石磊, 樓海, 王謙身, 盧紅艷, 徐偉民
1 中國(guó)地震局地球物理研究所, 北京 100081 2 中國(guó)科學(xué)院地質(zhì)與地球物理研究所, 北京 100029
?
攀西地區(qū)重力場(chǎng)特征及地殼密度結(jié)構(gòu)
石磊1, 樓海1, 王謙身2, 盧紅艷1, 徐偉民1
1 中國(guó)地震局地球物理研究所, 北京 100081 2 中國(guó)科學(xué)院地質(zhì)與地球物理研究所, 北京 100029
攀西地區(qū)位于峨眉山大火成巖省中西部,構(gòu)造和巖漿特征顯著,地震活動(dòng)強(qiáng)烈.通過(guò)對(duì)野外重力測(cè)量得到的云縣—會(huì)東和普洱—七甸兩條剖面的高精度重力觀測(cè)數(shù)據(jù)進(jìn)行處理和分析,構(gòu)建了沿剖面的二維地殼密度結(jié)構(gòu),其中普洱—七甸剖面與孟連—馬龍寬角地震剖面部分位置重合.同時(shí)結(jié)合區(qū)域重力異常特征及下地殼視密度填圖結(jié)果,得到如下初步認(rèn)識(shí):紅河斷裂帶是南北地震帶南段地區(qū)重要的構(gòu)造分界線,斷裂帶南北向密度結(jié)構(gòu)和莫霍面分布形態(tài)存在較大差異,沿走向構(gòu)造變化.云縣—會(huì)東剖面上大姚—會(huì)東段下地殼底部存在密度較高的殼幔過(guò)渡層,結(jié)合研究區(qū)下地殼底部殼幔過(guò)渡層的密度分布特征,認(rèn)為該過(guò)渡層不是攀西裂谷下的“裂谷墊”,而是由巖漿底侵作用造成的.
攀西地區(qū);重力場(chǎng);地殼密度結(jié)構(gòu);視密度填圖
南北地震帶南段是青藏高原東南緣的重要構(gòu)造邊界帶,為快速隆升的青藏高原與相對(duì)穩(wěn)定的揚(yáng)子地臺(tái)的過(guò)渡帶,地質(zhì)背景復(fù)雜,構(gòu)造活動(dòng)強(qiáng)烈.攀西地區(qū)位于揚(yáng)子地塊西緣,峨眉山大火成巖省中西部,北起四川省冕寧,南經(jīng)西昌、攀枝花,直至云南省元謀一帶,南北綿延約700 km(滕吉文, 1987),其西界為菁河—程海斷裂,東界為普渡河斷裂,西南界為紅河斷裂.該區(qū)是前寒武紀(jì)基底大面積出露地區(qū),在晚古生代地殼擴(kuò)展基礎(chǔ)上疊加一系列規(guī)模巨大的近南北向斷裂.這些斷裂具有悠久的發(fā)育史并在此期間多次活動(dòng),為多期巖漿巖所充填,部分至今仍在活動(dòng),因此攀西地區(qū)也是我國(guó)強(qiáng)地震發(fā)生最為頻繁的地區(qū)之一(張文佑和吳根耀, 1982; 繆以琨等, 1986).
攀西構(gòu)造帶廣泛分布海西期層狀堆晶雜巖、晚二疊系峨眉山玄武巖和印支期堿性雜巖等(Jian et al., 2009; Marian et al., 2013),構(gòu)造和巖漿特征顯著,礦產(chǎn)資源豐富,一直是國(guó)內(nèi)外地質(zhì)學(xué)家和地球物理學(xué)家關(guān)注的焦點(diǎn).不同學(xué)者對(duì)其構(gòu)造屬性提出了川滇經(jīng)向構(gòu)造帶(李四光, 1973),川滇地洼系(陳國(guó)達(dá)等, 1965),康滇臺(tái)背斜(張文佑和吳根耀, 1982),康滇地軸(黃汲清, 1954; 劉風(fēng)仁, 1984),古裂谷帶(駱耀南, 1983)和被動(dòng)活化的古裂谷(滕吉文, 1987)等認(rèn)識(shí).這些觀點(diǎn)各有其獨(dú)特之處,對(duì)我們從地殼深部認(rèn)識(shí)攀西構(gòu)造帶的形成、演化和性質(zhì)等具有重要的指導(dǎo)意義.
前人在攀西地區(qū)進(jìn)行了大量的重力資料研究工作,得到了該區(qū)的均衡重力異常(孟令順等, 1987; 陳石等, 2011)、莫霍面深度分布(晏賢富, 1981; 劉云龍等, 1987)和地殼上地幔密度結(jié)構(gòu)(朱思林等, 1994; 蔣福珍和方劍, 2001; 樓海和王椿鏞, 2005)等.研究成果均表明在該區(qū)存在顯著的南北向重力高異常,但由于當(dāng)時(shí)所用研究方法和重力資料的限制(王謙身等, 2007),使得重力結(jié)果與其他地球物理方法的研究成果并不一致.例如,重力異常反演得到的莫霍面深度在攀西地區(qū)存在明顯隆升(劉云龍等, 1987; 鐘鍇等, 2005),而穿過(guò)攀西構(gòu)造帶的深地震測(cè)深剖面研究結(jié)果卻都顯示莫霍面隆起較小(熊紹柏等, 1986; Kan et al., 1986; 崔作舟等, 1987; 張恩會(huì)等, 2013).因此,有必要對(duì)該區(qū)做進(jìn)一步的重力研究工作.
中國(guó)地震局于2011年4—5月在攀西構(gòu)造帶及其鄰區(qū)完成了云縣—會(huì)東和普洱—七甸兩條剖面的絕對(duì)重力點(diǎn)控制下的相對(duì)重力測(cè)量.本文通過(guò)對(duì)這兩條探測(cè)剖面的數(shù)據(jù)進(jìn)行分析處理和解釋,構(gòu)建了沿剖面的二維地殼密度結(jié)構(gòu),同時(shí)結(jié)合研究區(qū)區(qū)域重力資料進(jìn)行了整體的研究與探討,對(duì)其可能的地質(zhì)含義進(jìn)行初步解釋,以期能對(duì)深化認(rèn)識(shí)攀西地區(qū)地殼結(jié)構(gòu)、構(gòu)造及動(dòng)力學(xué)等提供一些重力學(xué)依據(jù).
2.1 剖面重力變化特征
本次重力數(shù)據(jù)收集沿穿過(guò)攀西地區(qū)中南部的兩條剖面進(jìn)行,如圖1中紅色圓點(diǎn)實(shí)際測(cè)點(diǎn)位置所示,云縣—會(huì)東剖面(剖面A-A′)野外測(cè)量時(shí)由于道路施工問(wèn)題在祥云到大姚測(cè)點(diǎn)間存在一個(gè)錯(cuò)斷.其中,剖面A-A′由西南側(cè)位于三江地區(qū)的云縣測(cè)點(diǎn)至東北端普渡河斷裂帶附近的會(huì)東測(cè)點(diǎn),全長(zhǎng)約453 km,測(cè)點(diǎn)距為2.3 km左右,共采集測(cè)點(diǎn)數(shù)為199個(gè).剖面B-B′由西南部位于滇南地塊的普洱測(cè)點(diǎn),穿越紅河斷裂帶西南部,至東北側(cè)滇中次級(jí)塊體內(nèi)的七甸測(cè)點(diǎn),全長(zhǎng)約356 km,測(cè)點(diǎn)距為1.8 km左右,共采集測(cè)點(diǎn)數(shù)為195個(gè).
野外測(cè)量中采用絕對(duì)重力點(diǎn)控制下的相對(duì)重力測(cè)量,剖面A-A′上有攀枝花、彌渡和臨滄3個(gè)絕對(duì)重力點(diǎn),剖面B-B′上有黑龍?zhí)逗托缕?個(gè)絕對(duì)重力點(diǎn),有效保證了觀測(cè)數(shù)據(jù)的測(cè)量精度.此次測(cè)量主要沿省級(jí)公路及縣道進(jìn)行,使用了2臺(tái)LCR-G型金屬?gòu)椈芍亓x,儀器號(hào)分別為G147和G570,兩條剖面測(cè)量誤差均為0.02 mGal.GPS測(cè)量工作與相對(duì)重力測(cè)量準(zhǔn)同步,進(jìn)行同點(diǎn)觀測(cè),采用靜態(tài)測(cè)量方法,每點(diǎn)有效測(cè)量時(shí)間不低于40 min.在對(duì)各測(cè)點(diǎn)重力觀測(cè)數(shù)據(jù)進(jìn)行了零漂校正、固體潮校正、緯度改正、高度改正、中間層改正和地形改正后,得到各測(cè)點(diǎn)的布格重力異常值,并繪制出兩條剖面的布格重力異常分布曲線,如圖2所示.
圖1 攀西地區(qū)重力探測(cè)剖面及地形圖圖中紅色曲線為剖面實(shí)際測(cè)點(diǎn)位置,藍(lán)色直線為剖面設(shè)計(jì)測(cè)線位置,紫色曲線為寬角地震剖面位置(白志明和王椿鏞, 2004),黑色曲線為研究區(qū)主要斷裂帶,其中XJF:小江斷裂,ZMHF:則木河斷裂,PDHF:普渡河斷裂,ANHF:安寧河斷裂,MPS-LZJF:磨盤山—綠汁江斷裂,NH-CXF:南華—楚雄斷裂,RRF:紅河斷裂,LCJF:瀾滄江斷裂,ZY-PEF:鎮(zhèn)遠(yuǎn)—普洱斷裂,JHF:菁河斷裂,XJH-LJF:小金河—麗江斷裂,YX:云縣,NJ:南澗,MD:彌渡,XY:祥云,DY:大姚,YR:永仁,PD:平地,HD:會(huì)東,PE:普洱,NE:寧洱,TG:通關(guān),MJ:墨江,YJ:元江,YW:楊武,ES:峨山,YX:玉溪,JN:晉寧,QD:七甸.Fig.1 Location of two gravity profiles across the Panxi region and topography Red lines indicate the ways followed for gravity measurements, blue lines present the designed profiles, purple line presents the position of wide-angle seismic profile and black lines are the major faults. XJF:Xiaojiang Fault,ZMHF:Zemuhe Fault,PDHF:Puduhe Fault,ANHF:Anninghe Fault,MPS-LZJF:Mopanshan-Lüzhijiang Fault,NH-CXF:Nanhua-Chuxiong Fault,RRF:Red River Fault,LCJF:Lancangjiang Fault,ZY-PEF:Zhenyuan-Puer Fault,JHF:Jinghe Fault,XJH-LJF:Xiaojinhe-Lijiang Fault,YX:Yunxian,NJ:Nanjian,MD:Midu,XY:Xiangyun,DY:Dayao,YR:Yongren,PD:Pingdi,HD:Huidong,PE:Puer,NE:Ninger,TG:Tongguan,MJ:Mojiang,YJ:Yuanjiang,YW:Yangwu,ES:Eshan,YX:Yuxi,JN:Jinning,QD:Qidian.
剖面A-A′自由空氣重力異常與地形有很好的相關(guān)性,整條剖面地形高程變化比較劇烈,尤其是紅河斷裂帶以西測(cè)點(diǎn)位于橫斷山脈地區(qū),這里高聳山脈和陡峭河谷相間分布,地形起伏范圍超過(guò)1500 m.剖面上布格重力異常變化范圍在-180~-280 mGal之間,沿紅河斷裂帶具有明顯的分段特征.紅河斷裂帶以西布格重力異常變化較小,僅有局部異常變化,表明瀾滄江斷裂帶兩側(cè)地殼密度結(jié)構(gòu)差異不大.紅河斷裂帶東側(cè),南華—楚雄斷裂帶至普渡河斷裂帶地區(qū),存在一個(gè)較大范圍的重力高異常,異常變化幅度達(dá)80 mGal,這個(gè)異常是縱貫云南省中部滇中次級(jí)塊體重力高異常的一部分.在這個(gè)重力高異常上還疊加了局部正異常,其中以綠枝江斷裂帶至安寧河斷裂帶間最為突出,推測(cè)這些局部正異常與該區(qū)華力西期輝綠巖、閃長(zhǎng)巖及二疊系峨眉山玄武巖等出露有關(guān)(Shellnutt and Zhou, 2007; Hou et al., 2013).
剖面B-B′自由空氣重力異常同樣基本反映了剖面上的地形高程變化,紅河斷裂帶切割深度很大,河谷兩側(cè)地形變化幅度超過(guò)1000 m.布格重力異常由西南端的-150 mGal減小到東北部的-230 mGal,總體變化比較平緩.剖面上布格重力異常最為突出的特征是紅河斷裂帶兩側(cè)存在的顯著異常變化,變化幅度達(dá)40 mGal,與該處劇烈的地形起伏變化密切相關(guān).值得注意的是,紅河斷裂帶附近的局部異常最低值并沒(méi)有出現(xiàn)在地形最低點(diǎn)處,而是在元江以西哀牢山的半山坡處,即局部異常最低點(diǎn)與地形最低點(diǎn)之間有約12 km的位移.此外,在剖面通過(guò)的山間盆地地區(qū)都有局部低異常出現(xiàn),如玉溪盆地、通海盆地等,這些局部低異常是云南地區(qū)新生代盆地共有的地球物理特征(何正勤等, 2013; 王夫運(yùn)等, 2014).
2.2 區(qū)域重力場(chǎng)特征
為研究剖面附近較大范圍的攀西地區(qū)地殼深部結(jié)構(gòu),需進(jìn)行區(qū)域重力異常場(chǎng)的研究.因此,本文選取98°E—105°E,22°N—31°N為研究區(qū)來(lái)進(jìn)行整體性研究.圖3為收集自中國(guó)地質(zhì)調(diào)查局的研究區(qū)1∶100萬(wàn)布格重力異常,點(diǎn)、線間距均為10 km.
研究區(qū)布格重力異??偟淖兓厔?shì)是由東向西,由南向北重力值逐漸降低.東部四川盆地重力值最大為-40 mGal,而北西側(cè)松潘—甘孜地塊內(nèi)的巴塘地區(qū),重力值最小為-540 mGal,相對(duì)變化約500 mGal.全區(qū)布格重力異常以北東走向,縱貫全區(qū)的龍門山—錦屏山巨型重力梯級(jí)帶為界,分為東西兩大區(qū).
圖2 剖面地形與重力異常分布圖 (a)自下至上分別為剖面A-A′的地形、自由空氣和布格重力異常,黃色區(qū)域?yàn)橐巴鉁y(cè)量時(shí)道路施工問(wèn)題導(dǎo)致的剖面錯(cuò)斷; (b)自下至上分別為剖面B-B′的地形、自由空氣和布格重力異常.Fig.2 Topography and gravity anomalies measured along the profiles (a) From bottom to top present the terrain, free-air gravity anomaly and Bouguer gravity anomaly along profile A-A′; (b) From bottom to top indicate the terrain, free-air gravity anomaly and Bouguer gravity anomaly along profile B-B′. There is a gap in profile A-A′,which marks in yellow vertical band, because of the road construction problems during the time of data acquisition.
圖3 研究區(qū)布格重力異常圖Fig.3 Bouguer gravity anomaly of the study area
西部松潘—甘孜地塊重力場(chǎng)變化平緩,在-330~-540 mGal間變化,等值線較疏緩,該區(qū)中生代海相地層厚達(dá)10余公里,且有大量的印支—燕山期酸性花崗巖體分布(許志琴等, 1992).重力場(chǎng)反映出該區(qū)曾經(jīng)是凹陷區(qū),接受了巨厚沉積,地殼厚度大,無(wú)高密度體引起重力異常高.梯級(jí)帶以東華南褶皺系的布格重力異常比較復(fù)雜,顯示出兩種區(qū)域特征.四川盆地布格重力異常值平緩下降,等值線向西突出,反映出穩(wěn)定塊體的重力場(chǎng)特征.攀西地區(qū)則是疊加在負(fù)值重力異常背景上的相對(duì)重力高值區(qū),平面上呈南寬北窄的楔形,北端收斂于石棉附近.
3.1 剖面重力建模
在重力剖面模擬解釋中,首先依據(jù)重力場(chǎng)的變化特征分析引起變化的主要因素,結(jié)合研究區(qū)區(qū)域地質(zhì)構(gòu)造和其他地球物理方法研究成果建立剖面初始密度模型,進(jìn)行定性解釋;然后根據(jù)測(cè)區(qū)內(nèi)物性資料進(jìn)行定量計(jì)算,采用任意截面二度體重力異常計(jì)算公式正演密度模型的理論重力異常(Talwani et al., 1959),人機(jī)交互反復(fù)修改模型,直到計(jì)算重力異常與實(shí)測(cè)重力異常的擬合誤差小于剖面布格重力異常精度時(shí)為止,建立最終的密度模型.
中國(guó)地震局于20世紀(jì)80年代在云南地區(qū)開展了一系列人工地震剖面探測(cè)工作,其中孟連—思茅—馬龍剖面與本次重力測(cè)量工作中的B-B′剖面重合.白志明等(2004)對(duì)地震剖面進(jìn)行了重新解釋,給出剖面上P波速度模型.我們利用P波速度-密度經(jīng)驗(yàn)公式ρ=a+bvP(ChristensenandMooney, 1995)進(jìn)行轉(zhuǎn)換得到相應(yīng)的密度,其中a=0.5406 g·cm-3、b=0.3601 g·s/km·cm3,建立了沿B-B′剖面的初始密度模型.由于沒(méi)有與A-A′剖面重合的人工地震資料,本文在構(gòu)建該剖面初始密度模型時(shí)以Crust1.0模型(Laske et al., 2013)為參考.在此基礎(chǔ)上,對(duì)實(shí)測(cè)的兩條剖面上的布格重力異常進(jìn)行了正反演計(jì)算,經(jīng)過(guò)多次調(diào)整模型方案,最終選擇了計(jì)算重力場(chǎng)與實(shí)際重力場(chǎng)分布最佳擬合的模型給出兩條剖面的二維地殼密度結(jié)構(gòu),如圖4所示.
在兩條剖面的最終二維地殼結(jié)構(gòu)和構(gòu)造解釋剖面中,地殼分為淺部沉積層、上地殼、中地殼和下地殼,各層密度分別為2.00~2.60 g·cm-3、2.61~2.76 g·cm-3、2.77~2.88 g·cm-3和2.90~3.00 g·cm-3,上地幔頂部密度為3.10~3.35 g·cm-3.在密度模型中,考慮了斷裂帶的走滑性質(zhì),主要斷裂構(gòu)造的產(chǎn)狀都比較陡.
在A-A′剖面密度模型上(圖4a, 4b),紅河斷裂帶兩側(cè)密度結(jié)構(gòu)存在較大差異,西部平均密度明顯低于斷裂帶東側(cè),斷裂帶深部莫霍面存在一定程度的凹陷,推測(cè)為新生代早期紅河斷裂帶張開過(guò)程的結(jié)果(Tapponnier et al., 1990; 張進(jìn)江等, 2006).大姚—會(huì)東段下地殼底部存在密度較高的殼幔過(guò)渡層,引起了該地區(qū)大尺度的重力高異常.過(guò)去重力資料將這一高異常解釋為莫霍面隆起(劉云龍等, 1987; 鐘鍇等, 2005),但根據(jù)人工地震(Kan et al., 1986; 熊紹柏等, 1986; 崔作舟等, 1987)和新的重力資料分析解釋,我們認(rèn)為引起重力高異常的原因不是莫霍面隆起,而是地殼底部存在著密度較高的殼幔過(guò)渡層,與這一地區(qū)地表出露的基性、超基性巖石一樣都是在地幔柱活動(dòng)地區(qū)或大火成巖省常見的巖漿底侵作用(Cox, 1989; Liu et al., 2001).
圖4 重力剖面地殼上地幔密度結(jié)構(gòu) (a)為剖面A-A′觀測(cè)與擬合重力異常,黑點(diǎn)為實(shí)測(cè)布格重力異常,藍(lán)線為擬合重力異常; (b)為剖面A-A′ 地殼上地幔密度模型; (c)為剖面B-B′觀測(cè)與擬合重力異常; (d)為剖面B-B′地殼上地幔密度模型.Fig.4 Density models of the crust-mantle structure beneath the profile A-A′ and B-B′ (a) presents Bouguer gravity anomalies (black dot) and calculated anomalies (blue line) along profile A-A′; (b) indicates density model for profile A-A′; (c) presents Bouguer gravity anomalies (black dot) and calculated anomalies (blue line) along profile B-B′; (d) indicates density model for profile B-B′.
圖5 B-B′剖面上G-G′段重力異常的水平方向?qū)?shù)Fig.5 Lateral directional derivative of gravity anomalies on G-G′ section in profile B-B′
B-B′剖面密度模型中(圖4c, 4d),紅河斷裂帶兩側(cè)密度結(jié)構(gòu)比較一致,對(duì)應(yīng)的莫霍面起伏也較小,不存在明顯變化,顯示出紅河斷裂帶沿走向的構(gòu)造變化.G-G′段顯示了整條剖面上布格重力異常變化最為劇烈的地方,即在18 km范圍內(nèi)重力場(chǎng)由-195 mGal增加至-175 mGal,紅河斷裂帶的位置恰好處于該重力異常突躍段內(nèi).為確定紅河斷裂帶的位置和構(gòu)造形態(tài),對(duì)G-G′段重力異常進(jìn)行了水平方向?qū)?shù)處理,得到該異常段水平導(dǎo)數(shù)Vxz的異常分布特征,如圖5所示.由圖5b可見,Vxz曲線呈凹谷型分布,凹谷的西側(cè)較東側(cè)呈現(xiàn)出相對(duì)平緩的分布態(tài)勢(shì),最低值在剖面90號(hào)測(cè)點(diǎn)約171km處.根據(jù)重力學(xué)理論,傾斜斷裂的位置應(yīng)與其水平導(dǎo)數(shù)最低值位置一致,且傾斜斷裂的傾向與水平導(dǎo)數(shù)相對(duì)平緩的一側(cè)相同(王謙身等,2003,2013).因此,我們認(rèn)為紅河斷裂帶淺部向西傾斜,傾角約為70°~80°,而深部則轉(zhuǎn)為近于陡直向東傾斜,與人工地震剖面認(rèn)識(shí)一致(白志明和王椿鏞,2004).推測(cè)紅河斷裂帶以西哀牢山重力低異常為低密度地層加厚,哀牢山變質(zhì)巖逆沖到低密度沉積蓋層上所致(YinandHarrison,1996;Houetal., 2013),而斷裂帶東部高重力異常對(duì)應(yīng)于前寒武紀(jì)基底隆起和廣泛出露的晚二疊系峨眉山玄武巖(宋謝炎等, 2002;Marianetal., 2013).
3.2 區(qū)域下地殼視密度填圖
視密度填圖可為劃分巖性、圈定巖體邊界以及解決有關(guān)地質(zhì)構(gòu)造等問(wèn)題提供密度分布依據(jù).為進(jìn)一步研究攀西地區(qū)下地殼底部殼幔過(guò)渡層的密度分布特征,本文從研究區(qū)區(qū)域布格重力異常中分離出下地殼重力異常,并作視密度填圖.
首先,對(duì)研究區(qū)布格重力異常進(jìn)行沉積層校正(Zhou et al., 2006),消除低密度沉積層對(duì)重力異常的影響.然后,對(duì)ChinArray項(xiàng)目遠(yuǎn)震接收函數(shù)H-k疊加得到的地殼厚度數(shù)據(jù)進(jìn)行處理,獲得研究區(qū)莫霍面深度模型并進(jìn)行重力異常正演,進(jìn)而剝離莫霍面異常,去除莫霍面起伏的重力影響,以得到反映地殼密度橫向不均勻分布的地殼重力異常.最后,采用優(yōu)化濾波法(Meng et al., 2009; Guo et al., 2013)對(duì)研究區(qū)地殼重力異常進(jìn)行分離處理,結(jié)合徑向?qū)?shù)功率譜分段擬合法(圖6)提取出視深度層為35~45 km的下地殼重力異常,如圖7所示.
研究區(qū)下地殼重力異??偟淖兓厔?shì)是由南東至北西逐漸減小,松潘—甘孜地塊重力異常值最小為-60 mGal,而攀西地區(qū)的攀枝花附近重力異常值最大為80 mGal,相對(duì)變化約140 mGal,四川盆地同樣表現(xiàn)為正的重力異常.紅河斷裂帶西北段兩側(cè)重力異常差異較大,正負(fù)異常相對(duì)變化超過(guò)100 mGal,而東南段兩側(cè)異常基本一致,均處于20~40 mGal之間,推測(cè)紅河斷裂帶西北段地震活動(dòng)性強(qiáng),東南段地震活動(dòng)性較弱的原因可能與這一構(gòu)造差異有關(guān)(王夫運(yùn)等, 2014).
本文采用頻率域視密度填圖方法(王謙身等, 2003)對(duì)上述下地殼重力異常進(jìn)行反演,其中,密度層上界面深度選為35 km,下界面深度選為45 km.經(jīng)過(guò)6次迭代反演,得到研究區(qū)深度層為35~45 km的下地殼視密度分布,如圖8所示.
由圖8我們可以得出,攀西地區(qū)下地殼底部殼幔過(guò)渡層分布東西分別以則木河斷裂帶和小金河—麗江斷裂帶為界,北自四川省西昌,南至云南省元謀附近,與剖面二維地殼密度結(jié)構(gòu)模擬反演結(jié)果一致,只在A-A′剖面下地殼底部存在高密度殼幔過(guò)渡層,而在研究區(qū)以南的B-B′剖面下地殼底部并不存在這一高密度體.紅河斷裂帶北西段兩側(cè)密度結(jié)構(gòu)差異顯著,變化超過(guò)0.2 g·cm-3,而東南段兩側(cè)密度結(jié)構(gòu)基本一致,這一沿走向的顯著構(gòu)造變化也與重力異常特征相同.
進(jìn)一步我們還可以看出,在印度板塊持續(xù)北東向推擠的作用下,青藏高原物質(zhì)發(fā)生東向轉(zhuǎn)移,南北地震帶南段經(jīng)歷了強(qiáng)烈的變形和斷裂作用,四川盆地高密度塊體阻擋了青藏高原東部物質(zhì)向四川盆地下方流動(dòng),進(jìn)而向東南方向轉(zhuǎn)移,流向密度相對(duì)較弱的華南褶皺系.根據(jù)本文研究結(jié)果,滇中次級(jí)塊體與華南褶皺系的密度邊界為普渡河斷裂帶,而不是以東的重力異常分界線——小江斷裂帶.
(1)兩條剖面上紅河斷裂帶兩側(cè)的布格重力異常特征均存在明顯差異.剖面A-A′紅河斷裂帶東側(cè)存在一個(gè)較大范圍的重力高異常,這個(gè)異常是滇中次級(jí)塊體重力高異常的一部分.剖面B-B′紅河斷裂帶的位置并不處于地形最低點(diǎn)處,而是元江以西剖面90號(hào)測(cè)點(diǎn)附近(約171 km),局部異常最低點(diǎn)與地形最低點(diǎn)之間有約12 km的偏移.
圖6 研究區(qū)布格重力異常功率譜曲線及深度估計(jì),其中曲線為重力異常的徑向?qū)?shù)功率譜, 直線為視密度層深度對(duì)應(yīng)的徑向頻率范圍的擬合直線.Fig.6 The radial logarithm power spectrum (curve) of the Bouguer gravity anomaly and the estimation of the interface depth. The straight line is the fitting line within the power spectrum range corresponding to the interface depth.
圖7 研究區(qū)視密度層35~45 km的下地殼重力異常Fig.7 Lower crust gravity anomaly for 35~45 km apparent density layer of the study area
圖8 研究區(qū)下地殼重力異常視密度填圖結(jié)果Fig.8 Apparent density mapping of the lower crust gravity anomaly
(2)研究區(qū)區(qū)域重力異常由南東到北西逐漸減小,相對(duì)變化達(dá)500 mGal.全區(qū)布格重力異常以龍門山—錦屏山巨型重力梯級(jí)帶為界,分為東西兩大區(qū).西部松潘—甘孜地塊重力場(chǎng)變化平緩,等值線較疏緩,無(wú)高密度體引起重力異常高.梯級(jí)帶以東華南褶皺系的布格重力異常比較復(fù)雜,四川盆地是一個(gè)等值線向西突出的異常緩降區(qū),攀西地區(qū)則是疊加在負(fù)值重力異常背景上的相對(duì)重力高值區(qū).
(3)在A-A′剖面密度模型上,紅河斷裂帶西側(cè)平均密度明顯低于東側(cè),由于新生代早期紅河斷裂帶張開過(guò)程的作用,使斷裂帶深部莫霍面存在一定程度的起伏.B-B′剖面紅河斷裂帶兩側(cè)密度結(jié)構(gòu)比較一致,對(duì)應(yīng)的莫霍面不存在明顯變化.紅河斷裂帶這一南北向結(jié)構(gòu)差異,顯示出斷裂帶沿走向的構(gòu)造變化,推測(cè)與其西北段地震發(fā)生頻度較高、東南段地震鮮有發(fā)生且震源深度較淺(王夫運(yùn)等, 2014)的地震活動(dòng)分布情況有關(guān).
(4)通過(guò)對(duì)人工地震和新的重力資料進(jìn)行分析,本文認(rèn)為A-A′剖面大姚—會(huì)東段引起重力高異常的原因不是莫霍面隆起,而是地殼底部存在著密度較高的殼幔過(guò)渡層.攀西構(gòu)造帶走向?yàn)榻媳毕?,而北東向的剖面與該構(gòu)造帶成約45°斜交,因此剖面上重力異常不能簡(jiǎn)單當(dāng)作沿東西方向展布的二度場(chǎng)源產(chǎn)生的重力異常來(lái)解釋,下地殼底部殼幔過(guò)渡層擬合結(jié)果水平方向可能被拉長(zhǎng).Liu等(2001)通過(guò)天然地震層析成像技術(shù)也得出與本文相似結(jié)論,認(rèn)為在攀西地區(qū)下地殼底部—上地幔頂部有一厚20 km的地幔物質(zhì)侵入附加層.
(5)為進(jìn)一步研究攀西地區(qū)下地殼底部殼幔過(guò)渡層的密度分布特征,本文從研究區(qū)布格重力異常中分離出下地殼重力異常并作視密度填圖.攀西地區(qū)下地殼底部殼幔過(guò)渡層分布遠(yuǎn)超過(guò)“攀西裂谷”的范圍,因此我們認(rèn)為這一下地殼底部殼幔過(guò)渡層不是攀西裂谷下的“裂谷墊”,而是與該區(qū)地表廣泛出露的基性、超基性巖石一樣都是在地幔柱活動(dòng)地區(qū)或大火成巖省常見的巖漿底侵作用(Cox, 1989; Liu et al., 2001).
Bai Z M, Wang C Y. 2004. Tomography research of the Zhefang-Binchuan and Menglian-Malong wide-angle seismic profiles in Yunnan province.ChineseJ.Geophys. (in Chinese), 47(2): 257-267.
Chen G D, et al. 1965. China Tectonic Issues (in Chinese). Beijing: Science Press.
Chen S, Wang Q S, Zhu Y Q, et al. 2011. Temporal and spatial features of isostasy anomaly using gravitational admittance model at eastern margin of Tibetan Plateau.ChineseJ.Geophys. (in Chinese), 54(1): 22-34, doi: 10.3969/j.issn.0001-5733.2011.01.004.
Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: a global view.J.Geophys.Res., 100(B6): 9761-9788, doi: 10.1029/95JB00259.
Cox K G. 1989. The role of mantle plumes in the development of continental drainage patterns.Nature, 342(6252): 873-877, doi: 10.1038/342873a0.Cui Z Z, Lu D Y, Chen J P, et al. 1987. The deep structural and tectonic features of the crust in Panxi area.ChineseJ.Geophys. (ActaGeophysicaSinica) (in Chinese), 30(6): 566-580.
Guo L H, Meng X H, Chen Z X, et al. 2013. Preferential filtering for gravity anomaly separation.ComputersandGeosciences, 51: 247-254, doi: 10.1016/j.cageo.2012.09.012.
He Z Q, Hu G, Lu L Y, et al. 2013. The shallow velocity structure for the Tonghai basin in Yunnan.ChineseJ.Geophys. (in Chinese), 56(11): 3819-3827, doi: 10.6038/cjg20131123.Hou T, Zhang Z C, Encarnacion J, et al. 2013. The role of recycled oceanic crust in magmatism and metallogeny: Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, central Emeishan large igneous province, SW China.Contrib.Mineral.Petrol., 165(4): 805-822, doi: 10.1007/s00410-012-0836-3.Huang J Q. 1954. Major Geotectonic Units in China (in Chinese). Beijing: Geological Publishing House.
Jian P, Liu D Y, Kr?ner A, et al. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province.Lithos, 113(3-4): 767-784, doi: 10.1016/j.lithos.2009.04.006.
Jiang F Z, Fang J. 2001. Gravity field separation, density inversion and crustal tectonics in Kang-Dian region.ActaSeismologicaSinica(in Chinese), 23(4) : 391-397.
Kan R J, Hu H X, Zeng R S, et al. 1986. Crustal structure of Yunnan Province, People′s Republic of China, from seismic refraction profiles.Science, 234(4775): 433-437, doi: 10.1126/science.234.4775.433.Laske G, Masters G, Ma Z T, et al. 2013. Update on CRUST1.0 —A 1-degree Global Model of Earth′s Crust.Geophys.Res.Abstracts, 15(Abstract EGU2013-2658).
Li S G. 1973. Introduction to Geomechanics (in Chinese). Beijing: Science Press.
Liu F R. 1984. On the question of the “Panzhihua-Xichang rift valley belt”.NatureExploration(in Chinese), (1): 57-63.
Liu J H, Liu F T, He J K, et al. 2001. Study of seismic tomography in Panxi paleorift area of southwestern China.ScienceinChinaSeriesD:EarthSciences, 44(3): 277-288.
Liu Y L, Wu C Z, Zheng J C. 1987. Gravity anomaly features of Panxi rift and research on its issues. ∥ Zhang Y X, Liu B G. Collections of Panxi rift, China 3 (in Chinese). Beijing: Geological Publishing House, 90-98.Lou H, Wang C Y. 2005. Wavelet analysis and interpretation of gravity data in Sichuan-Yunnan region, China.ActaSeismologicaSinica(in Chinese), 27(5): 515-523.Luo Y N. 1983. The evolution of paleoplates in the Kang-Dian tectonic zone.EarthScience-JournalofWuhanCollegeofGeology(in Chinese), (3): 93-102.
Marian M, Yao Y, Allan H W, et al. 2013. Panxi region (South-West China): Tectonics, magmatism and metallogenesis.Areview.Tectonophysics, 608: 51-71, doi: 10.1016/j.tecto.2013.09.008.
Meng L S, Zeng Q Y, Lu L R, et al. 1987. Study on isostatic anomalies of gravity in Panxi area. ∥ Zhang Y X, Liu B G. Collections of Panxi rift, China 3 (in Chinese). Beijing: Geological Publishing House, 99-109.Meng X H, Guo L H, Chen Z X, et al. 2009. A method for gravity anomaly separation based on preferential continuation and its application.AppliedGeophysics, 6(3): 217-225, doi: 10.1007/s11770-009-0025-y.
Miu Y K, Ren Z D, Chen X Y, et al. 1986. Tectonic environment and tectonic development of Panxi rift in Sichuan.EarthScience-JournalofWuhanCollegeofGeology(in Chinese), 11(6): 631-637.
Shellnutt J G, Zhou M F. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume.ChemicalGeology, 243(3-4): 286-316, doi: 10.1016/j.chemgeo.2007.05.022.Song X Y, Hou Z Q, Wang Y L, et al. 2002. The mantle plume features of Emeishan basalts.J.Mineral.Petrol. (in Chinese), 22(4): 27-32.Talwani M, Worzel J L, Landisman M. 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone.J.Geophys.Res., 64(1): 49-59, doi: 10.1029/JZ064i001p00049.
Tapponnier P, Lacassin R, Leloup P H, et al. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China.Nature, 343(6257): 431-437, doi: 10.1038/343431a0.
Teng J W. 1987. Panzhihua-Xichang ancient rift and "activited" geophysical features.ChineseJ.Geophys. (ActaGeophysicaSinica) (in Chinese), 30(6): 581-593.Wang F Y, Pan S Z, Liu L, et al. 2014. Wide angle seismic exploration of Yuxi-Lincang profile-The research of crustal structure of the red river fault zone and southern Yunnan.ChineseJ.Geophys. (in Chinese), 57(10): 3247-3258, doi: 10.6038/cjg20141013.
Wang Q S, An Y L, Zhang C J, et al. 2003. Gravitology (in Chinese). Beijing: Seismological Press.
Wang Q S, Teng J W, Wang G J, et al. 2007. The correction for special pattern of Bouguer gravity anomaly in Heng Duan Mts area by using satellite gravity.ProgressinGeophysics(in Chinese), 22(2): 345-352.
Wang Q S, Teng J W, Zhang Y Q, et al. 2013. Discussion on the special gravity field across the north part of Middle Qinling Mt.ChineseJ.Geophys. (in Chinese), 56(3): 792-798, doi: 10.6038/cjg20130308.
Xiong S B, Teng J W, Yin Z X, et al. 1986. Explosion seismological study of the structure of the crust and upper mantle at southern part of the Panxi tectonic belt.ChineseJ.Geophys. (ActaGeophysicaSinica) (in Chinese), 29(3): 235-244.
Xu Z Q, Hou L W, Wang Z X, et al. 1992. Orogenic processes of the Songpan-Ganze orogenic belt of China (in Chinese). Beijing: Geological Publishing House.
Yan X F. 1981. The deep geological structure of Yunnan and its adjacent areas.ActaGeologicaSinica(in Chinese), (1): 20-28.
Yin A, Harrison T M. 1996. The Tectonic Evolution of Asia. New York: Cambridge University Press, 208-226.
Zhang E H, Lou H, Jia S X, et al. 2013. The deep crust structure characteristics beneath western Yunnan.ChineseJ.Geophys. (in Chinese), 56(6): 1915-1927, doi: 10.6038/cjg20130614.
Zhang J J, Zhong D L, Sang H Q, et al. 2006. Structural and geochronological evidence for multiple episodes of deformation since paleocene along the Ailao Shan-Red river shear zone, southeastern Asia.ChineseJournalofGeology(in Chinese), 41(2): 291-310, doi: 10.3321/j.issn:0563-5020.2006.02.011.
Zhang W Y, Wu G Y. 1982. Rift Structure and Its Mineralizing Action (in Chinese). Beijing: China Academic Journals Electronic Publishing House.Zhong K, Xu M J, Wang L S, et al. 2005. Study on characteristics of gravity field and crustal deformation in Sichuan-Yunnan region.GeologicalJournalofChinaUniversities(in Chinese), 11(1) : 111-117.
Zhou M F, Yan D P, Wang C L, et al. 2006. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China.EarthandPlanetaryScienceLetters, 248(1-2): 286-300, doi: 10.1016/j.epsl.2006.05.032.
Zhu S L, Gan J S, Xu J S, et al. 1994. Three dimensional inversion of gravity anomalies in the western Yunnan.CrustalDeformationandEarthquake(in Chinese), 14(1): 1-10.
附中文參考文獻(xiàn)
白志明, 王椿鏞. 2004. 云南遮放—賓川和孟連—馬龍寬角地震剖面的層析成像研究. 地球物理學(xué)報(bào), 47(2): 257-267.
陳國(guó)達(dá)等. 1965. 中國(guó)大地構(gòu)造問(wèn)題. 北京: 科學(xué)出版社.
陳石, 王謙身, 祝意青等. 2011. 青藏高原東緣重力導(dǎo)納模型均衡異常時(shí)空特征. 地球物理學(xué)報(bào), 54(1): 22-34, doi: 10.3969/j.issn.0001-5733.2011.01.004.
崔作舟, 盧德源, 陳紀(jì)平等. 1987. 攀西地區(qū)的深部地殼結(jié)構(gòu)與構(gòu)造. 地球物理學(xué)報(bào), 30(6) : 566-580.
何正勤, 胡剛, 魯來(lái)玉等. 2013. 云南通海盆地的淺層速度結(jié)構(gòu). 地球物理學(xué)報(bào), 56(11): 3819-3827, doi: 10.6038/cjg20131123.
黃汲清. 1954. 中國(guó)主要地質(zhì)構(gòu)造單元. 北京: 地質(zhì)出版社.
蔣福珍, 方劍. 2001. 康滇地區(qū)重力場(chǎng)分離、密度反演與地殼構(gòu)造. 地震學(xué)報(bào), 23(4) : 391-397.
李四光. 1973. 地質(zhì)力學(xué)概論. 北京: 科學(xué)出版社.劉風(fēng)仁. 1984. “攀枝花—西昌裂谷帶”質(zhì)疑. 大自然探索, (1): 57-63.劉云龍, 武傳珍, 鄭建昌. 1987. 攀西地區(qū)的重力異常特征及裂谷問(wèn)題研究. ∥ 張?jiān)葡? 劉秉光. 中國(guó)攀西裂谷文集3. 北京: 地質(zhì)出版社, 90-98.
樓海, 王椿鏞. 2005. 川滇地區(qū)重力異常的小波分解與解釋. 地震學(xué)報(bào), 27(5): 515-523.
駱耀南. 1983. 康滇構(gòu)造帶的古板塊歷史演化. 地球科學(xué)——武漢地質(zhì)學(xué)院學(xué)報(bào), (3): 93-102.
孟令順, 曾慶益, 盧履仁等. 1987. 攀西地區(qū)重力均衡異常的研究. ∥ 張?jiān)葡? 劉秉光. 中國(guó)攀西裂谷文集 3. 北京: 地質(zhì)出版社, 99-109.
繆以琨, 任祖德, 陳小源等. 1986. 四川攀西裂谷的構(gòu)造環(huán)境及構(gòu)造發(fā)展. 地球科學(xué), 11(6): 631-637.
宋謝炎, 侯增謙, 汪云亮等. 2002. 峨眉山玄武巖的地幔熱柱成因. 礦物巖石, 22(4): 27-32.
滕吉文. 1987. 攀枝花—西昌古裂谷與“活化”的地球物理特征. 地球物理學(xué)報(bào), 30(6): 581-593.
王夫運(yùn), 潘素珍, 劉蘭等. 2014. 玉溪—臨滄剖面寬角地震探測(cè)——紅河斷裂帶及滇南地殼結(jié)構(gòu)研究. 地球物理學(xué)報(bào), 57(10): 3247-3258, doi: 10. 6038/cjg20141013.
王謙身, 安玉林, 張赤軍等. 2003. 重力學(xué). 北京: 地震出版社.
王謙身, 滕吉文, 王光杰等. 2007. 應(yīng)用衛(wèi)星重力信息對(duì)橫斷山系地區(qū)布格重力異常特異分布的糾正. 地球物理學(xué)進(jìn)展, 22(2) : 345-352.
王謙身, 滕吉文, 張永謙等. 2013. 中秦嶺北側(cè)特異重力場(chǎng)及其探榷. 地球物理學(xué)報(bào), 56(3) : 792-798, doi: 10.6038/cjg20130308.熊紹柏, 滕吉文, 尹周勛等. 1986. 攀西構(gòu)造帶南部地殼與上地幔結(jié)構(gòu)的爆炸地震研究. 地球物理學(xué)報(bào), 29(3) : 235-244.
許志琴, 侯立瑋, 王宗秀等. 1992. 中國(guó)松潘—甘孜造山帶的造山過(guò)程. 北京: 地質(zhì)出版社.晏賢富. 1981. 云南及鄰區(qū)的深部地質(zhì)構(gòu)造. 地質(zhì)學(xué)報(bào), (1): 20-28.張恩會(huì), 樓海, 嘉世旭等. 2013. 云南西部地殼深部結(jié)構(gòu)特征. 地球物理學(xué)報(bào), 56(6): 1915-1927, doi: 10.6038/cjg20130614.
張進(jìn)江, 鐘大賚, 桑海清等. 2006. 哀牢山—紅河構(gòu)造帶古新世以來(lái)多期活動(dòng)的構(gòu)造和年代學(xué)證據(jù). 地質(zhì)科學(xué), 41(2): 291-310, doi: 10.3321/j.issn:0563-5020.2006.02.011.
張文佑, 吳根耀. 1982. 裂谷構(gòu)造與成礦作用. 北京: 中國(guó)學(xué)術(shù)期刊電子出版社.
鐘鍇, 徐鳴潔, 王良書等. 2005. 川滇地區(qū)重力場(chǎng)特征與地殼變形研究. 高校地質(zhì)學(xué)報(bào), 11(1) : 111-117.
朱思林, 甘家思, 徐菊生等. 1994. 滇西試驗(yàn)場(chǎng)區(qū)三維重力反演研究. 地殼形變與地震, 14(1): 1-10.
(本文編輯 何燕)
Gravity field characteristics and crust density structure in the Panxi region, China
SHI Lei1, LOU Hai1, WANG Qian-Shen2, LU Hong-Yan1, XU Wei-Min1
1InstituteofGeophysics,ChinaEarthquakeAdministration,Beijing100081,China2InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China
The Panxi region is located in the mid-west of the Emeishan Large Igneous Province, with significant features of geological structures, magmatic activity and strong earthquakes. Many gravity studies have been conducted in this area. However, due to the limitations of gravity data and techniques, some understandings from gravity data interpretation are different from those by other methods. Therefore, it is necessary to do further gravity research in this area.Our gravity data were collected under the control of absolute gravity measurement, along the Yunxian-Huidong and Puer-Qidian profiles crossing the Panxi region between April and May in 2011. Data acquisition was made along roads with two LCR-G gravimeters. GPS synchronized measurement was also conducted with the relative gravity survey, using static measurement method. We applied the following reductions to get the Bouguer gravity anomalies along the two profiles: (1) earth tide reduction, (2) Normal reduction, (3) height reduction, (4) topographic mass reduction and (5) terrain reduction. And then, we built the 2D crustal density structure along both two profiles via 2.5D gravity modeling. We also analyzed the characteristics of the regional gravity anomalies in the Panxi region, and obtained the apparent density distribution of the lower crust beneath this region through anomaly separation and density mapping.There are obvious differences of Bouguer gravity anomaly characteristics on both sides of the Red River faults zone. In the Yunxian-Huidong profile density model, the average crust density on the western side of the Red River fault zone is lower than those on the eastern side. The faults at depth show a certain degree of Moho undulation, which is likely associated with the tectonic extension in the early Cenozoic. The average crust density of the Puer-Qidian profile between both sides of the Red River fault zone are almost the same, no significant change of the Moho discontinuity. The structural differences between north and south of the Red River fault zone may be related with the distribution of earthquakes. More earthquakes have occurred in the northwestern section, while few happened in the southeast with shallower hypocenters. Seismic profiles and new gravity data suggest that the high gravity anomalies in the eastern section of the Yunxian-Huidong profile is not caused by the Moho uplift. There is a high-density crust-mantle transition layer at the bottom of the lower crust. Previous research drew the similar conclusion by using seismic tomography, which thought that the Panxi region has a 20 km thickness mantle material additional layer at the bottom of the lower crust and the top of upper mantle. In order to further study the density distribution characteristics of the crust-mantle transition layer beneath the Panxi region, we obtained the apparent density distribution of the lower crust in this region through anomaly separation and density mapping. The distribution range of crust-mantle transition layer in the Panxi region is far beyond the scope of the Panxi rift, thus we infer that the transition layer is caused by the magmatic underplating rather than the rift cushion.There are large differences of density structure and Moho relief between the north and south sides of the Red River fault zone, where structure changes along the strike. A high-density crust-mantle transition layer is present at the bottom of the lower crust in the profile of Yunxian-Huidong. Based on the understanding of the density distribution in the lower crust of this region, the transition layer is considered to be caused by the magmatic underplating rather than the rift cushion below the Panxi area.
Panxi region; Gravity field; Crust density structure; Apparent density mapping
10.6038/cjg20150717.Shi L, Lou H, Wang Q S, et al. 2015. Gravity field characteristics and crust density structure in the Panxi region, China.ChineseJ.Geophys. (in Chinese),58(7):2402-2412,doi:10.6038/cjg20150717.
地震行業(yè)科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201308011)、國(guó)家自然科學(xué)基金項(xiàng)目(41404063)和中國(guó)地震局“云南魯?shù)?.5級(jí)地震專題研究”項(xiàng)目聯(lián)合資助.
石磊,女,助理研究員,主要研究重力資料處理解釋方法及其在地殼深部結(jié)構(gòu)中的應(yīng)用.E-mail:shilei@cea-igp.ac.cn
10.6038/cjg20150717
P312, P313
2015-03-23,2015-06-03收修定稿
石磊,樓海,王謙身等.2015.攀西地區(qū)重力場(chǎng)特征及地殼密度結(jié)構(gòu).地球物理學(xué)報(bào),58(7):2402-2412,