張寶成, ODIJK Dennis
1 中國(guó)科學(xué)院測(cè)量與地球物理研究所 動(dòng)力大地測(cè)量學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 武漢 430077 2 GNSS Research Centre, Department of Spatial Sciences, Curtin University, Perth 6845, Australia
?
一種能實(shí)現(xiàn)單頻PPP-RTK的GNSS局域參考網(wǎng)數(shù)據(jù)處理算法
張寶成1, 2, ODIJK Dennis2
1 中國(guó)科學(xué)院測(cè)量與地球物理研究所 動(dòng)力大地測(cè)量學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 武漢 430077 2 GNSS Research Centre, Department of Spatial Sciences, Curtin University, Perth 6845, Australia
全球范圍內(nèi)大量布設(shè)的GNSS(Global Navigation Satellite System)參考網(wǎng)為精密定位、導(dǎo)航和授時(shí)等應(yīng)用提供了豐富的數(shù)據(jù)資源.基于局域參考網(wǎng),先后發(fā)展了若干側(cè)重實(shí)現(xiàn)雙頻精密定位的技術(shù),如NRTK(Network Real Time Kinematic),PPP(Precise Point Positioning)和PPP-RTK等.其中,PPP-RTK融合了NRTK和PPP的技術(shù)優(yōu)勢(shì),是目前相關(guān)研究的熱點(diǎn).本文改進(jìn)了利用局域參考網(wǎng)提取各類(lèi)改正信息的算法,以便于實(shí)現(xiàn)單頻PPP-RTK,具體步驟包括:1) 逐參考站實(shí)施非組合PPP,并固定已知站星距和衛(wèi)星鐘差,預(yù)估電離層延遲、浮點(diǎn)模糊度等參數(shù);2)聯(lián)合所有參考站的PPP模糊度預(yù)估值,通過(guò)重新參數(shù)化,形成一組雙差整周模糊度和接收機(jī)、衛(wèi)星相位偏差;3) 固定雙差整周模糊度,精化求解衛(wèi)星相位偏差和各參考站PPP電離層延遲.基于網(wǎng)解中用到的衛(wèi)星軌道和鐘差,以及網(wǎng)解所提供的衛(wèi)星相位偏差和(內(nèi)插的)電離層延遲,參考網(wǎng)內(nèi)的單頻流動(dòng)站即可實(shí)施PPP-RTK.基于澳大利亞某連續(xù)運(yùn)行參考站網(wǎng)和流動(dòng)站的實(shí)測(cè)數(shù)據(jù),考察了:1) 參考網(wǎng)數(shù)據(jù)處理中,雙差模糊度的固定成功率(98.89%)和衛(wèi)星相位偏差估值的時(shí)間穩(wěn)定性(各連續(xù)弧段優(yōu)于0.2周);2)流動(dòng)站處電離層延遲的內(nèi)插精度(優(yōu)于10 cm);3)單天內(nèi)任一歷元起算,固定靜態(tài)(動(dòng)態(tài))單頻PPP整周模糊度所需時(shí)長(zhǎng)(均不超過(guò)10 min);4) 模糊度固定前后,單頻動(dòng)態(tài)PPP的定位精度(模糊度固定后,平面和天頂RMS分別優(yōu)于5 cm和10 cm;模糊度固定前,相應(yīng)RMS僅為28~53 cm).
單頻PPP-RTK; 衛(wèi)星相位偏差; 電離層延遲; 整周模糊度固定
處理GNSS(Global Navigation Satellite System)參考網(wǎng)所采集的連續(xù)觀測(cè)數(shù)據(jù),可獲取不同類(lèi)型的改正信息,用以實(shí)現(xiàn)一系列的精密定位技術(shù)(Chen et al., 2001; Blewitt, 2008; Deng et al., 2009; Li et al., 2012; Wang et al., 2012;Lannes et al., 2013).按布設(shè)范圍的不同,GNSS參考網(wǎng)可劃分為全球、廣域和局域網(wǎng)等三種類(lèi)型.各類(lèi)參考網(wǎng)所提供的改正信息在表示形式和播發(fā)方式上均不相同,這導(dǎo)致了流動(dòng)站定位模式的多樣性,同時(shí)影響了流動(dòng)站位置獲取的時(shí)效性.
一方面,全球網(wǎng)(廣域網(wǎng))的改正信息一般由狀態(tài)空間表示(State Space Representation, SSR),即分類(lèi)計(jì)算和播發(fā)各類(lèi)GNSS產(chǎn)品,例如衛(wèi)星軌道、鐘差和相位偏差等(Wubbena et al., 2005).基于這些產(chǎn)品,可實(shí)現(xiàn)兩種不同的精密單點(diǎn)定位(Precise Point Positioning, PPP)技術(shù):估計(jì)浮點(diǎn)模糊度的PPP(劉經(jīng)南和葉世榕, 2002; 張小紅等, 2006; 張寶成等, 2010, 2011)和固定整周模糊度的PPP(Ge et al., 2008; Laurichesse et al., 2009; Collins et al., 2010).由于全球網(wǎng)(廣域網(wǎng))的地理范圍廣,測(cè)站布設(shè)較為稀疏,難以實(shí)現(xiàn)大氣延遲的精確建模和預(yù)報(bào)(張寶成等, 2012a;2012b).因此,全球網(wǎng)(廣域網(wǎng))產(chǎn)品中一般不包含大氣延遲,這導(dǎo)致了PPP的浮點(diǎn)模糊度收斂(或整周模糊度固定)所需時(shí)間較長(zhǎng),精密位置的快速獲取性能較差.但當(dāng)模糊度收斂(或固定)后,3D位置的估計(jì)精度一般為靜態(tài)<1 cm,動(dòng)態(tài)若干厘米(Ge et al., 2008).
另一方面,局域網(wǎng)——以連續(xù)運(yùn)行參考系統(tǒng)(Continuous Operating Reference System, CORS)為典型代表——所提供的改正信息一般由觀測(cè)空間表示(Observation Space Representation, OSR),且主要服務(wù)于網(wǎng)絡(luò)實(shí)時(shí)動(dòng)態(tài)定位(Network Real Time Kinematic, NRTK)技術(shù)(高星偉等, 2002; Rizos, 2002; Zou et al., 2013).局域網(wǎng)的地理范圍有限,測(cè)站布設(shè)較為稠密,這為準(zhǔn)確地模型化大氣延遲提供了便利.相比全球網(wǎng)(廣域網(wǎng))而言,局域網(wǎng)產(chǎn)品中還額外地包含了大氣延遲,并可被采用不同的形式播發(fā),如:非差的虛擬參考站觀測(cè)值(Virtual Reference Station, VRS技術(shù))(見(jiàn)Odijk(2002));雙差的主參考站——輔助參考站間大氣延遲+主參考站觀測(cè)值(Master-Auxiliary Corrections, MAC技術(shù))(見(jiàn)Wubbena et al.(2005)).基于這些改正信息,流動(dòng)站可采用相對(duì)定位模式,快速固定整周模糊度(若干歷元,甚至單歷元),精確估計(jì)相對(duì)于虛擬(主)參考站的位置,實(shí)現(xiàn)了比PPP更高的定位效率.
基于局域網(wǎng)實(shí)施NRTK,存在兩個(gè)典型的不足:首先,流動(dòng)站所采用的相對(duì)定位技術(shù),過(guò)分地依賴(lài)虛擬(主)參考站的觀測(cè)值.相對(duì)定位要求虛擬(主)參考站與流動(dòng)站間的衛(wèi)星共視、觀測(cè)時(shí)間同步,以便形成雙差的觀測(cè)值.因此,就定位靈活性和觀測(cè)值利用率兩方面而言,相對(duì)定位均不及基于絕對(duì)定位技術(shù)的PPP;其次,參考網(wǎng)與流動(dòng)站之間的通訊負(fù)擔(dān)較重.一方面,受所含衛(wèi)星鐘差等分量的短期變化影響,虛擬(主)參考站觀測(cè)值的可預(yù)報(bào)性不強(qiáng),需采用較高的更新頻率加以播發(fā).另外一方面,針對(duì)VRS技術(shù)而言,還需要流動(dòng)站向參考網(wǎng)播發(fā)其近似的位置信息.
目前,主要存在兩種改進(jìn)的NRTK方案:其一,將局域網(wǎng)提供的OSR產(chǎn)品以各參考站殘余觀測(cè)值的形式播發(fā)(URTK技術(shù),Zou et al., 2013).通過(guò)內(nèi)插附近三個(gè)參考站的殘余觀測(cè)值,生成了流動(dòng)站處的非差改正信息,完成了流動(dòng)站定位模式由相對(duì)定位向絕對(duì)定位的轉(zhuǎn)變,同時(shí)實(shí)現(xiàn)了非差模糊度的快速固定;其二,利用局域網(wǎng)觀測(cè)數(shù)據(jù),精化求解全球網(wǎng)(廣域網(wǎng))提供的(部分)SSR產(chǎn)品,如衛(wèi)星鐘差、相位偏差等,同時(shí)求解大氣延遲等參數(shù).重新生成的各類(lèi)改正信息均以SSR表示,并單獨(dú)播發(fā)給流動(dòng)站使用(Li et al., 2011, 2014; Teunissen et al., 2010; Zhang et al., 2011; 張寶成等, 2012a,2012b).在此過(guò)程中,通過(guò)考慮各分量不同的時(shí)間穩(wěn)定性,可以制定針對(duì)各分量的最優(yōu)更新頻率,例如,由于短期內(nèi)變化較為顯著,衛(wèi)星鐘差的更新頻率會(huì)相對(duì)較高(5 s);而針對(duì)平穩(wěn)變化的衛(wèi)星軌道(相位偏差),則可以降低其更新頻率(15 min).經(jīng)過(guò)這些措施,實(shí)現(xiàn)了基于PPP模式的實(shí)時(shí)動(dòng)態(tài)定位技術(shù)(PPP-RTK).與僅采用基于全球網(wǎng)(廣域網(wǎng))SSR產(chǎn)品的PPP模糊度固定技術(shù)相比,PPP-RTK在大氣延遲改正的輔助下,其模糊度固定效率和準(zhǔn)確性均有顯著改善;與VRS, MAC以及URTK等代表性的NRTK技術(shù)相比,PPP-RTK的定位精度和效率相當(dāng),但參考網(wǎng)的信息播發(fā)量已大為減少.
由上述論述可知, PPP-RTK充分地融合了NRTK和PPP各自的優(yōu)勢(shì)(快速模糊度固定、定位方式靈活等),同時(shí)回避了相應(yīng)的不足(通訊負(fù)擔(dān)較重、定位效率較低等),成為了基于局域網(wǎng)實(shí)施精密定位的前沿性代表技術(shù).但仍需指出,當(dāng)前PPP-RTK側(cè)重于實(shí)現(xiàn)基于雙頻接收機(jī)的流動(dòng)站定位,針對(duì)單頻定位而言,圍繞PPP-RTK所開(kāi)展的算法研究較之PPP和NRTK仍具有一定的滯后性:
一方面,單頻PPP的研究重點(diǎn)是如何修正電離層延遲,具體可歸納為三種方案:全球電離層云圖產(chǎn)品(Global Ionosphere Map, GIM)改正(Le and Tiberius, 2007; Yuan and Ou, 2001a, 2002, 2003, 2004);形成消電離層半和組合觀測(cè)值(張小紅等, 2008);局域精化電離層模型補(bǔ)償?shù)?姜衛(wèi)平等, 2012; 涂銳等, 2011, 2012).一般地,單頻PPP可達(dá)到若干分米的定位精度,能服務(wù)于施工放樣、地圖制圖、空中三角測(cè)量等工程應(yīng)用.但針對(duì)第三種方案,當(dāng)所采用的局域網(wǎng)地理范圍較小、參考站布設(shè)較為稠密、地磁和太陽(yáng)活動(dòng)較為平穩(wěn)時(shí),所實(shí)現(xiàn)的單頻PPP甚至可達(dá)到雙頻PPP的定位效果.
另一方面,單頻NRTK的研究則從兩方面展開(kāi):首先,以若干單頻接收機(jī)加密局域參考網(wǎng),改善OSR產(chǎn)品的估計(jì)精度(Chen et al., 2001; Deng et al., 2009).基本原理為,利用雙頻參考站觀測(cè)值實(shí)施逐衛(wèi)星、逐歷元的電離層建模,生成各單頻參考站處的L2頻率 “虛擬觀測(cè)值”.此時(shí),所有單頻參考站均可提供L1頻率實(shí)測(cè)數(shù)據(jù)+L2頻率虛擬數(shù)據(jù),由此“轉(zhuǎn)變”成了雙頻參考站,在不顯著提高參考網(wǎng)硬件成本的同時(shí),大大增加了可用的參考網(wǎng)觀測(cè)值.其次,完善NRTK參考網(wǎng)數(shù)據(jù)處理算法,服務(wù)單頻流動(dòng)站定位.為此,需要對(duì)現(xiàn)有的VRS,MAC或URTK技術(shù)加以改進(jìn),如僅播發(fā)對(duì)應(yīng)于L1頻率的OSR產(chǎn)品等.特別地,當(dāng)某參考站距離單頻流動(dòng)站較近時(shí)(如不超過(guò)10km),還可將其L1頻率觀測(cè)值直接用作改正信息.此時(shí),NRTK技術(shù)即演變成了單參考站標(biāo)準(zhǔn)RTK(Rizos, 2002).
近來(lái),有文獻(xiàn)(見(jiàn)Odijketal., 2012;Teunissenetal., 2010; 張寶成等, 2012a,2012b)提出了一種新的PPP-RTK參考網(wǎng)數(shù)據(jù)處理方案,主要特點(diǎn)包括:聯(lián)合處理全部參考站的偽距和相位觀測(cè)值,約束適當(dāng)?shù)幕鶞?zhǔn)參數(shù),以確保觀測(cè)方程列滿(mǎn)秩;固定衛(wèi)星和參考站的已知位置,逐歷元或?yàn)V波估計(jì)各類(lèi)參數(shù);逐歷元固定參考站間的獨(dú)立整周模糊度;獲取能實(shí)現(xiàn)單頻(或雙頻)流動(dòng)站精密定位的衛(wèi)星鐘差、L1(或L1+L2)頻率衛(wèi)星相位偏差、電離層延遲等改正信息.
然而,上述文獻(xiàn)所報(bào)告的參考網(wǎng)處理策略仍有待改進(jìn):一方面, 數(shù)據(jù)處理負(fù)擔(dān)過(guò)重,降低了SSR產(chǎn)品的更新率和實(shí)效性.這主要由兩個(gè)因素造成,首先,聯(lián)合處理所有參考站的非差、非組合觀測(cè)數(shù)據(jù),逐歷元估計(jì)大批的衛(wèi)星鐘差、電離層斜延遲等,顯著地增加了未知參數(shù),影響了法方程求逆等關(guān)鍵運(yùn)算的速度和穩(wěn)定性;其次,逐歷元實(shí)施降相關(guān)、整數(shù)搜索以及有效性檢驗(yàn)等一系列的模糊度解算過(guò)程.當(dāng)浮點(diǎn)模糊度的維數(shù)較高且相關(guān)性較強(qiáng)時(shí),降相關(guān)和搜索所引起的計(jì)算量將大大增加;另一方面, 實(shí)驗(yàn)方案設(shè)計(jì)不夠完善.例如,對(duì)電離層內(nèi)插效果的驗(yàn)證方案不盡合理.聯(lián)合參考站和流動(dòng)站觀測(cè)數(shù)據(jù)所估計(jì)的電離層延遲參考值,與相應(yīng)的電離層內(nèi)插值并非完全獨(dú)立,兩者之差并不能代表真正意義上的內(nèi)插誤差;較多地采用雙頻流動(dòng)站的L1頻率觀測(cè)值實(shí)施單頻實(shí)驗(yàn)分析,無(wú)法準(zhǔn)確地反映真正單頻流動(dòng)站的模糊度固定和定位效果.實(shí)際上,在同等觀測(cè)條件下,單頻接收機(jī)的數(shù)據(jù)質(zhì)量和觀測(cè)連續(xù)性均不如雙頻接收機(jī)所采集的L1頻率觀測(cè)值(Odijketal., 2012).
本文首先優(yōu)化了上述參考網(wǎng)處理策略,以顯著提高計(jì)算效率.通過(guò)附加衛(wèi)星鐘差已知的先驗(yàn)條件,實(shí)現(xiàn)了由多參考站聯(lián)合數(shù)據(jù)處理模式向逐參考站數(shù)據(jù)處理模式的轉(zhuǎn)變,這將顯著地減少未知參數(shù),同時(shí)削弱了增加參考站數(shù)量對(duì)計(jì)算效率的影響;其次,改進(jìn)了相關(guān)的實(shí)驗(yàn)方案.主要包括:首先在流動(dòng)站裝備廉價(jià)的u-blox單頻接收機(jī),實(shí)現(xiàn)真正的單頻定位性能分析;同時(shí)在流動(dòng)站附近布設(shè)一臺(tái)雙頻接收機(jī),用于提供流動(dòng)站處的電離層延遲“真值”,以更好地反映電離層內(nèi)插效果.
在不影響適用性的前提下,在介紹本文算法和實(shí)驗(yàn)時(shí),將做若干簡(jiǎn)化和假設(shè):針對(duì)單頻流動(dòng)站定位,為了盡量減少天頂對(duì)流層延遲(ZTD)的影響,本文將采用基于實(shí)測(cè)大氣參數(shù)(氣溫、氣壓等)的經(jīng)驗(yàn)?zāi)P蛯?duì)其改正;針對(duì)實(shí)時(shí)性的需求,假定外部的精密衛(wèi)星軌道、衛(wèi)星鐘差均可以實(shí)時(shí)獲取.同時(shí),假定所涉及的數(shù)據(jù)傳輸、通訊、播發(fā)、編碼、解碼等一系列硬件支撐技術(shù)均已被解決.
本節(jié)介紹了PPP-RTK參考網(wǎng)數(shù)據(jù)處理的步驟、模型、算法等,重點(diǎn)描述了如何有效、快速、最優(yōu)地估計(jì)兩類(lèi)改正信息,即衛(wèi)星相位偏差和電離層延遲.2.1 單參考站PPP
給定歷元i,參考站r至衛(wèi)星s的簡(jiǎn)化偽距和相位觀測(cè)方程可表示為(Leick, 2004):
(1)
(2)
(3)
(4)
對(duì)應(yīng)地,式(1)和(2)中兩類(lèi)觀測(cè)值的協(xié)方差矩陣可表示為:
(5)
(6)
(7)
分別假設(shè):局域參考網(wǎng)共包含n個(gè)參考站(r=1,…,n);共采集了t個(gè)歷元(i=1…t)的雙頻觀測(cè)數(shù)據(jù)(j=1,2);各歷元的平均共視衛(wèi)星個(gè)數(shù)為m(s=1,…,m).針對(duì)每個(gè)參考站,聯(lián)合全部衛(wèi)星、全部歷元的觀測(cè)方程和動(dòng)態(tài)模型,采用卡爾曼濾波算法,通過(guò)交替地實(shí)施狀態(tài)預(yù)報(bào)和觀測(cè)更新,即可遞歸地估計(jì)各類(lèi)PPP參數(shù).
(8)
(9)
2.2 衛(wèi)星相位偏差估計(jì)
(10)
(11)
至此,導(dǎo)出了對(duì)應(yīng)于式(10)的滿(mǎn)秩形式:
(12)
(13)
(14)
(15)
2.3 電離層延遲推估
(16)
其中,ωr為n維行向量,除第r個(gè)元素為1外,其余元素均為0.
(17)
(18)
(19)
(20)
為避免參考網(wǎng)和用戶(hù)之間實(shí)施雙向通訊,本文建議由用戶(hù)自主生成改正信息(尤其是內(nèi)插電離層延遲).另外,當(dāng)構(gòu)建單頻PPP-RTK模型時(shí),將做適當(dāng)?shù)慕?,如忽略殘余ZTD影響等.
3.1 改正信息生成
(21)
(22)
(23)
(24)
本文實(shí)驗(yàn)共采用了兩組數(shù)據(jù):其一是澳大利亞某6測(cè)站CORS網(wǎng)所采集的單天(2010-10-23, 年積日296)雙頻(L1L2C1P2)GPS數(shù)據(jù),各參考站均裝備Trimble測(cè)地型接收機(jī),附加抑徑天線(xiàn).用于實(shí)現(xiàn)參考網(wǎng)模糊度固定、衛(wèi)星相位偏差估計(jì)、電離層延遲提取等.值得注意的是,該實(shí)驗(yàn)天內(nèi),地磁活動(dòng)Kp指數(shù)最大值為5,總和接近31,是10月份電離層擾動(dòng)最顯著的一天;第二組是由1臺(tái)u-blox單頻(L1C1)和1臺(tái)Trimble雙頻(L1L2C1P2)GPS接收機(jī)構(gòu)成的零基線(xiàn)數(shù)據(jù).u-blox觀測(cè)值用于分析單頻PPP-RTK的模糊度固定和定位效果;Trimble觀測(cè)值用于計(jì)算電離層延遲“真值”,以度量電離層內(nèi)插效果.兩組數(shù)據(jù)的采樣間隔均為30 s,衛(wèi)星截止高度角均為20°.全部測(cè)站的名稱(chēng)、位置、間距和方位等信息見(jiàn)圖1.
所采用的外部產(chǎn)品包括三類(lèi):第一,各CORS參考站坐標(biāo),其先驗(yàn)3D精度優(yōu)于1 cm,將直接用作已知值;第二,IGS(International GNSS Service)精密GPS衛(wèi)星軌道和衛(wèi)星鐘差,事后產(chǎn)品,采樣間隔分別為15 min和30 s;第三,全部測(cè)站所采集的氣象觀測(cè)文件,其中所記錄的氣溫、氣壓等參數(shù)將用作對(duì)流層經(jīng)驗(yàn)?zāi)P偷妮斎?
圖1 本文實(shí)驗(yàn)所選用的GPS測(cè)站分布圖CORS參考站用圓形表示,用戶(hù)站則用五角星表示.另外,用戶(hù)站安裝了單頻u-blox和雙頻Trimble共兩臺(tái)接收機(jī),且形成了一條零基線(xiàn).Fig.1 The geographical location of all GPS stations used in this paper The circles refer to CORS reference stations, while the star represents the user station that is equipped with one single-frequency u-blox receiver and one dual-frequency Trimble receiver (forming a zero-baseline).
4.1 CORS網(wǎng)結(jié)果
首先,圖2考察了CORS網(wǎng)的模糊度固定效果.圖2a給出了各歷元的FFRatio值和對(duì)應(yīng)的臨界值,分別用淡紅色線(xiàn)和黑色線(xiàn)表示.針對(duì)全部2880個(gè)歷元,模糊度可被準(zhǔn)確固定的歷元數(shù)為2848(此時(shí),F(xiàn)FRatio值小于其臨界值),固定成功率約為98.89%;模糊度未被固定的歷元數(shù)為32個(gè),其中包含了PPP濾波初始化所需的20個(gè)歷元,以及12個(gè)衛(wèi)星數(shù)發(fā)生顯著變化的歷元(已用黑色橢圓標(biāo)出).
通過(guò)對(duì)比圖2aFFRatio值和圖2b衛(wèi)星數(shù)可知,兩者之間的變化存在某種相似性,這是因?yàn)?,F(xiàn)FRatio值取決于浮點(diǎn)模糊度濾波解及其方差-協(xié)方差陣等兩類(lèi)信息.當(dāng)衛(wèi)星變化較為平穩(wěn)時(shí)(如時(shí)段9∶00—12∶00 UT),不同歷元間,浮點(diǎn)模糊度向量及其方差-協(xié)方差陣也變化不大,期間FFRatio值將不會(huì)發(fā)生明顯的改變;而當(dāng)存在頻繁的衛(wèi)星升降時(shí),尤其是當(dāng)新星出現(xiàn)時(shí),浮點(diǎn)模糊度向量維數(shù)增加,且新星的浮點(diǎn)模糊度精度較低,F(xiàn)FRatio值將迅速增加,甚至超過(guò)臨界值,導(dǎo)致模糊度固定失敗.
其次,圖3繪出了已移除整周部分的L1頻率衛(wèi)星相位偏差估值(模糊度固定解).以右上角某衛(wèi)星弧段為例(黑色線(xiàn)),其觀測(cè)時(shí)長(zhǎng)約為6h,期間衛(wèi)星相位偏差估值變化了約0.2周,這與Ge等(2008)所報(bào)告的變化量級(jí)相當(dāng).另外,圖中存在若干“散點(diǎn)”,它們對(duì)應(yīng)于某些觀測(cè)時(shí)間極短(如30~40個(gè)歷元)的衛(wèi)星.
圖4a首先給出了單頻“仿用戶(hù)站”處,全部衛(wèi)星電離層斜延遲的“真值”.該“真值”由聯(lián)合Trimble接收機(jī)的雙頻GPS觀測(cè)值,采用相位平滑偽距技術(shù)計(jì)算得到,因此與CORS網(wǎng)提供的內(nèi)插電離層延遲不存在相關(guān)性.除電離層延遲外,該“真值”中還受衛(wèi)星和接收機(jī)DCB的影響,其最大量級(jí)接近23m,且對(duì)應(yīng)于太陽(yáng)活動(dòng)最強(qiáng)的“正午”時(shí)刻.
4.2 靜/動(dòng)態(tài)PPP-RTK
本節(jié)首先分析了靜態(tài)和動(dòng)態(tài)定位時(shí),單頻PPP-RTK的模糊度固定效率.實(shí)施方案可概括為:自某一歷元(此處假設(shè)為k)起算,基于卡爾曼濾波算法,逐歷元估計(jì)各類(lèi)PPP-RTK未知參數(shù).兩種定位模式下,位置參數(shù)狀態(tài)噪聲的譜密度分別被設(shè)置為0和106m2·s-1;在濾波過(guò)程中,當(dāng)完成觀測(cè)更新時(shí),嘗試采用LAMBDA固定全部精度優(yōu)于0.1周的浮點(diǎn)模糊度,并實(shí)施FFRatio檢驗(yàn);當(dāng)濾波至第k+q個(gè)歷元時(shí),若模糊度固定通過(guò)了FFRatio檢驗(yàn),即意味著:為完成單頻PPP-RTK模糊度固定,共需濾波q個(gè)歷元.通過(guò)變換起算歷元,并重復(fù)上述步驟,可分析不同觀測(cè)條件下單頻PPP-RTK模糊度固定所需時(shí)長(zhǎng).
圖5分別檢驗(yàn)了濾波實(shí)施靜態(tài)和動(dòng)態(tài)單頻PPP-RTK時(shí),自一天內(nèi)不同時(shí)刻起算,首次成功固定模糊度所需的歷元數(shù).其中,大部分條件下,完成靜態(tài)PPP-RTK模糊度固定一般僅需要3~15個(gè)歷元,平均歷元數(shù)約為10個(gè).由此表明,在該實(shí)驗(yàn)天內(nèi),絕大部分觀測(cè)條件下,靜態(tài)單頻PPP-RTK只需約5min,即可實(shí)現(xiàn)整周模糊度固定.作為比較,動(dòng)態(tài)單頻PPP-RTK的待估位置參數(shù)增多,觀測(cè)模型強(qiáng)度減弱,其模糊度固定則需5~22個(gè)歷元,平均所需歷元數(shù)約為14個(gè)(即7min).但需要說(shuō)明,兩類(lèi)PPP-RTK的模糊度固定時(shí)長(zhǎng)均對(duì)應(yīng)于30s采樣間隔,針對(duì)高采樣觀測(cè)數(shù)據(jù)(如1Hz),其量級(jí)可望被進(jìn)一步縮短.
圖2 CORS網(wǎng)模糊度解算結(jié)果 (a) FFRatio值(淡紅線(xiàn))和FFRatio臨界值(黑線(xiàn)),黑色橢圓標(biāo)示了模糊度固定失敗的時(shí)段;(b) 單天內(nèi)的衛(wèi)星個(gè)數(shù).Fig.2 Results of CORS network ambiguity resolution (a) both FFRatio values (in pink) as well as threshold values (in black), two sessions with failed ambiguity resolution are highlighted with black ellipses; (b) the number of tracked satellites during one day.
圖3 基于CORS網(wǎng)的GPS衛(wèi)星相位偏差估值(L1頻率,單位為周,已移除整周部分.不同顏色代表不同衛(wèi)星)Fig.3 The CORS-estimated GPS satellite phase biases (on L1 frequency, in cycles, an integer value has been removed per arc. Different colors correspond to different satellites)
圖4 流動(dòng)站處,實(shí)施內(nèi)插改正前的電離層延遲(a)和改正后的殘余電離層延(b) (單位為m.不同的顏色代表不同的衛(wèi)星)Fig.4 The slant ionospheric delays at rover receiver, before (a) and after (b) applying their interpolated corrections, in meters (Different colors correspond to different satellites)
圖5 濾波實(shí)施單頻靜態(tài)(a)和動(dòng)態(tài)(b)PPP-RTK時(shí),對(duì)應(yīng)于不同起算歷元(橫軸), 首次成功固定模糊度所需歷元數(shù)(縱軸)Fig.5 Starting from arbitrary epoch within the test day, the number of epochs that are needed to first fix the integer ambiguities in static (a) and kinematic (b) single-frequency PPP-RTK
需要指出,上述統(tǒng)計(jì)未考慮圖5中部分“極端”時(shí)刻,如靜態(tài)定位時(shí),存在約10個(gè)時(shí)刻,固定模糊度所需時(shí)長(zhǎng)為10~20min;同樣地,動(dòng)態(tài)定位時(shí),共存在不超過(guò)20個(gè)時(shí)刻,期間模糊度固定需要累積20~30min,個(gè)別時(shí)刻甚至需要超過(guò)40min.造成這些“極端”時(shí)刻存在的可能原因包括:電離層活動(dòng)條件發(fā)生改變.例如,6∶00—9∶00UT和12∶00—15∶00UT共兩個(gè)時(shí)段內(nèi),部分衛(wèi)星的電離層內(nèi)插誤差與其余衛(wèi)星存在顯著差異(見(jiàn)圖4b);或粗差/周跳影響.明顯地,在若干共同時(shí)刻,靜/動(dòng)態(tài)PPP-RTK模糊度固定時(shí)長(zhǎng)均異常地增加.
針對(duì)不同起算時(shí)刻k,圖6繪出了第k+q個(gè)歷元(即模糊度被成功固定時(shí)刻),單頻靜態(tài)PPP-RTK兩類(lèi)位置解誤差(即模糊浮點(diǎn)解和模糊度固定解),具體統(tǒng)計(jì)結(jié)果見(jiàn)表1第2列.其中,兩類(lèi)位置解誤差的均值(mean)均不超過(guò)3cm,即可認(rèn)為系統(tǒng)誤差已被消除,各類(lèi)參數(shù)解無(wú)偏.此時(shí),兩類(lèi)用于度量位置解精度的指標(biāo),即STD和RMS將相差不大.這進(jìn)一步說(shuō)明:
1) 在實(shí)施單頻PPP-RTK時(shí),通過(guò)引入隨機(jī)模型以補(bǔ)償CORS網(wǎng)改正信息的不確定性,顯著地削弱了有關(guān)誤差,尤其是電離層內(nèi)插誤差,對(duì)位置解的影響;
表1 單頻靜態(tài)和動(dòng)態(tài)PPP-RTK定位誤差的統(tǒng)計(jì)結(jié)果(單位:m)Table 1 Statistics of positioning errors for single-frequency static and kinematic PPP-RTK tests (Unit:m)
圖6 單頻PPP-RTK靜態(tài)定位誤差結(jié)果圖(A)為模糊度浮點(diǎn)解,圖(B)為模糊度固定解;圖(a1)和(b1)表示平面方向,圖(a2)和(b2)表示天頂方向.Fig.6 Positioning errors with single-frequency static PPP-RTK (A) denote the ambiguity-float results, whereas (B) denote the ambiguity-fixed results. (a1) and (b1) refer to the North-East components, while (a2) and (b2) refer to the Up component.
圖7 單頻PPP-RTK動(dòng)態(tài)定位誤差結(jié)果圖(A)為模糊度浮點(diǎn)解,圖(B)為模糊度固定解;圖(a1)和(b1)表示平面方向,圖(a2)和(b2)表示天頂方向.Fig.7 Positioning errors with single-frequency kinematic PPP-RTK (A) denote the ambiguity-float results, whereas (B) denote the ambiguity-fixed results. (a1) and (b1) refer to the North-East components, while (a2) and (b2) refer to the Up component.
3) 由于考慮了實(shí)際的大氣參數(shù),模型化的對(duì)流層延遲改正精度較高,殘余對(duì)流層對(duì)位置解的影響可以忽略.
當(dāng)模糊度被成功固定時(shí),平面位置解精度(RMS)均為3 cm,同時(shí)天頂分量RMS則不超過(guò)8 cm.與模糊度浮點(diǎn)解相比,RMS分別降低約為89.3%(平面)和83.7%(天頂).
同樣地,圖7繪出了相應(yīng)的單頻動(dòng)態(tài)PPP-RTK位置解誤差.與靜態(tài)結(jié)果相比,模糊度浮點(diǎn)解條件下,位置誤差均值略有增加,其中北分量最大,為5 cm.原因可能是,動(dòng)態(tài)模型較弱,探測(cè)和剔除模型誤差(粗差和周跳)的能力降低,未被探測(cè)誤差影響了位置解.而當(dāng)模糊度固定后,平面和天頂位置解RMS仍分別優(yōu)于5 cm和10 cm.
本文對(duì)現(xiàn)有PPP,NRTK和PPP-RTK等三種定位技術(shù)的原理、現(xiàn)狀、實(shí)施進(jìn)行了詳細(xì)的回顧和總結(jié).在此基礎(chǔ)上,指出PPP-RTK融合了PPP和NRTK各自的優(yōu)勢(shì),并回避了相應(yīng)的不足,是一種前沿的精密定位技術(shù).然而,在服務(wù)單頻精密定位領(lǐng)域,PPP-RTK相比于PPP和NRTK仍具有一定程度的滯后性.
本文闡述了一種參考網(wǎng)數(shù)據(jù)處理方案,既能確保實(shí)施雙頻PPP-RTK,還能實(shí)現(xiàn)單頻PPP-RTK.具體措施包括:首先,固定外部精密衛(wèi)星軌道和鐘差,逐參考站地實(shí)施非組合PPP(模糊度浮點(diǎn)解);其次,重新參數(shù)化全部參考站的PPP模糊度估值,形成雙差模糊度、接收機(jī)相位偏差和衛(wèi)星相位偏差共三類(lèi)新參數(shù);接著,逐歷元固定雙差模糊度,隨后估計(jì)衛(wèi)星相位偏差;最后,引入雙差模糊度固定值約束,逐參考站推估電離層延遲.與現(xiàn)有方案相比,上述措施顯著地減少了數(shù)據(jù)處理負(fù)擔(dān),提高了運(yùn)算效率.
基于某6參考站CORS網(wǎng)(平均站間距約為60 km),驗(yàn)證了CORS網(wǎng)模糊度固定成功率(>98%)、L1頻率衛(wèi)星相位偏差穩(wěn)定性(各衛(wèi)星弧段變化量小于0.2周)和電離層內(nèi)插效果(優(yōu)于10 cm,對(duì)應(yīng)于電離層擾動(dòng)時(shí)期).
另一方面,應(yīng)用CORS網(wǎng)改正信息和某單頻u-blox接收機(jī)實(shí)測(cè)數(shù)據(jù),驗(yàn)證了單頻PPP-RTK模糊度固定效率:靜態(tài)和動(dòng)態(tài)定位條件下,成功固定模糊度分別需要5和7 min; 同時(shí)發(fā)現(xiàn)當(dāng)模糊度固定后,平面和天頂靜態(tài)位置解RMS分別優(yōu)于3和8 cm,較之模糊度浮點(diǎn)解,RMS改善程度約為89.3%(平面)和83.7%(天頂);相應(yīng)地,平面和天頂動(dòng)態(tài)位置解RMS略有降低,但仍分別優(yōu)于5 cm和10 cm.
致謝 本文圖1由蔣振偉博士繪制,兩位審稿人的意見(jiàn)加深了作者對(duì)部分實(shí)際問(wèn)題的認(rèn)識(shí),在此一并感謝.
Blewitt G. 2008. Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing: Ambizap.J.Geophys.Res., 113(B12410), doi: 10.1029/2008JB005736.
Chen H Y, Rizos C, Han S. 2001. From simulation to implementation: low-cost densification of permanent GPS networks in support of geodetic applications.JGeod., 75(9-10): 515-526.
Collins P, Bisnath S, Lahaye F, et al. 2010. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing.Navigation, 57(2): 123-135.
de Bakker P F, Tiberius C C J M, van der Marel H, et al. 2012. Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals.GPSSolutions, 16(1): 53-64.
Deng Z, Bender M, Dick G, et al. 2009. Retrieving tropospheric delays from GPS networks densified with single frequency receivers.Geophys.Res.Lett., 36, L19802, doi: 10.1029/2009GL040018.
Gao X W, Liu J N, Ge M R. 2002. An ambiguity searching method for network RTK baselines between base stations at single epoch.ActaGeodaeticaetCartographicaSinica(in Chinese), 31(4): 305-309.
Ge M, Gendt G, Rothacher M, et al. 2008. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations.J.Geod., 82(7): 389-399.
Jiang W P, Zou X, Tang W M. 2012. A new kind of real-time PPP method for GPS single-frequency receiver using CORS network.ChineseJ.Geophys. (in Chinese), 55(5): 1549-1556, doi: 10.6038/j.issn.0001-5733.2012.05.012.
Lannes A, Prieur J L. 2013. Calibration of the clock-phase biases of GNSS networks: the closure-ambiguity approach.J.Geod., 87(8): 709-731, doi: 10.1007/s00190-013-0641-4.
Lannes A, Teunissen P J G. 2011. GNSS algebraic structures.J.Geod., 85(5): 273-290.
Laurichesse D, Mercier F, Berthias J P, et al. 2009. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination.Navigation, 56(2): 135-149.Le A Q, Tiberius C. 2007. Single-frequency precise point positioning with optimal filtering.GPSSolutions, 11(1): 61-69.Leick A. 2004. GPS Satellite Surveying (3rd ed.). New York: Wiley.
Li W, Cheng P F, Bei J Z, et al. 2012. Calibration of regional ionospheric delay with uncombined precise point positioning and accuracy assessment.J.EarthSyst.Sci., 121(4): 989-999.
Li X X, Ge M R, Dou?a J, et al. 2014. Real-time precise point positioning regional augmentation for large GPS reference networks.GPSSolutions, 18(1): 61-71, doi: 10.1007/s10291-013-0310-3.
Li X X, Zhang X H, Ge M R. 2011. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution.J.Geod., 85(3):151-158.
Liu J N, Ye S R. 2002. GPS Precise point positioning using undifferenced phase observation.GeomaticsandInformationScienceofWuhanUniversity(in Chinese), 27(3): 234-240.
Odijk D, Teunissen P J G, Zhang B C. 2012. Single-frequency integer ambiguity resolution enabled GPS precise point positioning.JournalofSurveyingEngineering, 138(4): 193-202.Odijk D. 2002. Fast precise GPS positioning in the presence of ionospheric delays[Ph. D. thesis]. Delft, The Netherlands: Delft University of Technology, 176-182.
Rizos C. 2002. Network RTK research and implementation-a geodetic perspective.JournalofGlobalPositioningSystems, 1(2): 144-150.
Teunissen P J G, Odijk D, Zhang B C. 2010. PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution.J.Aeronaut.Astronaut.AviatSer.A, 42(4): 223-230.
Teunissen P J G, Verhagen S. 2009. The GNSS ambiguity ratio-test revisited: a better way of using it.Surv.Rev., 41(312): 138-151
Teunissen P J G. 1985. Generalized inverses, adjustment, the datum problem and S-transformations. ∥ Grafarend E W, Sanso F, eds. Optimization and Design of Geodetic Networks. Berlin: Springer, 11-55.
Teunissen P J G. 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity resolution.J.Geod., 70(1-2): 65-82.Teunissen P J G, Khodabandeh A. 2014. Do GNSS parameters always benefit from integer ambiguity resolution? A PPP-RTK Network Scenario. ∥ Proceedings of the 27th International Technical Meeting, Institute of Navigation GNSS 2014. Tampa, Florida, USA, 590-600.Tu R, Huang G W, Zhang Q, et al. 2011. The research of dual frequency solution method for single frequency precise point positioning (PPP) based on SEID model.GeomaticsandInformationScienceofWuhanUniversity(in Chinese), 36(10): 1187-1190.Tu R, Huang G W, Zhang Q, et al. 2012. PPP algorithm of single frequency based on corrections of single-base station and ionospheric parameters estimation.GeomaticsandInformationScienceofWuhanUniversity(in Chinese), 37(2): 170-173, 182.
Wang C, Gu S F, Zhang W X, et al. 2012. Analysis of regionally enhanced GPS orbit and clock solutions and contribution to improvement of real-time precise point positioning.JournalofGlobalPositioningSystems, 11(2): 169-179.
Wubbena G, Schmitz M, Bagge A. 2005. PPP-RTK: Precise point positioning using state-space representation in RTK networks. ∥ Proceedings of the 18th Technical Meeting, Institute of Navigation GNSS 2005. Long Beach, California, USA, 2584-2594.
Yuan Y B, Ou J K. 2001a. Auto-covariance estimation of variable samples (ACEVS) and its application for monitoring random ionosphere using GPS.J.Geod., 75(7-8): 438-447.
Yuan Y B, Ou J K. 2001b. An improvement on ionospheric delay correction for single-frequency GPS user-the APR-I scheme.J.Geod., 75(5-6): 331-336.
Yuan Y B, Ou J K. 2002. Differential areas for differential stations (DADS): a new method of establishing grid ionospheric model.ChineseSci.Bull., 47(12): 1033-1036.
Yuan Y B, Ou J K. 2003. Preliminary results and analyses of using IGS GPS data to determine global ionospheric TEC.Prog.Nat.Sci., 13(6): 446-449.
Yuan Y B, Ou J K. 2004. A generalized trigonometric series function model for determining ionospheric delay.Prog.Nat.Sci., 14(11): 1010-1014
Yuan Y B, Tscherning C C, Knudsen P, et al. 2008. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS.J.Geod., 82(1): 1-8.
Zhang B C, Ou J K, Li Z S, et al. 2011. Determination of ionospheric observables with precise point positioning.ChineseJ.Geophys. (in Chinese), 54(4): 950-957, doi: 10.3969/j.issn.0001-5733.2011.04.009.
Zhang B C, Ou J K, Yuan Y B, et al. 2010. Precise point positioning algorithm based on original dual-frequency GPS code and carrier-phase observations and its application.ActaGeodaeticaetCartographicaSinica(in Chinese), 39(5): 478-483.
Zhang B C, Ou J K, Yuan Y B, et al. 2012a. Extracting precise atmospheric propagation delays from multiple reference station GPS networks.ActaGeodaeticaetCartographicaSinica(in Chinese), 41(4): 523-528.
Zhang B C, Teunissen P J G, Odijk D, et al. 2012b. Rapid integer ambiguity-fixing in precise point positioning.ChineseJ.Geophys. (in Chinese), 55(7): 2203-2211, doi: 10.6038/j.issn.0001-5733.2012.07.007.Zhang B C, Teunissen P J G, Odijk D. 2011. A novel un-differenced PPP-RTK concept.TheJournalofNavigation, 64(S1): S180-S191.Zhang X H, Liu J N, Forsberg R. 2006. Application of precise point positioning in airborne survey.GeomaticsandInformationScienceofWuhanUniversity(in Chinese), 31(1): 19-22, 46.Zhang X H, Li X X, Guo F, et al. 2008. Realization and precision analysis of single-frequency precise point positioning software.GeomaticsandInformationScienceofWuhanUniversity(in Chinese), 33(8): 783-787.
Zou X, Ge M R, Tang W M, et al. 2013. URTK: undifferenced network RTK positioning.GPSSolutions, 17(3): 283-293.
附中文參考文獻(xiàn)
高星偉, 劉經(jīng)南, 葛茂榮. 2002. 網(wǎng)絡(luò)RTK基準(zhǔn)站間基線(xiàn)單歷元模糊度搜索方法. 測(cè)繪學(xué)報(bào), 31(4): 305-309.
姜衛(wèi)平, 鄒璇, 唐衛(wèi)明. 2012. 基于CORS網(wǎng)絡(luò)的單頻GPS實(shí)時(shí)精密單點(diǎn)定位新方法. 地球物理學(xué)報(bào), 55(5): 1549-1556, doi: 10.6038/j.issn.0001-5733.2012.05.012.
劉經(jīng)南, 葉世榕. 2002. GPS 非差相位精密單點(diǎn)定位技術(shù)探討. 武漢大學(xué)學(xué)報(bào): 信息科學(xué)版, 27(3): 234-240.
涂銳, 黃觀文, 張勤等. 2011. 基于SEID模型的單頻PPP雙頻解算方法研究. 武漢大學(xué)學(xué)報(bào)·信息科學(xué)版, 36(10): 1187-1190.
涂銳, 黃觀文, 張勤等. 2012. 利用單基準(zhǔn)站改正信息和電離層參數(shù)估計(jì)的單頻PPP算法. 武漢大學(xué)學(xué)報(bào)·信息科學(xué)版, 37(2): 170-173, 182.
張寶成, 歐吉坤, 李子申等. 2011. 利用精密單點(diǎn)定位求解電離層延遲. 地球物理學(xué)報(bào), 54(4): 950-957, doi: 10.3969/j.issn.0001-5733.2011.04.009.
張寶成, 歐吉坤, 袁運(yùn)斌等. 2010. 基于GPS雙頻原始觀測(cè)值的精密單點(diǎn)定位算法及應(yīng)用. 測(cè)繪學(xué)報(bào), 39(5): 478-483.
張寶成, 歐吉坤, 袁運(yùn)斌等. 2012a. 多參考站GPS 網(wǎng)提取精密大氣延遲. 測(cè)繪學(xué)報(bào), 41(4): 523-528.
張寶成, Teunissen P J G, Odijk D等. 2012b. 精密單點(diǎn)定位整周模糊度快速固定. 地球物理學(xué)報(bào), 55(7): 2203-2211, doi: 10.6038/j.issn.0001-5733.2012.07.007.
張小紅, 劉經(jīng)南, Forsberg R. 2006. 基于精密單點(diǎn)定位技術(shù)的航空測(cè)量應(yīng)用實(shí)踐. 武漢大學(xué)學(xué)報(bào)·信息科學(xué)版, 31(1): 19-22, 46.
張小紅, 李星星, 郭斐等. 2008. GPS單頻精密單點(diǎn)定位軟件實(shí)現(xiàn)與精度分析. 武漢大學(xué)學(xué)報(bào)·信息科學(xué)版, 33(8): 783-787.
(本文編輯 汪海英)
A method for processing GNSS data from regional reference networks to enable single-frequency PPP-RTK
ZHANG Bao-Cheng1, 2, ODIJK Dennis2
1StateKeyLaboratoryofDynamicGeodesy,InstituteofGeodesyandGeophysics,ChineseAcademyofSciences,Wuhan430077,China2GNSSResearchCentre,DepartmentofSpatialSciences,CurtinUniversity,Perth6845,Australia
Global Navigation Satellite System (GNSS) data from reference station networks deployed globally can facilitate positioning, navigation and timing applications. To enable precise positioning for dual-frequency users, several representative methods relying on GNSS reference networks have been developed, such as Network Real Time Kinematic (NRTK), Precise Point Positioning (PPP) and PPP-RTK. The state-of-the-art PPP-RTK integrates the advantages of customary NRTK and PPP, and has become an important topic in current research.In this contribution, a network processing method is proposed to achieve single-frequency PPP-RTK. The elementary procedures are as follows: 1) A Kalman-filter-based customary PPP is implemented station by station, with known geometric ranges and satellite clocks fixed. The estimable unknowns consist of, among others, the ionospheric delays and the float-valued carrier-phase ambiguities. 2) After measurement-update, the filtered PPP ambiguities of all stations are incorporated and reformulated into three sets of new parameters, namely, double-difference (DD) ambiguities, receiver and satellite carrier-phase biases. 3).The reformulated DD ambiguities are resolved into integers, and then the satellite carrier-phase biases as well as those filtered ionospheric delays are further updated. On the user side, by applying the satellite phase biases and (interpolated) ionospheric delays, the integer ambiguity resolution enabled single-frequency PPP-RTK is fulfilled.Numerical tests using daily GPS data collected by an Australian Continuous Operating Reference System (CORS) network and a single-frequency (u-blox) rover receiver show that success rate of CORS network ambiguity resolution is as high as 98.89%. In addition, the stability of estimated satellite carrier-phase biases is better than 0.2 cycles over every continuous satellite arc. By confronting the ionospheric delays interpolated from the CORS with that determined from a dual-frequency receiver co-located with the rover receiver, interpolation error of 10 cm has been verified. Re-initialization of Kalman-filter-based single-frequency static/kinematic PPP-RTK is attempted at every epoch, and the resulting time-to-first-fix values, as a measure of the time required for integer ambiguity resolution, are never more than 10 min. With the aid of resolved integer ambiguities, the RMS of single-frequency kinematic PPP-RTK positioning errors becomes as good as 5 cm for horizontal component and 10 cm for vertical component. Before ambiguity resolution, these RMS values vary from 28 to 53 cm.Although it is developed with the goal of enabling single-frequency PPP-RTK, the network processing method proposed does not lose its ability to attain dual-frequency PPP-RTK capability. More importantly, this method also reserves simplicity as well as flexibility in multi-frequency, multi-GNSS applications.
Single-frequency PPP-RTK; Satellite phase bias; Ionosphere delay; Integer ambiguity resolution
10.6038/cjg20150709.
國(guó)家自然科學(xué)重點(diǎn)基金(41231064),國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2012CB825604),國(guó)家高技術(shù)研究發(fā)展計(jì)劃(2012AA121803),國(guó)家自然科學(xué)基金(41374043),大地測(cè)量與地球動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(SKLGED2013-1-6-E),the Positioning Program Project 1.19 “Multi-GNSS PPP-RTK Network Processing” of the Cooperative Research Centre for Spatial Information (CRC-SI)聯(lián)合資助.
張寶成,男,1985年出生,澳大利亞科廷大學(xué)博士后,主要從事精密單點(diǎn)定位算法和應(yīng)用研究.E-mail:b.zhang@curtin.edu.au
10.6038/cjg20150709
P223
2014-02-10,2015-06-09收修定稿
張寶成, ODIJK Dennis. 2015. 一種能實(shí)現(xiàn)單頻PPP-RTK的GNSS局域參考網(wǎng)數(shù)據(jù)處理算法.地球物理學(xué)報(bào),58(7):2306-2319,
Zhang B C, Odijk D. 2015. A method for processing GNSS data from regional reference networks to enable single-frequency PPP-RTK.ChineseJ.Geophys. (in Chinese),58(7):2306-2319,doi:10.6038/cjg20150709.