusions

    To study the plume flow field of the second stage engines of the Chinese ‘CZ’ launch vehicle, a 60 N model thruster of hydrogen/oxygen with the same propellant, the same mixing ratio and the same shrinked bell-nozzle profile as those of the actual rocket engine is designed and tested in the Plume Effect Experimental System of Beihang University.

    The pressures behind the shock wave along the radial direction at the different distances from 140 mm to 600 mm away from the nozzle exit plane in the plume field are determined by using a pitot tube array. The results show the tendency of the plume produced from a bell-nozzle expanding into the vacuum. The experimental data are compared with the numerical simulation results based on the CFD-DSMC method, and it is shown that the numerical method predicts both the tendency and the values precisely as compared with the experimental results, which demonstrates the powerful ability of the numerical approach to estimate the effects of the plume flows. The characteristics of the pressure field of the model thruster plume are obtained by the present study and can serve as a basis for the plume effect analysis of the archetype engine.

    [1] Bird G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963, 6(10): 1518-1519

    [2] Bird G A. Shock-wave structure in a rigid sphere gas[C]//Proceedings of the Fourth International Symposium, Institute for Aerospace Studies. Toronto, 1965: 216

    [3] Bird G A. Molecular gas dynamics[M]. Oxford: Clarendon Press, 1976: 250

    [4] Baerwald R K. Rocket exhaust plume impingement on the Voyager spacecraft, AIAA 78-1090[R], 1978

    [5] Guernsey C S. Effects of translational nonequilibrium on vacuum plume expansions[J]. AIAA Journal, 1982, 20(7): 885-888

    [6] Pham-Van-Diep G, Erwin D, Muntz E P. Nonequilibrium molecular motion in a hypersonic shock wave[J]. Science, 1989, 245: 624-626

    [7] Boyd I D, Penko P F, Carney L M. Efficient Monte Carlo simulation of rarefied flow in a small nozzle, AIAA 90-1693[R], 1990

    [8] Lumpkin F E. A CFD/DSMC analysis of plumes and plume impingement during Shuttle/Mir docking[C]//30thThermophysics Conference. San Diego, 1995

    [9] Kannenberg K C, Boyd I D. Three-dimensional Monte Carlo simulations of plume impingement[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 226-235

    [10] Tseng K, Hu L, Kuo T, et al. Disturbance analysis from plume impingement by using the parallel DSMC Code (PDSC), AIAA 2007-4412[R], 2007

    [11] Lengrand J, Allegre J, Raffin M. Experimental investigation of underexpanded exhaust plumes[J]. AIAA Journal, 1976, 14(5): 692-694

    [12] Bailey A B. Flow-angle measurements in a rarefied nozzle plume[J]. AIAA Journal, 1987, 25(10): 1301-1304

    [13] Boyd I D. Analysis of rotational nonequilibrium in standing shock waves of nitrogen[J]. AIAA Journal, 1990, 28(11): 1997-1999

    [14] Boyd I D, Penko P F, Meissner D L, et al. Experimental and numerical investigations of low-density nozzle and plume flows of nitrogen[J]. AIAA Journal, 1992, 30(10): 2453-2461

    [15] Boyd I D, Beattie D R, Cappelli M A. Numerical and experimental investigations of low-density supersonic jets of hydrogen[J]. Journal of Fluid Mechanics, 1994, 280: 41-67

    [16] Broc A, De Benedictis S, Dilecce G, et al. Experimental and numerical investigation of an O2/NO supersonic free jet expansion[J]. Journal of Fluid Mechanics, 2004, 500: 211-237

    [17] Xiao Z J, Cheng H E, Zhou W M, et al. Pressure investigations of carbon dioxide nozzle plume flow in simulated space environment, AIAA 2007-5188[R], 2007

    [18] Wang W L, Cai G B, Zhou J P. Large-scale vacuum vessel design and finite element analysis[J]. Chinese Journal of Aeronautics, 2012, 25(2): 189-197

    [19] Ling G L, Wang W L, Cai G B, et al. Liquid helium heat sink design for experimental study of engine's plume and vacuum effects[J]. Journal of Aerospace Power, 2011, 26(11): 2630-2635

    [20] Ling G L, Cai G B, Zhang J H. Oil-free vacuum system design based on vacuum plume experiment[J]. Journal of Aerospace Power, 2013, 28(5): 1173-1179

    [21] Tang Z Y, He B J, Cai G B. Investigation on a coupled Navier–Stokes–Direct Simulation Monte Carlo method for the simulation of plume flowfield of a conical nozzle[J]. International Journal for Numerical Methods in Fluids, 2014, 76(2): 95-108

    [22] He B J, Zhang J H, Cai G B. Research on vacuum plume and its effects[J]. Chinese Journal of Aeronautics, 2013, 26(1): 27-36

    猜你喜歡
    氫氧北京航空航天大學(xué)宇航
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    氫氧燃料電池演示實驗的改進
    自制液壓儲氣式氫氧燃料電池
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    連鑄坯氫氧切割應(yīng)用與碳排放研究
    我的宇航夢
    小主人報(2015年4期)2015-09-14 02:50:29
    我的宇航夢
    小主人報(2015年2期)2015-03-01 12:30:54
    我的宇航夢
    小主人報(2015年3期)2015-02-28 20:41:54
    汤姆久久久久久久影院中文字幕| 精品福利永久在线观看| 精品人妻一区二区三区麻豆| 一级a爱视频在线免费观看| 99九九在线精品视频| 久久久久视频综合| 亚洲人成电影观看| 成人毛片60女人毛片免费| 国产精品二区激情视频| tube8黄色片| 女的被弄到高潮叫床怎么办| 寂寞人妻少妇视频99o| 女性被躁到高潮视频| 青青草视频在线视频观看| 各种免费的搞黄视频| 久久精品国产自在天天线| 只有这里有精品99| 日本免费在线观看一区| 久久鲁丝午夜福利片| 成人午夜精彩视频在线观看| 精品一区二区三卡| 亚洲第一av免费看| 乱人伦中国视频| 亚洲精品在线美女| a 毛片基地| 热99国产精品久久久久久7| 精品少妇内射三级| 国产成人av激情在线播放| www.精华液| 成人国产麻豆网| 免费人妻精品一区二区三区视频| 伊人亚洲综合成人网| 欧美激情高清一区二区三区 | 国产精品一二三区在线看| 侵犯人妻中文字幕一二三四区| 曰老女人黄片| 国产精品熟女久久久久浪| 美国免费a级毛片| 国产成人免费无遮挡视频| www.精华液| 日本猛色少妇xxxxx猛交久久| 国产精品亚洲av一区麻豆 | 男人操女人黄网站| 国产成人精品久久二区二区91| 国产一区二区在线av高清观看| 日韩三级视频一区二区三区| 欧美老熟妇乱子伦牲交| 在线观看免费视频网站a站| 国产一区在线观看成人免费| 最好的美女福利视频网| 波多野结衣高清无吗| 天天躁夜夜躁狠狠躁躁| 亚洲精品在线美女| 亚洲人成网站在线播放欧美日韩| 高清欧美精品videossex| 久久伊人香网站| 99热国产这里只有精品6| 久久九九热精品免费| 精品免费久久久久久久清纯| 日韩三级视频一区二区三区| 男人舔女人下体高潮全视频| 欧美日韩精品网址| 在线观看免费高清a一片| 在线播放国产精品三级| 精品久久久久久电影网| 91国产中文字幕| 免费女性裸体啪啪无遮挡网站| 国产精品九九99| 婷婷六月久久综合丁香| 免费在线观看影片大全网站| 男男h啪啪无遮挡| av网站在线播放免费| 精品国产一区二区久久| 亚洲九九香蕉| 男女下面进入的视频免费午夜 | 免费在线观看视频国产中文字幕亚洲| 精品久久久久久成人av| 91国产中文字幕| 99国产精品一区二区蜜桃av| 亚洲狠狠婷婷综合久久图片| 女性生殖器流出的白浆| 啦啦啦 在线观看视频| 免费在线观看完整版高清| 波多野结衣av一区二区av| 国产野战对白在线观看| 韩国精品一区二区三区| 老熟妇仑乱视频hdxx| 欧美av亚洲av综合av国产av| 日韩欧美国产一区二区入口| 曰老女人黄片| 两性午夜刺激爽爽歪歪视频在线观看 | bbb黄色大片| 国产黄色免费在线视频| a在线观看视频网站| 中文欧美无线码| 成人手机av| 中文字幕人妻熟女乱码| 国产极品粉嫩免费观看在线| 国产成人av教育| 99久久精品国产亚洲精品| 欧美中文日本在线观看视频| 可以免费在线观看a视频的电影网站| 精品午夜福利视频在线观看一区| 多毛熟女@视频| 久久热在线av| 91精品国产国语对白视频| 好看av亚洲va欧美ⅴa在| 搡老熟女国产l中国老女人| 又黄又爽又免费观看的视频| 777久久人妻少妇嫩草av网站| 在线观看66精品国产| 在线观看66精品国产| 亚洲色图综合在线观看| 99久久国产精品久久久| videosex国产| 又黄又爽又免费观看的视频| 久久这里只有精品19| 桃红色精品国产亚洲av| 久久久久国内视频| 一区二区三区精品91| 成年人黄色毛片网站| 一级作爱视频免费观看| 在线观看日韩欧美| 操美女的视频在线观看| 女人精品久久久久毛片| 欧美黄色淫秽网站| 国产激情久久老熟女| 国产片内射在线| 国产人伦9x9x在线观看| 欧美久久黑人一区二区| 91老司机精品| 男男h啪啪无遮挡| 老司机深夜福利视频在线观看| 亚洲午夜理论影院| 女人爽到高潮嗷嗷叫在线视频| 韩国av一区二区三区四区| 成人永久免费在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美国产精品va在线观看不卡| 久久草成人影院| 精品一品国产午夜福利视频| 少妇粗大呻吟视频| 麻豆成人av在线观看| 激情视频va一区二区三区| 国产99白浆流出| 日韩精品青青久久久久久| 国产av在哪里看| 免费看a级黄色片| 亚洲美女黄片视频| 亚洲片人在线观看| 国产欧美日韩精品亚洲av| 91精品三级在线观看| 男女床上黄色一级片免费看| 免费高清在线观看日韩| 欧美成人性av电影在线观看| 麻豆av在线久日| 国产欧美日韩综合在线一区二区| 精品免费久久久久久久清纯| 国产成人精品久久二区二区91| 免费搜索国产男女视频| 91国产中文字幕| 免费不卡黄色视频| 美女扒开内裤让男人捅视频| 91老司机精品| 757午夜福利合集在线观看| 黑人巨大精品欧美一区二区mp4| 超碰97精品在线观看| 99久久人妻综合| 国产精品久久久av美女十八| 久热这里只有精品99| 亚洲精品美女久久av网站| 午夜福利在线免费观看网站| 欧美在线一区亚洲| 18禁裸乳无遮挡免费网站照片 | 国产单亲对白刺激| 国产成人啪精品午夜网站| 国内久久婷婷六月综合欲色啪| 国产在线精品亚洲第一网站| 国产亚洲精品综合一区在线观看 | 一本大道久久a久久精品| 侵犯人妻中文字幕一二三四区| 久久九九热精品免费| 国产欧美日韩一区二区精品| x7x7x7水蜜桃| 久久久国产一区二区| 国产99久久九九免费精品| 久久精品亚洲精品国产色婷小说| 亚洲专区国产一区二区| 18禁观看日本| 亚洲成人精品中文字幕电影 | 亚洲自拍偷在线| 午夜a级毛片| 亚洲av美国av| 视频区欧美日本亚洲| 久久人妻福利社区极品人妻图片| 高清黄色对白视频在线免费看| 亚洲人成电影观看| 成人手机av| 国产麻豆69| 丰满人妻熟妇乱又伦精品不卡| 日日摸夜夜添夜夜添小说| 久久精品国产综合久久久| 成人永久免费在线观看视频| 九色亚洲精品在线播放| 国产无遮挡羞羞视频在线观看| 99国产极品粉嫩在线观看| 午夜福利一区二区在线看| 国产成人精品在线电影| 男女下面插进去视频免费观看| 一区在线观看完整版| 亚洲欧美精品综合久久99| 欧美久久黑人一区二区| 看片在线看免费视频| 曰老女人黄片| 麻豆久久精品国产亚洲av | 别揉我奶头~嗯~啊~动态视频| e午夜精品久久久久久久| 正在播放国产对白刺激| 精品高清国产在线一区| 一级a爱视频在线免费观看| ponron亚洲| 18禁国产床啪视频网站| av在线天堂中文字幕 | 伦理电影免费视频| 亚洲午夜理论影院| 国产亚洲精品久久久久久毛片| 久久久久亚洲av毛片大全| 国产欧美日韩精品亚洲av| 亚洲七黄色美女视频| 久久香蕉激情| 欧美中文综合在线视频| 老司机深夜福利视频在线观看| 久久久久久人人人人人| 亚洲精品久久成人aⅴ小说| 十八禁网站免费在线| 老鸭窝网址在线观看| 十分钟在线观看高清视频www| 中文字幕最新亚洲高清| 国产1区2区3区精品| 九色亚洲精品在线播放| 男女午夜视频在线观看| 亚洲精品一二三| 午夜亚洲福利在线播放| 久久香蕉激情| 伦理电影免费视频| 久久久久国产精品人妻aⅴ院| 女人被躁到高潮嗷嗷叫费观| 国产不卡一卡二| 琪琪午夜伦伦电影理论片6080| 高清毛片免费观看视频网站 | 亚洲精品久久午夜乱码| 岛国在线观看网站| 国产高清视频在线播放一区| 精品乱码久久久久久99久播| 中文字幕人妻丝袜制服| 久久久国产成人免费| 亚洲精品国产一区二区精华液| 亚洲精品av麻豆狂野| 亚洲欧美激情在线| 一a级毛片在线观看| 国产精品爽爽va在线观看网站 | 亚洲精品国产一区二区精华液| 日日夜夜操网爽| 午夜激情av网站| 最好的美女福利视频网| 亚洲熟妇中文字幕五十中出 | 国产激情欧美一区二区| 热re99久久精品国产66热6| 男人舔女人下体高潮全视频| 久久中文字幕人妻熟女| 国产精品成人在线| 级片在线观看| 日韩国内少妇激情av| 午夜视频精品福利| 99热只有精品国产| 18禁美女被吸乳视频| 国产欧美日韩一区二区精品| 精品第一国产精品| 激情在线观看视频在线高清| 亚洲精品在线观看二区| 日本黄色日本黄色录像| 国产精品久久视频播放| 精品午夜福利视频在线观看一区| 亚洲欧美一区二区三区久久| 日韩免费av在线播放| 88av欧美| 视频在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产国语对白av| 欧美+亚洲+日韩+国产| 99国产精品免费福利视频| 亚洲一区二区三区欧美精品| 水蜜桃什么品种好| 999久久久国产精品视频| 久久精品国产清高在天天线| 国产成人精品无人区| 十分钟在线观看高清视频www| 99精品在免费线老司机午夜| 天堂俺去俺来也www色官网| 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 国产区一区二久久| 在线国产一区二区在线| 欧美+亚洲+日韩+国产| 国产欧美日韩精品亚洲av| 午夜免费激情av| √禁漫天堂资源中文www| 亚洲va日本ⅴa欧美va伊人久久| 日本免费一区二区三区高清不卡 | 久久亚洲精品不卡| 少妇裸体淫交视频免费看高清 | 99国产精品一区二区蜜桃av| av福利片在线| 亚洲欧美日韩高清在线视频| 夜夜看夜夜爽夜夜摸 | 最近最新中文字幕大全免费视频| 很黄的视频免费| 亚洲国产欧美网| 精品人妻1区二区| 久久中文字幕人妻熟女| 日韩有码中文字幕| 真人做人爱边吃奶动态| 大型黄色视频在线免费观看| 亚洲精品国产精品久久久不卡| 欧美日韩福利视频一区二区| 国产99久久九九免费精品| 成人av一区二区三区在线看| 亚洲熟妇熟女久久| 真人一进一出gif抽搐免费| 亚洲在线自拍视频| 亚洲精品中文字幕在线视频| 国产91精品成人一区二区三区| 久久精品91无色码中文字幕| 亚洲avbb在线观看| 不卡av一区二区三区| 亚洲av成人不卡在线观看播放网| 大陆偷拍与自拍| 国产成人一区二区三区免费视频网站| 咕卡用的链子| 久久久国产欧美日韩av| 黄色视频,在线免费观看| 三级毛片av免费| 91在线观看av| 国产三级在线视频| 18禁美女被吸乳视频| 精品日产1卡2卡| 日韩精品中文字幕看吧| 丁香欧美五月| 欧美成人性av电影在线观看| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 一级a爱片免费观看的视频| 香蕉丝袜av| 可以免费在线观看a视频的电影网站| 韩国av一区二区三区四区| av在线播放免费不卡| 日韩av在线大香蕉| 亚洲欧洲精品一区二区精品久久久| 麻豆成人av在线观看| 国产成人系列免费观看| 人成视频在线观看免费观看| 成人亚洲精品av一区二区 | 久久国产精品男人的天堂亚洲| 大型av网站在线播放| 法律面前人人平等表现在哪些方面| 又黄又爽又免费观看的视频| 久久精品aⅴ一区二区三区四区| 中亚洲国语对白在线视频| 高清在线国产一区| 一边摸一边做爽爽视频免费| 亚洲激情在线av| 两性夫妻黄色片| 国产在线精品亚洲第一网站| 成人av一区二区三区在线看| 极品教师在线免费播放| 久久草成人影院| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 久久亚洲真实| 法律面前人人平等表现在哪些方面| 麻豆成人av在线观看| 午夜免费观看网址| 欧美乱妇无乱码| 精品久久久精品久久久| 亚洲国产看品久久| 亚洲av第一区精品v没综合| 亚洲欧洲精品一区二区精品久久久| 午夜激情av网站| 99精品欧美一区二区三区四区| 女警被强在线播放| 久久精品国产综合久久久| 天天影视国产精品| 又大又爽又粗| 精品一区二区三区av网在线观看| 日韩免费av在线播放| 俄罗斯特黄特色一大片| 欧美中文日本在线观看视频| 老司机亚洲免费影院| 黄色女人牲交| 欧美日韩一级在线毛片| 亚洲欧美一区二区三区久久| 精品一区二区三卡| 午夜福利在线观看吧| 久久国产精品人妻蜜桃| 身体一侧抽搐| 美女高潮到喷水免费观看| 97超级碰碰碰精品色视频在线观看| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 在线看a的网站| 免费av中文字幕在线| 中文亚洲av片在线观看爽| 男女床上黄色一级片免费看| 99久久国产精品久久久| 国产成+人综合+亚洲专区| 亚洲视频免费观看视频| 久久精品亚洲av国产电影网| 人人澡人人妻人| 成人国产一区最新在线观看| 国产免费现黄频在线看| 国产精品亚洲av一区麻豆| 在线免费观看的www视频| 色精品久久人妻99蜜桃| 黄片播放在线免费| 国产欧美日韩一区二区三区在线| 极品教师在线免费播放| 人妻久久中文字幕网| 亚洲欧美激情在线| 久久精品人人爽人人爽视色| 久久久国产成人精品二区 | 久久天堂一区二区三区四区| 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| 婷婷精品国产亚洲av在线| 一夜夜www| 人妻久久中文字幕网| 亚洲成人免费电影在线观看| 老汉色av国产亚洲站长工具| 色婷婷av一区二区三区视频| 午夜精品久久久久久毛片777| 国产人伦9x9x在线观看| 激情视频va一区二区三区| 久久香蕉国产精品| 亚洲成国产人片在线观看| 国产精品99久久99久久久不卡| 亚洲精品美女久久av网站| 精品一区二区三区四区五区乱码| 在线观看免费高清a一片| 久久国产精品男人的天堂亚洲| 香蕉丝袜av| 高清av免费在线| 热99国产精品久久久久久7| 999精品在线视频| 在线观看一区二区三区激情| 国产av一区二区精品久久| 亚洲精品国产精品久久久不卡| 国产有黄有色有爽视频| 亚洲精品国产精品久久久不卡| 久久中文字幕人妻熟女| 女警被强在线播放| 超碰成人久久| 亚洲熟妇熟女久久| 亚洲男人的天堂狠狠| 亚洲av成人不卡在线观看播放网| 一级片免费观看大全| 色播在线永久视频| 久久中文看片网| 成年女人毛片免费观看观看9| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 国产精品野战在线观看 | 精品熟女少妇八av免费久了| 手机成人av网站| 欧美日韩中文字幕国产精品一区二区三区 | 岛国在线观看网站| 亚洲中文av在线| 91大片在线观看| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区| 亚洲欧美日韩另类电影网站| 少妇裸体淫交视频免费看高清 | 一夜夜www| 99精品在免费线老司机午夜| av在线播放免费不卡| 午夜老司机福利片| 丰满饥渴人妻一区二区三| 性色av乱码一区二区三区2| 黄片播放在线免费| 一区二区三区激情视频| 久久久久久大精品| 国产成人av激情在线播放| 久久香蕉精品热| 久久精品人人爽人人爽视色| 精品第一国产精品| 精品一品国产午夜福利视频| 夜夜夜夜夜久久久久| 99久久久亚洲精品蜜臀av| 亚洲五月天丁香| 高清欧美精品videossex| 19禁男女啪啪无遮挡网站| 欧美大码av| 男人舔女人下体高潮全视频| 18禁黄网站禁片午夜丰满| 国产亚洲av高清不卡| 免费观看人在逋| 人妻丰满熟妇av一区二区三区| 国产高清激情床上av| 日韩一卡2卡3卡4卡2021年| 变态另类成人亚洲欧美熟女 | 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 涩涩av久久男人的天堂| 别揉我奶头~嗯~啊~动态视频| 在线观看www视频免费| 超色免费av| 岛国在线观看网站| 99国产综合亚洲精品| 黄色毛片三级朝国网站| 岛国视频午夜一区免费看| 精品日产1卡2卡| 色在线成人网| 极品人妻少妇av视频| 亚洲专区中文字幕在线| 波多野结衣一区麻豆| 亚洲中文字幕日韩| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一出视频| 欧美日韩乱码在线| 韩国av一区二区三区四区| 十八禁网站免费在线| 91大片在线观看| 国产精品国产av在线观看| 99久久综合精品五月天人人| 国产三级在线视频| 久99久视频精品免费| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片 | 在线观看一区二区三区激情| 久久这里只有精品19| 日韩免费av在线播放| 桃红色精品国产亚洲av| 国产精品一区二区精品视频观看| cao死你这个sao货| 搡老熟女国产l中国老女人| 亚洲精品在线观看二区| 操出白浆在线播放| 色哟哟哟哟哟哟| 欧美成狂野欧美在线观看| 亚洲精品在线美女| 午夜免费激情av| 国产亚洲精品久久久久久毛片| 老鸭窝网址在线观看| 色老头精品视频在线观看| 亚洲欧美一区二区三区黑人| 高清欧美精品videossex| 国产精品自产拍在线观看55亚洲| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| 久久国产精品人妻蜜桃| a级片在线免费高清观看视频| 国产在线精品亚洲第一网站| 长腿黑丝高跟| 热99国产精品久久久久久7| 国产熟女午夜一区二区三区| 男人舔女人下体高潮全视频| 真人做人爱边吃奶动态| 中国美女看黄片| 国产av在哪里看| 9色porny在线观看| 亚洲七黄色美女视频| 一进一出抽搐gif免费好疼 | 婷婷六月久久综合丁香| 久久久久久久久中文| 18禁裸乳无遮挡免费网站照片 | 一级毛片高清免费大全| 久久天躁狠狠躁夜夜2o2o| 97碰自拍视频| 最新美女视频免费是黄的| 男女之事视频高清在线观看| 国产高清视频在线播放一区| 夫妻午夜视频| 亚洲性夜色夜夜综合| 亚洲精品在线美女| av网站在线播放免费| 亚洲中文av在线| 侵犯人妻中文字幕一二三四区| e午夜精品久久久久久久| 午夜福利,免费看| 老司机亚洲免费影院| 操出白浆在线播放| 少妇被粗大的猛进出69影院| 韩国av一区二区三区四区| 中文欧美无线码| 日韩 欧美 亚洲 中文字幕| 真人做人爱边吃奶动态| 麻豆av在线久日| 亚洲欧美日韩无卡精品| 亚洲精品av麻豆狂野| 在线观看午夜福利视频| 国产精品久久久av美女十八| 丁香六月欧美| 日韩高清综合在线| 丁香欧美五月| 男男h啪啪无遮挡| 一区二区三区精品91| 美女午夜性视频免费| 久久国产亚洲av麻豆专区| a在线观看视频网站| 久久国产精品男人的天堂亚洲| 美女福利国产在线| 久久精品亚洲av国产电影网| 午夜福利欧美成人| 99久久99久久久精品蜜桃| 久久午夜亚洲精品久久| 久久精品aⅴ一区二区三区四区|