• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氫氧發(fā)動機模型真空羽流場試驗和仿真研究

    2015-03-20 08:23:50馬樹微賀碧蛟蔡國飆
    航天器環(huán)境工程 2015年2期
    關(guān)鍵詞:氫氧北京航空航天大學(xué)宇航

    馬樹微,吳 靖,賀碧蛟,蔡國飆

    (北京航空航天大學(xué) 宇航學(xué)院,北京100191)

    0 Introduction

    The exhaust flows of high-altitude engines assembled on launch vehicles would expand freely and produce a plume in the vacuum environment. In many cases, the plume backflow would probably impinge on the upper-stage to generate contamination, aerodynamic force and thermal effects. These undesirable effects may debase the capability of the vehicle or even lead to the flight mission failure. Therefore, the effects of the plume must be taken into account in a design.

    There are two main approaches for the plume researches, the numerical simulation and the experiment. In the early 1960s, G.A. Bird proposed the DSMC method[1-3], which directly simulates the physical phenomena that can be described by the Boltzmann equations. It has since been successfully applied to a wide range of high-altitude vacuum plume problems[4-10]. The experimental investigation includes the space flight and ground simulation experiments. The experimental data acquired from the space flight is actual and reliable but the data that can be obtained is limited and the cost is very expensive. On the other hand, the cost of the ground simulation experiments performed in a vacuum system is much lower and much larger amount of data can be acquired than what can be done by the space flight experiments.

    Experimental investigation in a ground vacuum system is a reliable and convenient method to assess the effect of the plume. Nevertheless, limited by the pumping capability due to the technological availability and the investment of vacuum systems, the ground experiments are mainly performed by employing cold gas expansions or neutral flows of resistojets with a low flow rate to maintain the high vacuum level[11-17]. It is impossible for an actual rocket engine to exhaust and maintain the vacuum in any current ground vacuum system.

    In this work, a 60 N scaled model thruster of hydrogen/ oxygen is designed and it exhausts in a vacuum chamber, simulating the second stage engine of the Chinese ‘CZ’ launch vehicle. The pressures of the plume field are measured. Then the experimental results are compared with the numerical simulation results based on the combined CFD and DSMC methods to validate the numerical simulation programs, demonstrating the powerful ability of the numerical approach to estimate the effects of the plume flows.

    1 Experimental investigation

    1.1 The scaled model thruster

    Two rocket engines with a thrust of 9×104N are used on the second stage of the Chinese ‘CZ’ launch vehicle. However, it is absolutely impossible to experimentally investigate the plume of the engines in a ground vacuum system. Therefore a scaled 60 N model thruster of hydrogen/oxygen is designed to produce the flow field of the plume. The model thruster has the same propellant, the same mixing ratio and the shrinked bell-nozzle profile as those of the actual rocket engine. The main technical parameters of the model thruster are listed in Table 1.

    Table 1 Main technical parameters of the scaled model thruster

    The thruser of hydrogen/oxygen that employs the torch igniting method is illustrated in Fig. 1. The compounding gas flow of hydrogen and oxygen with a mixing ratio of 0.9, enters the ignition chamber through a shear coaxial injector. The spark plug powered by a transformer which converts 220 V AC to 15 kV AC is employed to ignite the mixture of the ignition hydrogen and the ignition oxygen. Then the hydrogen-rich gas with temperatrue below 1000 K is generated and sent to the combustion chamber together with the rest flow of the oxygen, called the main oxygen, and burns and exhausts through the bell nozzle. The combustion chamber and the nozzle are manufactured with the material of red copper and mounted in a thermal storage constructure, whose thermal conductivity is exceptionally good, to sustain the high temperature of the combustion gas while the thruster working only for a short time. The injectors and the ignition chamber are manufatured and welded together with 304 stainless steel instead of red copper, because red copper would be annealed in the process of welding. The melting point of 304 stainless steel is about 1700 K, which is much higher than the temperature of the hydrogen-rich gas in the ignition chamber, while the melting point of the spark plug electrodes made of iridium alloy is about 2400 K.

    Fig. 1 Schematic diagram of hydrogen/oxygen thruster

    1.2 Vacuum facility

    The experiment is conducted in the Plume Effect Experimental System (PEES)[18-20]at Beihang University. The PEES, developed in 2011, is the first space-simulation experimental system designed specially to study the vacuum plume and its effects in China. The vacuum chamber is a horizontal cylindrical body of two elliptical head structure with the inner size of 5.2 m in diameter and 12.6 m in length, as illustrated in Fig. 2.

    Fig. 2 The vacuum chamber of PEES, Beihang University

    The present experiment is performed with the plumeabsorption pumps detached and both layers of the heat sinks cooled by liquid nitrogen. The vacuum pressure is monitored with a Pirani gauge and a hot cathode gauge mounted on the chamber wall. The pressure without the thruster exhaust can reach 10-4Pa.

    1.3 Measuring apparatus

    The pressures in front of the sonic nozzles of the ignition hydrogen, the ignition oxygen and the main oxygen are measured with three sputtered thin pressure transducers and their measuring range is 0 4.0 MPa, while that of thetransducer for the combustion chamber pressure is 0 2.0 MPa.The listed manufacturer’s accuracy of every pressure transducer is 0.25% of the full scale (FS). The latter may effectively measure the total pressure of the flows. The ratio of the chamber area to the throat area is 14.5:1. No contact measurement instruments such as the thermal couple are employed to measure the total temperature, which is too high to be measured in this way, however, it could be estimated by a thermal calculation.

    An array consisting of 15 parallel pitot tubes made of 304 stainless steel is employed to determine the pressure field of the plume. The inlets of the tubes are placed in a line with an interval of 20 mm. Each probe has an outside diameter of 5.0 mm and an inside diameter of 3.8 mm, as schematically shown in Fig. 3. The transducers attached to the tubes at symmetric positions with respect to the middle line have the same ranges of measurement with accuracy of 0.25% FS, and the ranges of the middle transducers and both sides ones are 30 kPa, 10 kPa, 5 kPa, 5 kPa, 5 kPa, 5 kPa, 1 kPa, 1 kPa, respectively. The array of pitot tubes is mounted on a traversing mechanism for making measurements at different distances from the outlet of the thruster nozzle.

    Fig. 3 Schematic diagram of pitot tube array with differential pressure transducers

    1.4 Test procedure

    During experiments, the traversing mechanism carrying the pitot tubes array is shifting along the thruster axis direction (X) to determine the pressure distribution in the radial direction (R) at different distances from the nozzle outlet. The measuring range is from 140 mm to 600 mm in the axial direction (X), and 140 mm in the radial direction (R). The relative positions of the thruster and the pitot tube array are optically adjusted before the test to keep the pitot tube array moving along the axis of the thruster.

    The vacuum chamber is initially pumped into a vacuum state without the nozzle exhaust to establish zero settings for the sputtered thin pressure transducer in the combustion chamber and the differential pressure transducers of the pitot tube array. The vacuum pressure as the zero point is lower than 10-4Pa, so the differential pressure read from the sensor could be taken as the actual pressure. A repeated short-time exhausting mode instead of a continuous mode is employed to maintain the dynamic vacuum with exhaust because of its large flow rate. As shown in Fig. 4, the ignition hydrogen pressure, the ignition oxygen pressure, the main oxygen pressure in front of the sonic nozzles and the chamber pressure reach steady states in about 100 ms after the main oxygen enters. Hence, the exhausting time is set as 300 ms to obtain a relatively steady plume field while maintaining the dynamic vacuum pressure. Since the hydrogen could not be absorbed by the liquid nitrogen heat sink, it would take a very long time to reduce the background pressure to the level below 10-4Pa after exhausting. As a compromise, the exhaust begins when the vacuum pressure is lower than 3.0×10-3Pa. The dynamic background pressure is about 3 Pa.

    Fig. 4 Representative pressure curves during an exhaust

    2 Numerical method

    The vacuum plume covers various flow regions, including the continuum, the transition, and the free molecular flow regions. The continuum flow is found in the core area of the plume. The transition flow and the free molecular flow are in the far areas of the plume. Therefore, the vacuum plume could not be described by one mathematical model alone. For the continuum flow, the governing equations are the N-S equations, which are solved by using the traditional Computational Fluid Dynamic (CFD) method. For the free molecular flow, the governing equation is the Boltzmann equation without the collision factor. However, for the transition flow, the governing equation is the full Boltzmann equation. The most widely used method for the solutions of the Boltzmann equation is the Direct Simulation Monte Carlo (DSMC) method. In this paper, a combined CFD-DSMC method is used for the numerical analysis[21]. For the CFD-DSMC method, the physical range for the CFD analysis is extended from the inside of the nozzle out into the free space beyond the point where, because of the rapid gas expansion, the continuum theory is considered valid. A DSMC analysis is performed for the flow region far downstream of the nozzle exit where the flow can no longer be described by the continuum theory. The DSMC analysis uses the boundary condition information from the corresponding CFD analysis at a surface where the continuum theory is applicable.

    In the DSMC calculation, the flow domain is first divided into a number of cells. Then the computational particles are placed into the cells. All particles carry the information of position, velocity, internal energy and weight factor. During each time step, all particles are handled in two loops. The outer loop extends over all grid cells in which all particles move and interact with the boundary surfaces; the inner loop extends over the particles within a cell in which particles collide with each other.

    The DSMC-based PWS (Plume Work Station) software[22], as a general simulation software developed by Beihang University, is employed in the current investigation for the plume effect simulation. The software is modularized, which includes the initial condition module, the boundary condition module, the parameter module and the mesh generation module. With these modules, various kinds of parameters can be transformed into the format adopted by the software, and then the data and the control interface are processed. The uniform data and the control interface provide a man-machine interaction environment. Users can make further modifications and define operation processes on the interface.

    3 Results and discussions

    3.1 Plume field of the scaled model thruster

    The measured pitot pressures are corrected by the flow angles acquired from the DSMC results to reduce the errors caused by parallel tubes. The pressure field of the plume obtained by the DSMC method is converted to the pressures behind the normal shock wave by Eq. (1), for comparisons with the experimental pitot pressures.

    Fig. 5 through Fig. 7 show the pressure distributions along the radial direction (R) at 140 mm, 350 mm, and 600 mm away from the nozzle exit plane, respectively. The upper horizontal axis and the right vertical axis represent the distance normalized by the exit diameter(X / De) and the plume pressure normalized by the chamber total pressurerespectively. The DSMC computational results are found in excellent agreement with the experimental data. The pressure profiles show convex shapes (except the one at 140 mm) and complicated shock waves produced by the bell nozzle are observed. When the distance away from the nozzle exit increases, the maximum pressure at each radial line shifts away from the axis, and the pressures near the axis decrease while the pressures far from the axis increase, resulting in profiles with a tendency to flatten. From the comparisons between the experimental and numerical simulation results of the model thruster, the approach combining CFD and DSMC shows a powerful ability to predict the plume pressures.

    Fig. 5 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 140 mm

    Fig. 6 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 350 mm

    Fig. 7 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 600 mm

    4 Conclusions

    To study the plume flow field of the second stage engines of the Chinese ‘CZ’ launch vehicle, a 60 N model thruster of hydrogen/oxygen with the same propellant, the same mixing ratio and the same shrinked bell-nozzle profile as those of the actual rocket engine is designed and tested in the Plume Effect Experimental System of Beihang University.

    The pressures behind the shock wave along the radial direction at the different distances from 140 mm to 600 mm away from the nozzle exit plane in the plume field are determined by using a pitot tube array. The results show the tendency of the plume produced from a bell-nozzle expanding into the vacuum. The experimental data are compared with the numerical simulation results based on the CFD-DSMC method, and it is shown that the numerical method predicts both the tendency and the values precisely as compared with the experimental results, which demonstrates the powerful ability of the numerical approach to estimate the effects of the plume flows. The characteristics of the pressure field of the model thruster plume are obtained by the present study and can serve as a basis for the plume effect analysis of the archetype engine.

    [1] Bird G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963, 6(10): 1518-1519

    [2] Bird G A. Shock-wave structure in a rigid sphere gas[C]//Proceedings of the Fourth International Symposium, Institute for Aerospace Studies. Toronto, 1965: 216

    [3] Bird G A. Molecular gas dynamics[M]. Oxford: Clarendon Press, 1976: 250

    [4] Baerwald R K. Rocket exhaust plume impingement on the Voyager spacecraft, AIAA 78-1090[R], 1978

    [5] Guernsey C S. Effects of translational nonequilibrium on vacuum plume expansions[J]. AIAA Journal, 1982, 20(7): 885-888

    [6] Pham-Van-Diep G, Erwin D, Muntz E P. Nonequilibrium molecular motion in a hypersonic shock wave[J]. Science, 1989, 245: 624-626

    [7] Boyd I D, Penko P F, Carney L M. Efficient Monte Carlo simulation of rarefied flow in a small nozzle, AIAA 90-1693[R], 1990

    [8] Lumpkin F E. A CFD/DSMC analysis of plumes and plume impingement during Shuttle/Mir docking[C]//30thThermophysics Conference. San Diego, 1995

    [9] Kannenberg K C, Boyd I D. Three-dimensional Monte Carlo simulations of plume impingement[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 226-235

    [10] Tseng K, Hu L, Kuo T, et al. Disturbance analysis from plume impingement by using the parallel DSMC Code (PDSC), AIAA 2007-4412[R], 2007

    [11] Lengrand J, Allegre J, Raffin M. Experimental investigation of underexpanded exhaust plumes[J]. AIAA Journal, 1976, 14(5): 692-694

    [12] Bailey A B. Flow-angle measurements in a rarefied nozzle plume[J]. AIAA Journal, 1987, 25(10): 1301-1304

    [13] Boyd I D. Analysis of rotational nonequilibrium in standing shock waves of nitrogen[J]. AIAA Journal, 1990, 28(11): 1997-1999

    [14] Boyd I D, Penko P F, Meissner D L, et al. Experimental and numerical investigations of low-density nozzle and plume flows of nitrogen[J]. AIAA Journal, 1992, 30(10): 2453-2461

    [15] Boyd I D, Beattie D R, Cappelli M A. Numerical and experimental investigations of low-density supersonic jets of hydrogen[J]. Journal of Fluid Mechanics, 1994, 280: 41-67

    [16] Broc A, De Benedictis S, Dilecce G, et al. Experimental and numerical investigation of an O2/NO supersonic free jet expansion[J]. Journal of Fluid Mechanics, 2004, 500: 211-237

    [17] Xiao Z J, Cheng H E, Zhou W M, et al. Pressure investigations of carbon dioxide nozzle plume flow in simulated space environment, AIAA 2007-5188[R], 2007

    [18] Wang W L, Cai G B, Zhou J P. Large-scale vacuum vessel design and finite element analysis[J]. Chinese Journal of Aeronautics, 2012, 25(2): 189-197

    [19] Ling G L, Wang W L, Cai G B, et al. Liquid helium heat sink design for experimental study of engine's plume and vacuum effects[J]. Journal of Aerospace Power, 2011, 26(11): 2630-2635

    [20] Ling G L, Cai G B, Zhang J H. Oil-free vacuum system design based on vacuum plume experiment[J]. Journal of Aerospace Power, 2013, 28(5): 1173-1179

    [21] Tang Z Y, He B J, Cai G B. Investigation on a coupled Navier–Stokes–Direct Simulation Monte Carlo method for the simulation of plume flowfield of a conical nozzle[J]. International Journal for Numerical Methods in Fluids, 2014, 76(2): 95-108

    [22] He B J, Zhang J H, Cai G B. Research on vacuum plume and its effects[J]. Chinese Journal of Aeronautics, 2013, 26(1): 27-36

    猜你喜歡
    氫氧北京航空航天大學(xué)宇航
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    氫氧燃料電池演示實驗的改進
    自制液壓儲氣式氫氧燃料電池
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    連鑄坯氫氧切割應(yīng)用與碳排放研究
    我的宇航夢
    小主人報(2015年4期)2015-09-14 02:50:29
    我的宇航夢
    小主人報(2015年2期)2015-03-01 12:30:54
    我的宇航夢
    小主人報(2015年3期)2015-02-28 20:41:54
    欧美极品一区二区三区四区| 如何舔出高潮| 日韩视频在线欧美| 黄色日韩在线| av在线观看视频网站免费| 久久久久久久久大av| 免费大片18禁| 男人狂女人下面高潮的视频| 日韩在线高清观看一区二区三区| 精品人妻偷拍中文字幕| 亚洲精品粉嫩美女一区| 久久精品夜色国产| 亚洲在线观看片| 舔av片在线| 国产精品久久久久久久久免| 国产美女午夜福利| 欧美成人免费av一区二区三区| 国产91av在线免费观看| 国产成人a区在线观看| 天堂网av新在线| 精品人妻熟女av久视频| 成人午夜高清在线视频| 免费大片18禁| 亚洲欧美日韩无卡精品| 中文字幕av成人在线电影| 国产免费男女视频| av福利片在线观看| 我的老师免费观看完整版| 亚洲乱码一区二区免费版| 3wmmmm亚洲av在线观看| 我的女老师完整版在线观看| 长腿黑丝高跟| 久久久久久久午夜电影| 一个人免费在线观看电影| 亚洲精品影视一区二区三区av| 亚洲va在线va天堂va国产| 一个人观看的视频www高清免费观看| 精品久久久久久久末码| 午夜爱爱视频在线播放| 如何舔出高潮| 亚洲三级黄色毛片| 尾随美女入室| kizo精华| 欧美不卡视频在线免费观看| 美女脱内裤让男人舔精品视频 | 亚洲av中文av极速乱| 3wmmmm亚洲av在线观看| 又粗又硬又长又爽又黄的视频 | 一级黄片播放器| 国产精品久久电影中文字幕| 午夜久久久久精精品| 男人狂女人下面高潮的视频| 国产亚洲欧美98| 国产欧美日韩精品一区二区| 大型黄色视频在线免费观看| 欧美性猛交╳xxx乱大交人| 三级毛片av免费| 国产欧美日韩精品一区二区| 黄片无遮挡物在线观看| 欧美激情在线99| 极品教师在线视频| 亚洲在久久综合| 亚洲乱码一区二区免费版| 欧美性感艳星| 成熟少妇高潮喷水视频| 小说图片视频综合网站| 国产精品免费一区二区三区在线| 久久午夜亚洲精品久久| 成人午夜精彩视频在线观看| 2022亚洲国产成人精品| 69人妻影院| 亚洲精品456在线播放app| 欧美日韩国产亚洲二区| 成人国产麻豆网| 一个人观看的视频www高清免费观看| 欧洲精品卡2卡3卡4卡5卡区| 小说图片视频综合网站| 少妇被粗大猛烈的视频| 熟女电影av网| 国产精品国产三级国产av玫瑰| 国内少妇人妻偷人精品xxx网站| 看十八女毛片水多多多| 啦啦啦观看免费观看视频高清| 蜜桃久久精品国产亚洲av| 真实男女啪啪啪动态图| 亚洲人成网站在线观看播放| 免费无遮挡裸体视频| ponron亚洲| 精品一区二区免费观看| 国产精品爽爽va在线观看网站| 男女视频在线观看网站免费| 欧美xxxx性猛交bbbb| 国产久久久一区二区三区| 啦啦啦韩国在线观看视频| 免费无遮挡裸体视频| av天堂在线播放| 丰满人妻一区二区三区视频av| 久久久精品94久久精品| 欧美3d第一页| 国产老妇女一区| 亚洲18禁久久av| 久久久国产成人免费| 小蜜桃在线观看免费完整版高清| 26uuu在线亚洲综合色| 亚洲国产精品成人综合色| 亚洲成a人片在线一区二区| 欧美日韩国产亚洲二区| 菩萨蛮人人尽说江南好唐韦庄 | 一级二级三级毛片免费看| 成年免费大片在线观看| 欧美人与善性xxx| 男女下面进入的视频免费午夜| 免费人成视频x8x8入口观看| 国产色婷婷99| 亚洲乱码一区二区免费版| 亚洲欧美日韩卡通动漫| 国产亚洲av片在线观看秒播厂 | 久久久精品大字幕| 只有这里有精品99| 国产精品久久视频播放| 看黄色毛片网站| 国产三级在线视频| 亚洲va在线va天堂va国产| 99热精品在线国产| 久久国产乱子免费精品| 美女cb高潮喷水在线观看| 国产色婷婷99| 国产午夜精品久久久久久一区二区三区| 一夜夜www| 成年av动漫网址| 小说图片视频综合网站| 听说在线观看完整版免费高清| 啦啦啦啦在线视频资源| 插逼视频在线观看| 久久久精品欧美日韩精品| 婷婷色av中文字幕| 精品不卡国产一区二区三区| 乱人视频在线观看| 国内久久婷婷六月综合欲色啪| 国内精品美女久久久久久| 久久久精品94久久精品| 国产精品永久免费网站| 国产精品一区二区性色av| 嫩草影院精品99| 91精品国产九色| 婷婷精品国产亚洲av| 亚洲18禁久久av| 韩国av在线不卡| www.av在线官网国产| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲一区高清亚洲精品| 国产老妇女一区| 亚洲精品粉嫩美女一区| 亚洲精品乱码久久久v下载方式| 高清午夜精品一区二区三区 | 97超碰精品成人国产| 97人妻精品一区二区三区麻豆| 久久韩国三级中文字幕| 成人午夜精彩视频在线观看| 日韩中字成人| 午夜爱爱视频在线播放| 国产精品一区二区在线观看99 | 国产精品一区二区三区四区免费观看| 长腿黑丝高跟| 午夜精品国产一区二区电影 | 日日啪夜夜撸| 日本与韩国留学比较| 国内精品美女久久久久久| 国产精品一区二区性色av| 国产爱豆传媒在线观看| 欧美一区二区精品小视频在线| 91aial.com中文字幕在线观看| 又粗又硬又长又爽又黄的视频 | 欧美日韩在线观看h| av国产免费在线观看| 久久久久久久久大av| 久久久久久久午夜电影| 99九九线精品视频在线观看视频| 男插女下体视频免费在线播放| 麻豆国产av国片精品| 特大巨黑吊av在线直播| 啦啦啦观看免费观看视频高清| 国产毛片a区久久久久| 国产亚洲5aaaaa淫片| 丰满乱子伦码专区| 99在线视频只有这里精品首页| 国产大屁股一区二区在线视频| 岛国毛片在线播放| 97人妻精品一区二区三区麻豆| 乱人视频在线观看| 少妇人妻精品综合一区二区 | 久久久久久九九精品二区国产| 深夜精品福利| 亚洲欧美清纯卡通| 国产精品麻豆人妻色哟哟久久 | 欧美日韩国产亚洲二区| 国产国拍精品亚洲av在线观看| 色视频www国产| 国产精品一区二区在线观看99 | 神马国产精品三级电影在线观看| 69av精品久久久久久| 又黄又爽又刺激的免费视频.| 亚洲激情五月婷婷啪啪| 99riav亚洲国产免费| 中文字幕av在线有码专区| eeuss影院久久| 国产亚洲精品久久久com| 91精品一卡2卡3卡4卡| 久久这里只有精品中国| 国产亚洲欧美98| 国产老妇女一区| 乱人视频在线观看| 一级毛片aaaaaa免费看小| 亚洲精品日韩av片在线观看| 久99久视频精品免费| 老熟妇乱子伦视频在线观看| 有码 亚洲区| 免费黄网站久久成人精品| 12—13女人毛片做爰片一| 国产黄片视频在线免费观看| 久久这里有精品视频免费| 3wmmmm亚洲av在线观看| a级毛色黄片| 国产高清不卡午夜福利| 日本av手机在线免费观看| 男女那种视频在线观看| 男女下面进入的视频免费午夜| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| 成人漫画全彩无遮挡| 又黄又爽又刺激的免费视频.| 亚洲国产精品sss在线观看| 欧美色视频一区免费| 久久精品国产亚洲av涩爱 | 久久久久免费精品人妻一区二区| 少妇的逼好多水| 国产精品久久电影中文字幕| 久久久午夜欧美精品| 高清毛片免费观看视频网站| 不卡视频在线观看欧美| 激情 狠狠 欧美| 国产 一区 欧美 日韩| 美女大奶头视频| 欧美色视频一区免费| 国产毛片a区久久久久| 成年女人永久免费观看视频| 中文在线观看免费www的网站| 欧美日韩在线观看h| 国产淫片久久久久久久久| 大香蕉久久网| 亚洲av第一区精品v没综合| 可以在线观看毛片的网站| 精品国产三级普通话版| 99热这里只有是精品在线观看| 成年女人看的毛片在线观看| 一个人免费在线观看电影| 国产精品电影一区二区三区| av又黄又爽大尺度在线免费看 | 联通29元200g的流量卡| 日日撸夜夜添| 精品久久久久久成人av| 91aial.com中文字幕在线观看| 麻豆成人午夜福利视频| 成年女人看的毛片在线观看| 在线观看午夜福利视频| 亚洲经典国产精华液单| 嫩草影院新地址| 亚洲欧美日韩高清在线视频| 精品一区二区免费观看| 亚洲不卡免费看| 国产精品福利在线免费观看| 最近的中文字幕免费完整| 日本黄色视频三级网站网址| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品av在线| 黑人高潮一二区| 九九爱精品视频在线观看| 日本与韩国留学比较| 在线免费十八禁| 变态另类成人亚洲欧美熟女| 国产精品久久久久久av不卡| 亚洲国产精品合色在线| 免费观看人在逋| 免费人成在线观看视频色| 色综合亚洲欧美另类图片| 亚洲成a人片在线一区二区| 日本-黄色视频高清免费观看| 成人午夜高清在线视频| 中文字幕久久专区| 久久99精品国语久久久| 午夜激情欧美在线| 久久久久久九九精品二区国产| 日本一二三区视频观看| 小说图片视频综合网站| 欧美成人一区二区免费高清观看| 波野结衣二区三区在线| 最近中文字幕高清免费大全6| 麻豆一二三区av精品| 亚洲自偷自拍三级| 久久久久久久久久久丰满| www日本黄色视频网| 国产中年淑女户外野战色| 1000部很黄的大片| 亚洲国产精品成人久久小说 | 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站 | 亚洲天堂国产精品一区在线| 3wmmmm亚洲av在线观看| 欧美极品一区二区三区四区| 在线观看一区二区三区| 成年av动漫网址| 哪个播放器可以免费观看大片| 久久午夜福利片| 亚洲在线自拍视频| 日韩,欧美,国产一区二区三区 | 悠悠久久av| 亚洲av男天堂| 国产成人影院久久av| 韩国av在线不卡| 岛国毛片在线播放| 深夜精品福利| 韩国av在线不卡| 亚洲av二区三区四区| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 大香蕉久久网| 国产精品一区二区三区四区久久| 99热6这里只有精品| 九草在线视频观看| 国产精品一区二区三区四区久久| 国产日本99.免费观看| 网址你懂的国产日韩在线| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 日本-黄色视频高清免费观看| 国产黄a三级三级三级人| 久久精品久久久久久久性| h日本视频在线播放| 美女国产视频在线观看| 亚洲欧洲国产日韩| 久久九九热精品免费| 乱码一卡2卡4卡精品| 天堂中文最新版在线下载 | 99国产极品粉嫩在线观看| 少妇裸体淫交视频免费看高清| 午夜激情福利司机影院| 岛国毛片在线播放| 亚州av有码| 麻豆av噜噜一区二区三区| 亚洲成人av在线免费| 我要看日韩黄色一级片| 成人av在线播放网站| 日日摸夜夜添夜夜爱| 免费一级毛片在线播放高清视频| 午夜福利在线在线| 免费人成视频x8x8入口观看| 啦啦啦韩国在线观看视频| 中文字幕av成人在线电影| 欧美激情在线99| 国产久久久一区二区三区| 国产精品福利在线免费观看| 美女cb高潮喷水在线观看| 黄色配什么色好看| 91久久精品国产一区二区三区| 插阴视频在线观看视频| 日本熟妇午夜| 国产男人的电影天堂91| 成熟少妇高潮喷水视频| 91久久精品电影网| 91在线精品国自产拍蜜月| 一本精品99久久精品77| 不卡一级毛片| 亚洲七黄色美女视频| 成人综合一区亚洲| 中文欧美无线码| 日日摸夜夜添夜夜爱| a级一级毛片免费在线观看| 久久精品国产自在天天线| 久久午夜亚洲精品久久| av在线亚洲专区| 在线免费观看的www视频| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 欧美性感艳星| 丝袜喷水一区| 黄片wwwwww| 欧美xxxx性猛交bbbb| 国产老妇女一区| 美女xxoo啪啪120秒动态图| 亚洲av成人精品一区久久| 少妇人妻一区二区三区视频| 禁无遮挡网站| 婷婷精品国产亚洲av| 一区二区三区免费毛片| 亚洲中文字幕日韩| 一本一本综合久久| 亚洲激情五月婷婷啪啪| 女人被狂操c到高潮| 国产真实伦视频高清在线观看| 91精品国产九色| 男女下面进入的视频免费午夜| 国产精品永久免费网站| 色吧在线观看| 精品国内亚洲2022精品成人| 亚洲国产欧美人成| 国产精品99久久久久久久久| 欧美在线一区亚洲| av福利片在线观看| 欧美色视频一区免费| 中文字幕av成人在线电影| 免费在线观看成人毛片| 成人三级黄色视频| 九九爱精品视频在线观看| 亚洲av.av天堂| 亚洲在线观看片| 国产一区二区激情短视频| 免费av观看视频| 综合色丁香网| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩高清专用| 国产三级中文精品| 国产一级毛片在线| www.色视频.com| 观看免费一级毛片| 久久久精品94久久精品| 国产亚洲精品av在线| 嫩草影院新地址| .国产精品久久| 一本久久精品| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲网站| 国产不卡一卡二| 午夜久久久久精精品| 国产成人精品婷婷| 免费av观看视频| 狠狠狠狠99中文字幕| 黄色日韩在线| 亚洲欧美中文字幕日韩二区| 村上凉子中文字幕在线| 日本三级黄在线观看| 高清日韩中文字幕在线| 看片在线看免费视频| 国产精品爽爽va在线观看网站| 亚洲在久久综合| 六月丁香七月| 亚洲中文字幕一区二区三区有码在线看| 在线免费十八禁| 人人妻人人澡欧美一区二区| 亚洲av电影不卡..在线观看| 深夜精品福利| 亚洲无线观看免费| 好男人视频免费观看在线| 精品一区二区三区人妻视频| 亚洲国产色片| 久久99蜜桃精品久久| 人妻久久中文字幕网| 免费电影在线观看免费观看| 国产精品野战在线观看| 69人妻影院| 99视频精品全部免费 在线| 国产成人a区在线观看| 亚洲精品粉嫩美女一区| 国产v大片淫在线免费观看| 国产 一区精品| 午夜激情欧美在线| 九九在线视频观看精品| 99国产精品一区二区蜜桃av| 日韩国内少妇激情av| 国产黄色小视频在线观看| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 日本爱情动作片www.在线观看| 成人永久免费在线观看视频| 综合色av麻豆| 成人综合一区亚洲| 国产精品人妻久久久影院| 99久久成人亚洲精品观看| av国产免费在线观看| 高清毛片免费观看视频网站| 麻豆国产av国片精品| 成人亚洲欧美一区二区av| 最近中文字幕高清免费大全6| 亚洲av中文字字幕乱码综合| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 又粗又爽又猛毛片免费看| 国产精品久久久久久精品电影小说 | 国产精品国产三级国产av玫瑰| 国产av一区在线观看免费| 国产伦精品一区二区三区视频9| 中文字幕免费在线视频6| 亚洲国产精品sss在线观看| 91精品国产九色| www日本黄色视频网| 国产v大片淫在线免费观看| 亚洲国产精品sss在线观看| 色视频www国产| 亚洲成人精品中文字幕电影| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久久久按摩| 亚洲国产精品成人综合色| 黄色一级大片看看| 夜夜爽天天搞| 国产探花极品一区二区| 亚洲七黄色美女视频| 久久鲁丝午夜福利片| 国产精品三级大全| 久久99精品国语久久久| 亚洲欧美清纯卡通| 不卡一级毛片| 日本欧美国产在线视频| 亚洲电影在线观看av| а√天堂www在线а√下载| 国产在视频线在精品| av在线观看视频网站免费| 亚洲精品456在线播放app| 久久亚洲精品不卡| 色视频www国产| 亚洲欧美日韩无卡精品| 亚洲精品456在线播放app| 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| 日本免费a在线| 三级经典国产精品| 黄色一级大片看看| 免费观看人在逋| 精品少妇黑人巨大在线播放 | 狠狠狠狠99中文字幕| 人妻系列 视频| 99热精品在线国产| 久久草成人影院| 综合色丁香网| 亚洲国产欧洲综合997久久,| 久久久久久久久久久丰满| 男插女下体视频免费在线播放| 成人漫画全彩无遮挡| 一级毛片久久久久久久久女| 级片在线观看| 国产精品一区二区性色av| 久久综合国产亚洲精品| 欧美色欧美亚洲另类二区| 人人妻人人澡人人爽人人夜夜 | 日韩三级伦理在线观看| 嫩草影院新地址| 国产麻豆成人av免费视频| 三级经典国产精品| 日韩三级伦理在线观看| 国产一级毛片在线| 精品久久久久久久人妻蜜臀av| 大香蕉久久网| 亚洲美女视频黄频| 69av精品久久久久久| 亚洲人成网站高清观看| 寂寞人妻少妇视频99o| 中文字幕熟女人妻在线| 免费黄网站久久成人精品| 午夜福利在线观看免费完整高清在 | 日韩国内少妇激情av| 国产一区亚洲一区在线观看| 国产精品美女特级片免费视频播放器| 精品少妇黑人巨大在线播放 | 亚洲自拍偷在线| 1024手机看黄色片| 91狼人影院| 欧美精品国产亚洲| 夜夜夜夜夜久久久久| 一级黄色大片毛片| 九九热线精品视视频播放| 特大巨黑吊av在线直播| 成人毛片60女人毛片免费| 亚洲国产精品成人综合色| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 三级毛片av免费| av.在线天堂| av视频在线观看入口| 啦啦啦韩国在线观看视频| 国产真实乱freesex| 天天一区二区日本电影三级| 97超视频在线观看视频| 中出人妻视频一区二区| 日日啪夜夜撸| 中文字幕精品亚洲无线码一区| 天堂中文最新版在线下载 | 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 精品熟女少妇av免费看| 国产黄片视频在线免费观看| 赤兔流量卡办理| 99久久中文字幕三级久久日本| 亚洲欧美精品综合久久99| 国产乱人视频| 高清毛片免费观看视频网站| 不卡视频在线观看欧美| a级毛片a级免费在线| 国产在线精品亚洲第一网站| 亚洲自拍偷在线| 非洲黑人性xxxx精品又粗又长| 在线观看免费视频日本深夜| 久久综合国产亚洲精品| 美女被艹到高潮喷水动态| 久久久久久伊人网av| 亚洲av不卡在线观看| 久久久午夜欧美精品| 99在线视频只有这里精品首页| 成人亚洲欧美一区二区av| 91在线精品国自产拍蜜月| 看黄色毛片网站| 亚洲国产欧洲综合997久久,| 别揉我奶头 嗯啊视频| av国产免费在线观看| 久久久久性生活片| 人妻夜夜爽99麻豆av|