• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      阿爾泰造山帶晚古生代高溫變質(zhì)作用與塔里木地幔柱活動(dòng)的成因聯(lián)系:來自泥質(zhì)和鎂鐵質(zhì)麻粒巖的證據(jù)*

      2015-03-15 12:24:30劉兆仝來喜
      巖石學(xué)報(bào) 2015年6期
      關(guān)鍵詞:斜方阿爾泰石榴石

      劉兆 仝來喜

      LIU Zhao1,2 and TONG LaiXi1**

      1. 中國科學(xué)院廣州地球化學(xué)研究所,同位素地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,廣州 510640

      2. 中國科學(xué)院大學(xué),北京 100049

      1. State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China

      2. University of Chinese Academy of Sciences,Beijing 100049,China

      2014-12-15 收稿,2015-03-10 改回.

      1 引言

      麻粒巖是指形成于麻粒巖相條件下的,具有高溫變質(zhì)礦物組合的各類變質(zhì)巖石(翟明國和劉文軍,2001)。麻粒巖構(gòu)成了大陸下地殼主要成分,因此是研究下地殼的窗口(Harley,1989)。

      阿爾泰造山帶屬于中亞造山帶的重要組成部分(圖1a),也是世界上典型的顯生宙增生造山帶(?eng?r et al.,1993;Jahn,2004;Xiao et al.,2004)。該造山帶不僅構(gòu)造活動(dòng)、變質(zhì)作用和巖漿活動(dòng)非常復(fù)雜,而且是一條舉世聞名的多金屬成礦帶(陳漢林等,2006)。

      阿爾泰造山帶廣泛發(fā)育古生代中-低壓型遞增變質(zhì)帶和數(shù)個(gè)熱-構(gòu)造-片麻巖穹隆(莊育勛,1994;張翠光等,2004;徐學(xué)純等,2005;Wei et al.,2007)。遞增變質(zhì)帶可分為藍(lán)晶石型和紅柱石型變質(zhì)帶兩種類型,現(xiàn)在一般認(rèn)為早期藍(lán)晶石型變質(zhì)作用的時(shí)代為泥盆紀(jì)(Windley et al.,2002;Wei et al.,2007;Zheng et al.,2007)。對(duì)于阿爾泰造山帶在泥盆紀(jì)的構(gòu)造背景,目前主要有兩種認(rèn)識(shí),一種認(rèn)為該造山帶在泥盆紀(jì)發(fā)生弧-陸碰撞(Windley et al.,2002;Wang et al.,2006,2014;Wei et al.,2007),另一種認(rèn)為該變質(zhì)帶在泥盆紀(jì)(380 ~390Ma)發(fā)生洋脊俯沖(孫敏等,2009;Jiang et al.,2010)。

      厲子龍等首先報(bào)道了阿爾泰造山帶南緣烏恰溝地區(qū)的鎂鐵質(zhì)麻粒巖,認(rèn)為其峰期變質(zhì)條件為750 ~780℃/6 ~7kbar(厲子龍等,2004;Li et al.,2004),角閃巖相退變質(zhì)的溫壓條件為590 ~620℃/2.3 ~3.7kbar。之后,Wang et al.(2009b)又報(bào)道了阿勒泰市東南部的中-低壓高溫泥質(zhì)麻粒巖,其峰期條件為780 ~800℃/5 ~6kbar。而近幾年對(duì)于阿爾泰造山帶二疊紀(jì)變質(zhì)事件的研究集中于超高溫泥質(zhì)麻粒巖方面(Li et al.,2010,2014;仝來喜等,2011,2013;Tong et al.,2014a,b),Li et al.(2014)通過對(duì)富蘊(yùn)縣烏恰溝地區(qū)含有斜方輝石+夕線石礦物組合的超高溫泥質(zhì)麻粒巖的研究,認(rèn)為其變質(zhì)峰期>940℃/7.8 ~10kbar,其P-T 演化經(jīng)歷了峰期后等溫降壓(ITD)的逆時(shí)針軌跡。仝來喜等過對(duì)阿勒泰市大喀拉蘇地區(qū)超高溫泥質(zhì)麻粒巖的研究,認(rèn)為其在峰期前、峰期以及峰期后的P-T 條件分別為890℃/7kbar,970℃/8kbar 和870℃/8 ~9kbar,因此經(jīng)歷了峰期后等壓冷卻(IBC)的逆時(shí)針P-T 演化軌跡(仝來喜等,2013;Tong et al.,2014a,b)。

      麻粒巖或片麻巖中鋯石U-Pb 或獨(dú)居石Th-Pb 年齡結(jié)果表明阿爾泰造山帶在二疊紀(jì)經(jīng)歷了一次重要的高級(jí)構(gòu)造變質(zhì)熱事件(肖文交等,2006;Xiao et al.,2008),其年齡主要分布于260 ~293Ma 之間(胡靄琴等,2006;陳漢林等,2006;鄭常青等,2007;Briggs et al.,2007;Wang et al.,2009b;仝來喜等,2013),但是關(guān)于二疊紀(jì)變質(zhì)事件的成因尚存在不同認(rèn)識(shí),目前主要存在造山后俯沖板片拆沉導(dǎo)致的軟流圈上涌和和地幔柱熱沖擊兩種解釋(Zhang et al.,2012;Wang et al.,2014;仝來喜等,2011,2013;Tong et al.,2014a,b;Li et al.,2014)。

      在阿爾泰造山帶南緣的烏恰溝地區(qū),除了超高溫泥質(zhì)麻粒巖外,還出露有一些中-低壓泥質(zhì)和鎂鐵質(zhì)麻粒巖(厲子龍等,2004;Li et al.,2004),并未達(dá)到超高溫條件,但對(duì)其卻一直缺少深入的研究,年代學(xué)上的耦合性說明它們形成于同期變質(zhì)事件(270 ~280Ma),本文著重對(duì)烏恰溝地區(qū)發(fā)生高溫變質(zhì)作用的泥質(zhì)和鎂鐵質(zhì)麻粒巖進(jìn)行了研究(圖1b)。二疊紀(jì)變質(zhì)事件在時(shí)間上與新疆二疊紀(jì)塔里木地幔柱活動(dòng)的時(shí)間(~275Ma)高度一致(Zhang et al.,2010),因此阿爾泰高溫-超高溫麻粒巖的研究對(duì)于理解阿爾泰造山帶南緣的二疊紀(jì)變質(zhì)事件與塔里木地幔柱的成因聯(lián)系也具有重要的意義。

      2 地質(zhì)背景

      阿爾泰造山帶記錄了新元古代到晚古生代的構(gòu)造演化過程,由北向南通常被劃分為五個(gè)以斷層為邊界的地體或大地構(gòu)造單元(Windley et al.,2002;Xiao et al.,2004;Wang et al.,2006,2009a)。單元Ⅰ主要為晚泥盆紀(jì)-早石炭紀(jì)的變沉積巖,最老巖石為低綠片巖相的安山巖和英安巖;單元Ⅱ主要由新元古代-奧陶紀(jì)及少量泥盆紀(jì)沉積-火山巖組成;單元Ⅲ(或中阿爾泰地體)形成阿爾泰造山帶的主體,主要由新元古代-奧陶紀(jì)變沉積巖和變火山巖組成,普遍經(jīng)歷了綠片巖相-高角閃巖相變質(zhì)作用,Windley et al.(2002)把正片麻巖原巖的形成時(shí)代定為志留紀(jì);單元Ⅳ(或阿巴宮地體)主要由志留紀(jì)-泥盆紀(jì)火山-碎屑沉積巖組成,主要為康布鐵堡組和阿勒泰組,并經(jīng)歷了綠片巖相-高角閃巖相變質(zhì)作用,局部達(dá)到麻粒巖相變質(zhì)作用(厲子龍等,2004;陳漢林等,2006;Chen et al.,2006;Wang et al.,2009b;仝來喜等,2011,2013);單元Ⅴ(或額爾齊斯地體)由前寒武紀(jì)基底和泥盆紀(jì)-石炭紀(jì)火山-碎屑沉積巖組成,經(jīng)歷了綠片巖相-角閃巖相變質(zhì)作用。部分學(xué)者認(rèn)為單元2 和3 可能屬于同一單元(Windley et al.,2002),從而構(gòu)成阿爾泰微大陸的主要部分(Hu et al.,2000;Li et al.,2003;Xiao et al.,2004)。

      圖1 中國阿爾泰地區(qū)變質(zhì)地質(zhì)簡圖(a,據(jù)Wei et al.,2007 修改)和阿爾泰地區(qū)富蘊(yùn)一帶地質(zhì)簡圖及采樣點(diǎn)位置(b,據(jù)厲子龍等,2004 修改)☆-代表采樣點(diǎn)位置;O2-3-中-晚奧陶世哈巴河群;Sk1-志留世庫魯姆提群;D1k-早泥盆世康布鐵堡組;D2y-中泥盆世蘊(yùn)都喀拉組;D2a-中泥盆世阿勒泰組;C3k-晚石炭世喀喇額爾齊斯組;J3-晚侏羅世石樹溝群;Cz-新生界;ψ4-華力西期基性、超基性巖;γ4-華力西期花崗質(zhì)巖石;黑色塊體表示輝長巖侵入體Fig.1 A simplified metamorphic geological map of the Chinese Altay (a,modified after Wei et al.,2007)and a geological sketch map of the Fuyun area and sampling location of the Altay granulites (b,modified after Li et al.,2004)☆-sample location;O2-3-Middle to Late Ordovician Habahe Group;Sk1-Silurian Kulumuti Group;D1k-Early Devonian Kangbutibao Group;D2y-Middle Devonian Wendukala Formation;D2a-Middle Devonian Aletai Formation;C3k-Late Carboniferous Kala-Erqix Formation;J3-Late Jurassic Shishugou Group;Cz-Cenozoic;ψ4-Variscan mafic mafic and ultramafic rocks;γ4-Variscan granitic rocks;Black block is gabbro intrusions

      阿爾泰造山帶中分布著大量花崗質(zhì)巖石和正片麻巖,其面積占該帶約40%左右。中國阿爾泰廣泛分布的花崗巖和基性侵入體可以劃分為早-中古生代(460 ~370Ma)同造山類型,晚古生代(290 ~270Ma)的后造山類型,中生代(220 ~150Ma)非造山類型(鄒天人等,1988;Wang et al.,2009a)。中阿爾泰地體和瓊庫爾-阿巴宮地體的高級(jí)變質(zhì)巖之前被視為古生代沉積巖(哈巴河群)的變質(zhì)巖,但在90 年代初被認(rèn)為是古-中元古代克木齊群和新元古代富蘊(yùn)群變質(zhì)形成的(李天德等,1996),因此被理解為元古代基底(Windley et al.,2002)或者前寒武紀(jì)微大陸(李會(huì)軍等,2006),近年來的研究表明該區(qū)域內(nèi)的副片麻巖原巖沉積于大陸弧或者活動(dòng)大陸邊緣環(huán)境(Long et al.,2007;龍曉平等,2008),時(shí)代為泥盆紀(jì)(胡靄琴等,2002,2006)。

      厲子龍等(2004)和陳漢林等(2006)首先報(bào)道了阿爾泰造山帶南緣富蘊(yùn)縣烏恰溝的鎂鐵質(zhì)麻粒巖,后來Wang et al.(2009b)報(bào)道了阿勒泰附近的泥質(zhì)麻粒巖。近年來又不斷有阿爾泰超高溫麻粒巖的報(bào)道(Li et al.,2010,2014;仝來喜等,2011,2013;Tong et al.,2014a,b)。阿爾泰造山帶已報(bào)道的麻粒巖均采自額爾齊斯斷裂帶附近,本文的泥質(zhì)和鎂鐵質(zhì)麻粒巖樣品采自富蘊(yùn)縣烏恰溝,以透鏡體位于二疊紀(jì)基性-超基性侵入巖附近,該地區(qū)主要由片麻巖、混合巖和斜長角閃巖組成,而烏恰溝達(dá)板北為混合巖、混合片麻巖、片麻巖和變粒巖等(李天德等,1996;厲子龍等,2004)。

      3 巖相學(xué)特征

      本文的泥質(zhì)和鎂鐵質(zhì)麻粒巖均采自阿爾泰造山帶南緣的富蘊(yùn)縣烏恰溝地區(qū)(圖1a,b),泥質(zhì)麻粒巖樣品包括LT11-47,LT12-35 和LT12-36 三個(gè)樣品,鎂鐵質(zhì)麻粒巖樣品為LT12-02,各樣品的顯微照片及背散射照片見圖2。泥質(zhì)麻粒巖主要礦物為石榴石+堇青石+黑云母+斜長石+石英+磁鐵礦+鈦鐵礦±斜方輝石±尖晶石±鉀長石,均不含夕線石。

      LT11-47 為石榴石斜方二長堇青片麻巖,中細(xì)粒鱗片粒狀變晶結(jié)構(gòu),手標(biāo)本呈暗灰色,弱片麻狀構(gòu)造,礦物組合為石榴石(8% ~12%)+斜方輝石(8% ~12%)+堇青石(25%~30%)+黑云母(15% ~20%)+斜長石(15% ~20%)+鉀長石(15% ~20%)+石英(5% ~8%)+磁鐵礦(<5%)+鈦鐵礦(<5%),為典型的泥質(zhì)麻粒巖相礦物組合(圖2a)。石榴石不顯變斑晶,粒度為0.4 ~1.2mm,常包裹有黑云母、堇青石和磁鐵礦等早期礦物。其中,斜方輝石、堇青石、鉀長石和斜長石大小在0.2 ~0.8mm 之間。黑云母有的包裹在石榴石及堇青石中,自形程度較差,或?yàn)榉迤谇皻埩舻V物,有的穿插其他礦物,呈細(xì)條狀或針狀,可能為退變質(zhì)階段礦物。

      LT12-35 為石榴石二長堇青片麻巖,斑狀變晶結(jié)構(gòu),手標(biāo)本呈暗灰色,塊狀構(gòu)造,其礦物組合為石榴石(6% ~8%)+堇青石(18% ~25%)+ 黑云母(25% ~30%)+ 斜長石(20% ~25%)+鉀長石(10% ~15%)+石英(10% ~15%)+磁鐵礦(<3%)+鈦鐵礦(<3%)。石榴石呈變斑晶狀,大小為0.8 ~2.5mm,常包裹有黑云母、磁鐵礦和石英等峰期前礦物,其邊部發(fā)育有黑云母+堇青石+鉀長石等礦物(圖2b)。堇青石、黑云母、斜長石、鉀長石和石英等礦物組成基質(zhì),粒徑約為0.4 ~0.8mm。石榴石及基質(zhì)礦物中均發(fā)育有黑云母包裹體。

      LT12-36 為尖晶石斜長堇青片麻巖,斑狀變晶結(jié)構(gòu),具有明顯的混合巖外貌,出現(xiàn)很多淺色的脈體。礦物組合為石榴石(15% ~20%)+斜方輝石(5% ~8%)+尖晶石(15% ~20%)+堇青石(25% ~30%)+黑云母(15% ~20%)+斜長石(15% ~20%)+石英(<5%)+磁鐵礦(<5%)+鈦鐵礦(<5%)(圖2c,d),為典型的泥質(zhì)麻粒巖相礦物組合。石榴石部分呈變斑晶狀,粒徑為0.8 ~1.5mm,另有部分小顆粒石榴石與斜方輝石、尖晶石、堇青石、斜長石和石英等礦物構(gòu)成基質(zhì),大小為0.1 ~0.6mm。在石榴石核部包裹有黑云母、堇青石、尖晶石和鈦鐵礦等礦物,其邊部礦物主要為堇青石、黑云母、斜長石和石英。尖晶石呈自形或半自形顆粒集合體,主要以三種形式產(chǎn)出:部分包裹于石榴石中,部分位于石榴石邊部,還有一部分位于基質(zhì)中的尖晶石具有堇青石冠狀體,尖晶石集合體中還包裹有堇青石和鈦鐵礦。黑云母自形程度較差,多呈水滴狀,可能不是峰期礦物。

      有的尖晶石集合體具有堇青石冠狀體,其中還包裹有少量堇青石,推測(cè)二者應(yīng)為峰期前的礦物,指示可能發(fā)生過變質(zhì)反應(yīng):

      石榴石+ 夕線石± 石英= 尖晶石+ 堇青石(Bindu,1997)

      該反應(yīng)是典型的低壓變質(zhì)反應(yīng),并借此消耗了峰期前存在的少量夕線石。

      LT12-02 為黑云母斜長二輝麻粒巖,手標(biāo)本呈暗灰色,花崗變晶結(jié)構(gòu),塊狀構(gòu)造。主要礦物組合為斜方輝石(20% ~25%)+單斜輝石(35% ~40%)+斜長石(30% ~40%)+黑云母(5% ~10%)+石英(5%),另有少量鉀長石和角閃石(<5%),不透明礦物主要為鈦鐵礦和少量磁鐵礦(圖2e,f)。斜方輝石、單斜輝石和石英等粒狀礦物大小不一,中細(xì)粒均存在,粒徑變化于0.05 ~1.20mm 之間。黑云母自形程度較差,多數(shù)為港灣狀,大多在0.10mm 以下,存在于基質(zhì)中或者以包裹體形式存在于其他礦物中。在斜方輝石中含有一些定向排列的富鈦角閃石和鈦鐵礦,斜長石、黑云母中普遍含有一些針狀磷灰石(圖2e 和f),有時(shí)可見磷灰石同時(shí)切穿二者,表明磷灰石應(yīng)是后期變質(zhì)產(chǎn)物。不透明礦物以鈦鐵礦為主,主要包裹其他礦物中,粒徑通常小于0.20mm,少數(shù)存在于基質(zhì)中的大顆粒鈦鐵礦粒徑可達(dá)0.40mm。

      上述礦物組合,指示在進(jìn)變質(zhì)過程中可能發(fā)生過角閃石分解熔融反應(yīng):

      角閃石+石英=斜方輝石+單斜輝石±斜長石+熔體(Pattison et al.,2003)。

      圖2 阿爾泰泥質(zhì)和鎂鐵質(zhì)麻粒巖的顯微照片以及背散射照片(a)LT11-47,石榴子石與斜方輝石、堇青石、斜長石和磁鐵礦等;(b)LT12-35,石榴子石變斑晶附近的黑云母、堇青石和石英;(c)LT12-36,尖晶石周圍具有堇青石冠狀體,尖晶石中包裹有堇青石和鈦鐵礦;(d)LT12-36,靠近大的石榴石變斑晶的尖晶石,并且有的尖晶石被石榴子石包裹;(e)LT12-02,斜方輝石變斑晶與單斜輝石、斜長石、黑云母等共生,opx 中有鈦鐵礦和定向排列的角閃石;(f)LT12-02,鎂鐵質(zhì)麻粒巖中出現(xiàn)鉀長石,并與單斜輝石、斜方輝石、黑云母和斜長石共生. 礦物縮寫:gt-石榴石;opx-斜方輝石;cpx-單斜輝石;cd-堇青石;sp-尖晶石;bt-黑云母;pl-斜長石;ksp-鉀長石;ilm-鈦鐵礦;mt-磁鐵礦;amph-角閃石;q-石英Fig.2 Photomicrographs and Back Scattered Images (BSI)of metapelitic and mafic granulites in the Altay orogen(a)LT11-47,garnet+orthopyroxene+cordierite+plagioclase+magnetite;(b)LT12-35,the assemblage of biotite,cordierite and quartz near the garnet porphyroblast;(c)LT12-36,coronas cordierite develops along the spinel rim,and some cordierite and ilmenite inclusions occur in the spinel;(d)LT12-36,some spinels occur near the garnet porphyroblast,and some spinels occur as inclusions in the garnet porphyroblast;(e)LT12-02,BSI image showing assemblage of orthopyroxene+clinopyroxene +plagioclase +biotite,and ilmenite as well as directional amphibole inclusions occur in orthopyroxene;(f)LT12-02,potash feldspar occurs in a assemblage of k-feldspar+plagioclase+orthopyroxene+clinopyroxene+biotite in the mafic granulite. Mineral abbreviations:gt-garnet;opx-orthopyroxene;cpx-clinopyxene;cd-cordierite;sp-spinel;bt-biotite;pl-plagioclase;ksp-k-feldspar;ilm-ilmenite;mt-magnetite;amph-amphibole;q-quartz

      4 礦物化學(xué)

      本文單礦物的電子探針數(shù)據(jù)由中國科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室的JXA-8100 型電子探針儀完成,其實(shí)驗(yàn)條件為:加速電壓15kV,束流30nA,束斑1μm;大部分元素的分析時(shí)間為為10s,采樣ZAF 校正方法,各樣品主要礦物的電子探針數(shù)據(jù)見表1。

      樣品LT11-47 中,石榴石主要是鐵鋁榴石-鎂鋁榴石-錳鋁榴石的固溶體,從核部向邊部成分變化為Alm64-65Pyr22-21

      Grs2-3Sps12-13,說明受退變質(zhì)階段成分再平衡影響,故不顯成分環(huán)帶。堇青石的Mg#值為68 左右,斜長石An 變化范圍為0.1 ~0.2。黑云母的XMg=0.3 ~0.4,TiO2含量為3.3% ~4.0%。斜方輝石的Al2O3含量較低,為2.3% ~2.6%,核部到邊部XMg幾乎無變化,約為0.3 ~0.4。

      表1 阿爾泰泥質(zhì)和鎂鐵質(zhì)麻粒巖中主要礦物探針分析(wt%)Table 1 The EPMA analysis results of representative minerals in the metapelitic and mafic granulites in the Altay orogen (wt%)

      樣品LT12-35 中,石榴石主要是鐵鋁榴石-鎂鋁榴石的固溶體,從核部向邊部成分變化為Alm67-70Pyr21-26Grs3-1Sps9-6,顯微弱的成分環(huán)帶。堇青石的Mg#值為53 左右,斜長石中XAn約為0.3。黑云母的XMg值約為0.5,TiO2含量為3.2%~3.7%。

      樣品LT12-36 中,石榴石主要是鐵鋁榴石-鎂鋁榴石-錳鋁榴石的固溶體,從核部向邊部成分幾乎無變化,為Alm66-67Pyr20-17Grs2-3Sps12-14。堇青石的Mg#值變化范圍為64 ~67,基質(zhì)中斜長石中XAn約為0.3,以包裹體形式存在于石榴石中的斜長石XAn較高,可達(dá)0.4 ~0.5。黑云母的XMg值約為0.5,TiO2含量約為3.9%。少量的斜方輝石主要為頑火輝石和鐵輝石,以貧鋁為特征,Al2O3含量變化于0.2% ~1.4%之間,發(fā)育有堇青石冠狀體的尖晶石,XMg約為0.2,包裹于石榴石中的尖晶石,XMg較高,可達(dá)0.4 左右。

      樣品LT12-02 中,單斜輝石主要為普通輝石,其端元組分為Wo29-44En31-34Fs24-36,斜方輝石主要為頑火輝石和鐵輝石,F(xiàn)e2+/(Ca+Fe2++Mg)比值約為0.5,從核部到邊部幾乎無變化,Al2O3含量為2.2% ~2.5%。基質(zhì)中的角閃石主要為鈣鎂閃石,而斜方輝石中包裹的角閃石多為鐵陽起石和透閃石,氟氯含量低,TiO2含量較高(~2.19%),(Na+Ca)M4=~1.0。斜長石中鈣長石牌號(hào)較低,XAn為0.2 ~0.3。黑云母的XMg變化范圍為0.4 ~0.5。

      5 P-T 計(jì)算及相平衡模擬

      根據(jù)礦物巖相學(xué)分期以及礦物化學(xué)數(shù)據(jù),我們首先使用傳統(tǒng)的礦物溫壓計(jì)對(duì)不同變質(zhì)階段的變質(zhì)作用P-T 條件進(jìn)行計(jì)算。

      泥質(zhì)和鎂鐵質(zhì)麻粒巖中往往保留了多個(gè)階段的礦物組合,經(jīng)過大量的巖石學(xué)相平衡實(shí)驗(yàn),人們已經(jīng)標(biāo)定了許多適用于這兩大類巖石的溫壓計(jì),因此我們?cè)诒疚闹惺紫炔捎昧藗鹘y(tǒng)地質(zhì)溫壓計(jì)進(jìn)行P-T 計(jì)算。傳統(tǒng)的溫壓計(jì)方法由于計(jì)算方便容易操作,故得到廣泛的應(yīng)用,但是卻存在誤差較大和應(yīng)用局限等問題。一些地質(zhì)學(xué)家提出基于內(nèi)部一致性熱力學(xué)數(shù)據(jù)庫的多相平衡礦物溫壓計(jì),如利用Thermocalc 計(jì)算獨(dú)立變質(zhì)反應(yīng)(Powell and Holland,1994)。因此,我們除了采用傳統(tǒng)溫壓計(jì)計(jì)算之外,還基于熱力學(xué)數(shù)據(jù)庫tc-ds 55s(Holland and Powell,1998;November,2003 升 級(jí)),采 用THERMOCALC 平均溫壓方法作為補(bǔ)充。

      變質(zhì)相圖方法主要是利用內(nèi)洽性熱力學(xué)數(shù)據(jù)庫和有關(guān)的計(jì)算機(jī)軟件Thermocalc 等定量計(jì)算一系列相圖(Holland and Powell,1998)。P-T 視剖面圖表示對(duì)特定全巖成分的相平衡關(guān)系,表明了某一特定成分的巖石在P-T 空間內(nèi)的不同礦物組合的穩(wěn)定范圍(Holland and Powell,1998)。借助變質(zhì)相圖模擬,我們可以確定天然礦物組合的P-T 條件,解釋礦物包裹體和反應(yīng)關(guān)系等,在P-T 視剖面圖上,可以定量計(jì)算出各種礦物成分、摩爾含量,從而對(duì)巖石的P-T 條件和P-T演化軌跡給出更好的限定。

      Wang et al.(2009b)對(duì)阿勒泰市附近的泥質(zhì)麻粒巖在簡單的KFMASH 體系下進(jìn)行了相平衡模擬,雖限定了峰期變質(zhì)條件為780 ~800℃/5 ~6kbar,但并沒有得到一條確切的P-T 軌跡,后來對(duì)夕線石片巖進(jìn)行了NCKFMASHTO 體系下的相平衡模擬(Wang et al.,2014),但是變質(zhì)峰期溫度較低,未達(dá)到麻粒巖相,所以本文對(duì)于不含超高溫礦物組合的泥質(zhì)麻粒巖樣品LT12-35 進(jìn)行了視剖面圖模擬,以期得到一條合理的麻粒巖相變質(zhì)作用的P-T 軌跡。已有學(xué)者對(duì)該區(qū)超高溫泥質(zhì)麻粒巖進(jìn)行了相平衡研究(Li et al.,2014;Tong et al.,2014b),但是具有類似礦物組合和反應(yīng)結(jié)構(gòu),但是不含夕線石的泥質(zhì)高溫麻粒巖并沒有進(jìn)行深入研究,所以本文挑選了含有Sp+Opx+Grt +Crd +Pl +Bi +Q 的泥質(zhì)麻粒巖樣品LT12-36 進(jìn)行了視剖面圖模擬。

      5.1 礦物溫壓計(jì)計(jì)算

      對(duì)于樣品LT11-47,我們采用采用了石榴石-斜方輝石的Fe-Mg-Al 交換溫壓計(jì)(Pattison et al.,2003)計(jì)算得到的峰期條件為794℃、4.8kbar;采用斜方輝石-黑云母溫度計(jì)(吳春明等,1999)在4kbar 時(shí)計(jì)算得到的溫度為791℃;采用石榴石-斜方輝石-斜長石-石英壓力計(jì)(Newton and Perkins,1982;Perkins and Chipera,1985)在790℃時(shí)計(jì)算得到的壓力為4.4~5.2kbar 范圍內(nèi),吻合性較好,可能代表了峰期的變質(zhì)條件。采用石榴石-黑云母溫度計(jì)(Perchuk and Lavrentpeva,1983)在5kbar 計(jì)算得到的溫度為705℃,可能代表了退變質(zhì)條件,通過石榴石-黑云母-斜長石-石英(GBPQ)地質(zhì)溫壓計(jì)(Wu et al.,2004)計(jì)算得到的退變質(zhì)條件為719℃、5.0kbar,應(yīng)代表退變質(zhì)階段的P-T 條件。

      對(duì)于樣品LT12-35,峰期礦物組合為石榴石+堇青石+斜長石+鉀長石+黑云母+石英,通過石榴石-黑云母-斜長石-石英地質(zhì)溫壓計(jì)(Wu et al.,2004)計(jì)算得到的退變質(zhì)條件為573℃,2.2kbar,應(yīng)代表退變質(zhì)過程中的某個(gè)階段的P-T條件。對(duì)于LT12-36,峰期礦物組合為石榴石+斜方輝石+堇青石+斜長石+鉀長石+石英,通過石榴石-黑云母-斜長石-石英地質(zhì)溫壓計(jì)(Wu et al.,2004)計(jì)算得到的退變質(zhì)條件為670℃、3.2kbar,同樣代表退變質(zhì)階段的P-T 條件。

      對(duì)于鎂鐵質(zhì)麻粒巖樣品LT12-02,基性麻粒巖組合不同于以往對(duì)該地區(qū)鎂鐵質(zhì)麻粒巖的報(bào)道,礦物組合中出現(xiàn)了鉀長石,斜方輝石中有定向排列的角閃石和鈦鐵礦出溶。我們對(duì)相鄰的斜方輝石和單斜輝石礦物對(duì)的核部成分采用二輝石溫度計(jì)(Wood and Banno,1973;Wells,1977;Brey and K?hler,1990),計(jì)算的峰期變質(zhì)溫度除了Brey and K?hler(1990)計(jì)算結(jié)果較低外,其余的計(jì)算結(jié)果均為810 ~865℃,比厲子龍等(2004)所得的峰期溫度要高,明顯達(dá)到了麻粒巖相,而對(duì)于邊部成分采用二輝石溫度計(jì)所得計(jì)算結(jié)果為800~845℃(Wood and Banno,1973;Wells,1977)。對(duì)于鎂鐵質(zhì)麻粒巖變質(zhì)峰期的壓力條件尚無法精確限定,厲子龍等(2004)根據(jù)前人對(duì)全球麻粒巖的統(tǒng)計(jì)資料認(rèn)為阿爾泰鎂鐵質(zhì)麻粒巖的壓力大概為6 ~7kbar,但是對(duì)于接觸變質(zhì)作用,其壓力可顯著低于6 ~7kbar,斜方輝石+單斜輝石+斜長石+石英被認(rèn)為是典型的中低壓麻粒巖礦物組合,結(jié)合本區(qū)鎂鐵質(zhì)麻粒巖的產(chǎn)出環(huán)境,我們認(rèn)為鎂鐵質(zhì)麻粒巖的峰期條件很可能落在中低壓麻粒巖相范圍。我們采用角閃石單礦物地質(zhì)溫壓計(jì)對(duì)退變質(zhì)階段的P-T 條件進(jìn)行了計(jì)算,得到的溫壓條件為588℃、1.7 ~2.8kbar(Gerya et al.,1997;Hollister et al.,1987;Johnson and Rutherford,1989;Anderson and Smith,1995),與厲子龍等(2004)所得到的角閃巖相退變質(zhì)條件接近。

      5.2 變質(zhì)相圖模擬

      本文的P-T 視剖面圖模擬采用了Thermocalc 3.33 程序(Powell and Holland,1998)和ds-55s 數(shù)據(jù)庫(Powell and Holland,1998;November,2003 升 級(jí))。利 用 經(jīng) 典 的KFMASH 體系可以模擬麻粒巖相泥質(zhì)巖基本的的相平衡關(guān)系(Wei et al.,2004),加入Na2O 和CaO 后可以引入斜長石和一個(gè)更加符合實(shí)際的硅酸鹽熔體模型(White et al.,2007),所以本文在NCKFMASH 體系下對(duì)LT12-35 樣品進(jìn)行了相平衡模擬。但是對(duì)于樣品LT12-36,出現(xiàn)了尖晶石以及鈦鐵礦等不透明礦物,需要考慮Fe3+和Ti 的影響,因此對(duì)該樣品所采用的模式體系為NCKFMASHTO 體系。

      樣品LT12-35 視剖面圖計(jì)算所采用的礦物活度模型分別為石榴石(g;White et al.,2007)、斜方輝石(opx;Powell and Holland,1999)、堇青石(cd;Holland and Powell,1998)、黑云母(bi;White et al.,2007)、斜長石和鉀長石(pl,ksp;Holland and Powell,2003)、硅酸鹽熔體(liq;White et al.,2007),水、石英、鋁硅酸鹽礦物為純相。LT12-36 視剖面圖計(jì)算所采用的礦物活度模型為斜方輝石(opx;White et al.,2002)、尖晶石(sp;White et al.,2002)、鈦鐵礦(ilm;White et al.,2000)、磁鐵礦(mt;White et al.,2000),其余與樣品LT12-36 所采用的礦物活度模型一致。

      全巖成分主要基于全巖主量測(cè)試,并參考了T-X(H2O)和T-X(O)視剖面圖而確定。圖3a 為樣品LT12-35 在NCKFMASH 體系下的P-T 視剖面圖,所采用的全巖成分為H2O =5mol%,SiO2=62.02mol%,Al2O3=11.71mol%,CaO= 0.58mol%,MgO = 8.78mol%,F(xiàn)eO = 7.68mol%,K2O =3.07mol%,Na2O=1.68mol%。樣品中觀測(cè)的峰期礦物組合g+cd+bi+ksp+pl+liq +q 占據(jù)了相圖左側(cè)一個(gè)狹窄的區(qū)域,約束的峰期條件為770 ~820℃、4.8 ~7.8kbar,所測(cè)石榴子石核部x(g)=Fe/(Fe+Mg)=0.72,落在g+cd+bi+pl+ksp+liq+q 三變區(qū)間的低壓部分,能很好限定溫度在760 ~780℃范圍內(nèi),但是卻不能很好地限制出一個(gè)壓力條件,因此我們采用了Thermocalc 平均溫壓計(jì)算方法求解其平均壓力(Powell and Holland,1994),在該溫度范圍內(nèi)對(duì)其求解壓力為5.1 ~5.2kbar,置信度95%范圍內(nèi)計(jì)算的平均壓力落在這個(gè)范圍內(nèi),其平均壓力為5.1kbar,代表了近似峰期的條件。

      圖3 阿爾泰泥質(zhì)麻粒巖的P-T 視剖面圖(a)LT12-35 在NCKFMASH(+ksp)體系下的視剖面圖,峰期礦物組合g+cd+bi+ksp +pl +liq +q 占據(jù)了相圖左側(cè)一個(gè)狹窄的區(qū)域,約束的峰期條件為770 ~820℃、4.8 ~7.8kbar. 虛線代表摩爾分?jǐn)?shù)等值線x(g)=Fe2+ /(Fe2+ +Mg),能夠給出一個(gè)更好地約束;(b)LT12-36 在NCKFMASHTO(+ cd + ksp + pl + liq+ilm)體系下的視剖面圖,峰期礦物組合大致落在靠近相圖中心的位置,溫壓范圍為790 ~850℃、3.0 ~3.5kbarFig. 3 P-T pseudosections calculated for the Altay metapelitic granulite(a)the P-T pseudosection for the metapelitic granulite LT12-35 in the NCKFMASH (+ksp in excess)system. The peak metamorphic assemblage,g+cd+bi+ksp+pl+liq+q occupies a narrow field to the left of center of the diagram,constraining peak metamorphism to 770 ~820℃and 4.8 ~7.8kbar. The x(g)=Fe2+ /(Fe2+ +Mg)mineral composition isopleths,shown as dashed lines in the figure,constrains peak metamorphism further;(b)the P-T pseudosection for the metapelitic granulite LT12-36 in the NCKFMASHTO (+cd+ksp + pl + liq + ilm in excess)system. The peak metamorphic assemblage,g + opx + cd + bi + ksp + pl + liq + q + mt + ilm approximately occupies a narrow field next to the center of the diagram,constraining peak metamorphism to 790 ~840℃and 3.0 ~3.5kbar

      圖3b 為LT12-36 在NCKFMASHTO 體系下的P-T 視剖面圖,所采用的全巖成分為H2O = 3.5mol%,SiO2=64.46mol%,Al2O3= 13.87mol%,CaO = 2.13mol%,MgO =3.30mol%,F(xiàn)eO = 5.94mol%,Na2O = 3.64mol%,K2O =1.85mol%,TiO2=0.60mol%,O =0.16mol%。所觀測(cè)到的g+opx+cd+ pl +liq +q +mt +ilm 礦物組合,在視剖面圖中落在一個(gè)狹窄的四變度區(qū)間,峰期P-T 條件為790 ~840℃、3.0 ~3.5kbar,而該區(qū)域中的石榴石成分等值線與實(shí)際測(cè)量的礦物成分等值線不能很好匹配,說明在退變質(zhì)過程中受到了Fe-Mg 再平衡的影響。

      6 討論

      6.1 變質(zhì)作用的P-T 軌跡及其構(gòu)造背景

      本文通過詳細(xì)的巖相學(xué)觀察,大量的礦物溫壓計(jì)計(jì)算以及視剖面圖模擬,對(duì)新疆富蘊(yùn)縣烏恰溝地區(qū)具有不同礦物組合的高溫泥質(zhì)和鎂鐵質(zhì)麻粒巖進(jìn)行了深入研究,確定了一系列具有不同變質(zhì)峰期的泥質(zhì)和鎂鐵質(zhì)麻粒巖(圖4)。

      本文對(duì)泥質(zhì)麻粒巖樣品LT11-47 計(jì)算得到的峰期條件為791 ~794℃、4.4 ~5.2kbar,退變質(zhì)條件為719℃、5.0kbar,說明其在變質(zhì)峰期后經(jīng)歷了近等壓冷卻(IBC)的P-T 軌跡。樣品LT12-35,P-T 估算結(jié)果表明其峰期變質(zhì)條件為~5.1kbar 和760 ~770℃。樣品LT12-36 中的斜方輝石Al2O3為0.2% ~1.4%,明顯不同于超高溫泥質(zhì)麻粒巖中斜方輝石的高鋁成分(8.7% ~9.8%)(仝來喜等,2013;Li et al.,2010,2014),其溫壓計(jì)算和相平衡模擬結(jié)果也表明本樣品峰期為3.0 ~3.5kbar 和790 ~840℃,未達(dá)到超高溫條件。

      鎂鐵質(zhì)麻粒巖樣品LT12-02,礦物組合為斜方輝石+單斜輝石+黑云母+斜長石+石英+磁鐵礦,利用二輝石溫度計(jì)計(jì)算的峰期條件為800 ~860℃,變質(zhì)時(shí)代為270Ma(仝來喜,未發(fā)表資料),與之前報(bào)道的泥質(zhì)和鎂鐵質(zhì)麻粒巖以及泥質(zhì)超高溫麻粒巖的年齡一致(陳漢林等,2006;Wang et al.,2009b;仝來喜等,2013;Li et al.,2014),故代表同期變質(zhì)事件。退變質(zhì)階段的P-T 條件為588℃、1.7 ~2.8kbar,與厲子龍等(2004)所得到的角閃巖相退變質(zhì)條件接近。

      圖4 阿爾泰泥質(zhì)及鎂鐵質(zhì)麻粒巖的P-T 軌跡根據(jù)視剖面圖模擬以及溫壓計(jì)計(jì)算所得到的阿爾泰高溫麻粒巖的P-T 軌跡,并與Tong et al. (2014b)和Li et al. (2014)通過對(duì)超高溫泥質(zhì)麻粒巖研究所所得到的P-T 軌跡進(jìn)行對(duì)比Fig. 4 P-T paths of the Altay metapelitic and mafic granulitesP-T diagram showing P-T paths of the Altay granulites based on the pseudosections and thermobarometers. The previous results from Tong et al. (2014b)and Li et al. (2014)are shown for comparison

      如圖4 所示,我們得到烏恰溝地區(qū)高溫泥質(zhì)和鎂鐵質(zhì)麻粒巖峰期后的兩類P-T 軌跡,樣品LT11-47 和樣品LT12-36反映了峰期后近等壓冷卻(IBC)的一段P-T 演化軌跡,而樣品LT12-35 和樣品LT12-02 反映了峰期后減壓冷卻的一段P-T 演化軌跡。雖然峰期前的P-T 軌跡尚無法精確限定,但是本文仍通過對(duì)泥質(zhì)麻粒巖的研究得到兩條峰期后近等溫降壓(IBC)的P-T 演化過程,阿勒泰大喀拉蘇以及烏恰溝地區(qū)超高溫泥質(zhì)麻粒巖也在峰期后經(jīng)歷了一段近等壓冷卻(IBC)的P-T 演化歷史(Tong et al.,2014a,b;Li et al.,2014),而這種IBC 過程通常與逆時(shí)針P-T 演化軌跡相對(duì)應(yīng)。LT12-35 和LT12-02 峰期后減壓冷卻過程可能是由于高溫泥質(zhì)和鎂鐵質(zhì)麻粒巖未充分冷卻便開始折返,導(dǎo)致峰期后的近等壓冷卻(IBC)過程未能有效記錄。結(jié)合之前關(guān)于阿爾泰超高溫麻粒巖的報(bào)道和研究(仝來喜等,2013;Tong et al.,2014a,b;Li et al.,2014),反映了阿爾泰二疊紀(jì)變質(zhì)事件整體上發(fā)生于一個(gè)伸展的大地構(gòu)造背景之下,而此伸展背景或與二疊紀(jì)地幔柱活動(dòng)有關(guān)(仝來喜等,2011,2013;Tong et al.,2014a,b;Wang et al.,2014)。

      6.2 阿爾泰晚古生代變質(zhì)事件與塔里木地幔柱活動(dòng)的成因聯(lián)系

      本區(qū)中-低壓高溫泥質(zhì)和鎂鐵質(zhì)麻粒巖以及片麻巖的變質(zhì)年齡與該造山帶超高溫麻粒巖變質(zhì)作用的時(shí)間基本一致,應(yīng)為同期變質(zhì)事件。對(duì)該區(qū)域麻粒巖和片巖、片麻巖的鋯石以及獨(dú)居石定年結(jié)果支持高溫變質(zhì)事件發(fā)生于二疊紀(jì),時(shí)間為270 ~293Ma 之間(鄭常青等,2005;胡靄琴等,2006;Zheng et al.,2007;Wang et al.,2009b;仝來喜等,2013)。但是關(guān)于二疊紀(jì)變質(zhì)事件的成因尚存在不同認(rèn)識(shí),如阿爾泰造山帶在二疊紀(jì)發(fā)生洋殼的俯沖和板塊碰撞,從而導(dǎo)致麻粒巖高溫或超高溫變質(zhì)作用(Li et al.,2004;Chen et al.,2006),或二疊紀(jì)麻粒巖相變質(zhì)作用的發(fā)生與造山后的拆沉及軟流圈上涌有關(guān)(Li et al.,2014),或存在二疊紀(jì)地幔柱事件(Pirajno et al.,2008;Zhang et al.,2010,2012;Wang et al.,2014;仝來喜等,2013;Tong et al.,2014a,b)。

      阿爾泰造山帶大量的年代學(xué)數(shù)據(jù)表明該區(qū)在二疊紀(jì)經(jīng)歷了一次重要的高級(jí)構(gòu)造變質(zhì)熱事件(肖文交等,2006;Xiao et al.,2008)。巖漿作用的產(chǎn)物,包括二疊紀(jì)玄武巖、基性-超基性侵入體和A 型花崗巖,在阿爾泰造山帶廣泛分布(Zhang et al.,2010)。在阿爾泰造山帶發(fā)育大量的鈣堿性和堿性花崗巖,為典型的后造山類型,時(shí)代為二疊紀(jì)(Han et al.,1999;王濤等,2005)。阿爾泰南緣發(fā)育很多巖脈(Tang et al.,2012;沈曉明等,2013),例如富蘊(yùn)以西酸性巖脈群的年齡為277 ~286Ma(宮紅良等,2007)。此外,烏恰溝地區(qū)發(fā)育有大量的鎂鐵質(zhì)侵入巖(巖脈或小巖體),形成于257Ma(陳立輝和韓寶福,2006),喀拉通克含Cu-Ni-PGE 硫化物基性-超基性雜巖的年齡為287Ma(Han et al.,2004),阿勒泰輝長巖的年齡為281Ma(童英等,2006)。這些年代學(xué)上的耦合性表明阿爾泰造山帶在晚古生代經(jīng)歷的不止是一期變質(zhì)事件,同時(shí)也是一期重要的巖漿事件。

      該構(gòu)造巖漿熱事件與新疆二疊紀(jì)塔里木地幔柱活動(dòng)的時(shí)間(~275Ma)高度一致(Zhang et al.,2010),該區(qū)中-低壓高溫泥質(zhì)和鎂鐵質(zhì)麻粒巖以及超高溫泥質(zhì)麻粒巖均位于巖漿侵入體附近,而微量元素研究表明烏恰溝地區(qū)的基性侵入體具有幔源特征(陳立輝和韓寶福,2006),因此,阿爾泰超高溫變質(zhì)事件可能與二疊紀(jì)塔里木地幔柱活動(dòng)引起的巖漿底侵和下地殼伸展加熱密切相關(guān)(仝來喜等,2013;Tong et al.,2014a,b),并且通過對(duì)已有的一些超高溫變質(zhì)事件的認(rèn)識(shí),Guo et al.(2012)提出對(duì)于特定全巖成分的巖石,在靠近高溫侵入體的位置可以發(fā)生超高溫變質(zhì)作用。結(jié)合其峰期后近等壓冷卻(IBC)的P-T 演化軌跡,野外產(chǎn)狀以及溫壓計(jì)算,我們認(rèn)為幔源巖漿底墊加熱和后造山的伸展導(dǎo)致的同時(shí)代侵入體提供了阿爾泰南緣高溫-超高溫變質(zhì)作用所需的熱源。

      通過對(duì)阿勒泰大喀拉蘇地區(qū)超高溫麻粒巖和中-低壓高溫麻粒巖詳細(xì)的野外觀察,Tong et al.(2014a)認(rèn)為超高溫變泥質(zhì)麻粒巖可能通過后期剪切構(gòu)造作用就位于中-低壓高溫泥質(zhì)麻粒巖之中,本文的溫壓計(jì)算結(jié)果支持這一推測(cè),本文報(bào)道的泥質(zhì)和鎂鐵質(zhì)麻粒巖壓力明顯低于此前報(bào)道的泥質(zhì)超高溫麻粒巖(仝來喜等,2013;Li et al.,2014)。此外,本文所選用的樣品以及之前報(bào)道的烏恰溝和阿勒泰大喀拉蘇附近的超高溫麻粒巖均采自額爾齊斯斷裂帶附近,一般把該斷裂帶視為早-中古生代的俯沖帶位置(Xiao et al.,2004;Han et al.,2010;Zhang et al.,2012),但在晚古生代(290 ~280Ma),該帶經(jīng)歷了大范圍左旋變形(Laurent-Charvet et al.,2003;Zhang et al.,2012),該構(gòu)造事件極有可能和基性及酸性巖漿的侵入以及高溫-超高溫變質(zhì)作用的發(fā)生有著一定的聯(lián)系。

      所以,我們認(rèn)為在晚古生代塔里木地幔柱流沿著塔里木邊緣的構(gòu)造薄弱帶(額爾齊斯斷裂帶)遷移,導(dǎo)致深源巖漿的侵入以及地幔巖石圈的減薄,并提供重要熱源導(dǎo)致上覆地殼的快速加熱,從而形成同時(shí)期大量的A 型花崗巖侵入體和巖脈,同時(shí)作為熱源導(dǎo)致該區(qū)高溫-超高溫麻粒巖相變質(zhì)作用的發(fā)生,并與該區(qū)域內(nèi)廣泛出現(xiàn)的片巖、片麻巖和斜長角閃巖有密切的成因聯(lián)系。高溫泥質(zhì)和鎂鐵質(zhì)麻粒巖以及超高溫泥質(zhì)麻粒巖的變質(zhì)年齡、大量基性和酸性侵入體的形成年齡與塔里木地幔柱活動(dòng)的時(shí)代高度吻合,高溫-超高溫麻粒巖均位于額爾齊斯斷裂帶附近并靠近幔源基性侵入體,該區(qū)域內(nèi)廣泛出現(xiàn)多個(gè)熱穹窿,高溫-超高溫麻粒巖相變質(zhì)作用峰期變質(zhì)條件以及P-T 軌跡,均支持這一結(jié)論。

      7 結(jié)論

      本文通過對(duì)中國阿爾泰造山帶南緣的富蘊(yùn)縣烏恰溝地區(qū)的泥質(zhì)和鎂鐵質(zhì)麻粒巖進(jìn)行詳細(xì)的巖相學(xué)觀察,采用傳統(tǒng)溫壓計(jì)和平均溫壓計(jì)算方法,結(jié)合變質(zhì)相平衡模擬,確定了其高溫變質(zhì)作用的峰期條件,并建立了峰期后的P-T 演化軌跡。綜合已有的變質(zhì)年代學(xué)資料以及該區(qū)超高溫泥質(zhì)麻粒巖的研究結(jié)果,我們得到以下認(rèn)識(shí):

      (1)本文確定了具有不同礦物組合的泥質(zhì)和鎂鐵質(zhì)麻粒巖的峰期(770 ~865℃、3.0 ~5.1kbar)以及退變質(zhì)條件,得到了兩條峰期后近等壓冷卻的P-T 軌跡,與對(duì)阿勒泰大喀拉蘇超高溫泥質(zhì)麻粒巖的研究結(jié)果相一致(仝來喜等,2013;Tong et al.,2014a,b)。這種峰期后近等壓冷卻(IBC)的PT 軌跡通常與伸展的大地構(gòu)造背景相對(duì)應(yīng)。

      (2)阿爾泰造山帶在晚古生代發(fā)生了一次重要的構(gòu)造巖漿熱事件,時(shí)代為二疊紀(jì)。該區(qū)的超高溫-高溫麻粒巖以及廣泛出現(xiàn)的片麻巖年齡(270 ~280Ma)與塔里木地幔柱活動(dòng)導(dǎo)致的后造山幔源侵入體的時(shí)間高度吻合,暗示塔里木地幔柱活動(dòng)引起的幔源巖漿底墊,加熱和后造山的伸展導(dǎo)致的同時(shí)代侵入體提供了阿爾泰南緣二疊紀(jì)變質(zhì)作用發(fā)生所需要的熱源。

      致謝 電子探針分析得到廣州地化所同位素地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室電子探針實(shí)驗(yàn)室陳林麗工程師的幫助;審稿人給出了非常有益的建設(shè)性修改意見;作者在此一并表示誠摯的感謝。

      Anderson LJ and Smith RD. 1995. The effects of temperature and fO2on the Al-in-hornblende barometer. American Mineralogist,80(5 -6):549 -559

      Bindu RS. 1997. Granulite facies spine-cordierite assemblages from the Kerala Khondalite Belt,Southern India. Gondwana Research,1(1):121 -128

      Brey GP and K?hler TP. 1990. Geothermobarometry in four-phase lherzolites:II. New thermobarometers and practical assessment of existing thermobarometers. Journal of Petrology,31 (6):1353-1378

      Briggs SM,Yin A,Manning CE,Chen ZL,Wang XF and Grove M.2007. Late Paleozoic tectonic evolution history of the Ertix Fault in the Chinese Altay and its implications for the development of the Central Asian Orogenic System. Geological Society of America Bulletin,119(7 -8):944 -960

      Chen H,Li Z,Yang S,Dong C,Xiao W and Tainosho Y. 2006.Mineralogical and geochemical study of a newly discovered mafic granulite,Northwest China:Implications for tectonic evolution of the Altay orogenic belt. Island Arc,15(1):210 -222

      Chen HL,Yang SF,Li ZL,Yu X,Xiao WJ,Yuan C,Lin XB and Li JL. 2006. Zircon SHRIMP U-Pb chronology of the Fuyun basic granulite and its tectonic significance in the Altaid orogenic belt.Acta Petrologica Sinica,22(5):1351 - 1358 (in Chinese with English abstract)

      Chen LH and Han BF. 2006. Geochronology,geochemistry and Sr-Nd-Pb isotopic composition of mafic intrusive rocks in Wuqiagou area,North Xinjiang:Constraints for mantle sources and deep processes. Acta Petrologica Sinica,22(5):1201 -1214 (in Chinese with English abstract)

      Gerya TV,Perchuk LL,Triboulet C,Audren C and Sez’ko AI. 1997.Petrology of the Tumanshet zonal metamorphic complex,eastern Sayan. Petrology,5(6):503 -533

      Gong HL,Chen ZL,Hu YQ,Li L,Lai XR,Ma QY,Li YY,Hu B and Zhang WG. 2007. Geochemical characteristics of acidic dike swarm from the eastern segment of the Ertix tectonic belt,Altai orogen and its geological implications. Acta Petrologica Sinica,23(5):889 -899 (in Chinese with English abstract)

      Guo JH,Peng P,Chen Y,Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1. 93 ~1. 92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research,222 -223:124 -142

      Han BF,He GQ and Wang SG. 1999. Postcollisional mantle-derived magmatism,underplating and implications for basement of the Junggar Basin. Science in China (Series D),42(2):113 -119

      Han BF,Ji JQ,Song B,Chen LH and Li ZH. 2004. SHRIMP zircon UPb ages of Kalatongke No. 1 and Huangshandong Cu-Ni bearing mafic-ultramafic complexes, North Xinjiang, and geological implications. Chinese Science Bulletin,49(22):2424 -2429

      Han BF,Guo ZJ,Zhang ZC,Zhang L,Chen JF and Song B. 2010.Age,geochemistry,and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone,western China.Geological Society of America Bulletin,122(3 -4):627 -640

      Harley SL. 1989. The origins of granulites:A metamorphic perspective.Geological Magazine,126(3):215 -247

      Holland TJB and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology,16(3):309 -343

      Holland TJB and Powell R. 2003. Activity-composition relations for phases in petrological calculations:An asymmetric multi-component formulation. Contributions to Mineralogy and Petrology,145(4):492 -501

      Hollister LS,Grissom GC,Peters EK,Stowell HH and Sisson VB. 1987.Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist,72(3 -4):231 -239

      Hu AQ,Jahn BM,Zhang GX,Chen YB and Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang:Nd-Sr isotopic evidence. Part I:Isotopic characterization of basement rocks. Tectonophysics,328(1 -2):15 -51

      Hu AQ,Zhang GX,Zhang QF,Li TD and Zhang JB. 2002. A review on ages of precambrian metamorphic rocks from Altai orogeny in Xinjiang,NW China. Chinese Journal of Geology,37(2):129 -142 (in Chinese with English abstract)

      Hu AQ,Wei GJ,Deng WF and Chen LL. 2006. SHRIMP zircon U-Pb dating and its significance for gneisses from the southwest area to Qinghe County in the Altai,China. Acta Petrologica Sinica,22(1):1 -10 (in Chinese with English abstract)

      Jahn BM. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In:Malpas J,F(xiàn)letcher CJN,Ali JR and Aitchison JC (eds.). Aspects of the Tectonic Evolution of China. Geological Society London,Special Publications,226(1):73 -100

      Jiang YD,Sun M,Zhao GC,Yuan C,Xiao WJ,Xia XP,Long XP and Wu FY. 2010. The ~390Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction? American Journal of Science,310(10):1421 -1452

      Johnson MC and Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California)volcanic rocks. Geology,17(9):837 -841

      Laurent-Charvet S,Charvet J,Monié P and Shu L. 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China):New structural and geochronological data. Tectonics,22(2):237 -241

      Li HJ,He GQ,Wu TR and Wu B. 2006. Confirmation of Altai-Mongolia microcontinent and its implications. Acta Petrologica Sinica,22(5):1369 -1379 (in Chinese with English abstract)

      Li JH,Xiao WJ,Wang K,Sun G and Gao L. 2003. Tectonic and metallogenic evolution of the Altay Shan,Northern Xinjiang Uygur Autonomous Region,northwestern China. In:Goldfarb RJ,Mao JW,Hart C,Wang D,Anderson E,Wang Z (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan.Beijing:CERCAMS,31 -74

      Li TD,Qi ZM,Wu BQ,Xiao SL,Zhao CL,Poliyangsiji BH et al.1996. New improvement of comparative study of geology and mineralization of Altay between China and Kazakhstan. In:Chinese Geological Society (ed.). Thesis Volume of the Symposium of the 8thFive-year Plan of Geoscience for Contribution to 30thIGC.Beijing:Metallurgical Industrial Publishing House,256 -259 (in Chinese)

      Li ZL,Chen HL,Yang SF,Dong CW and Xiao WJ. 2004. Petrology,geochemistry and geodynamics of basic granulite from the Altay area,North Xinjiang,China. Journal of Zhejiang University Science,5(8):979 -984

      Li ZL,Chen HL,Yang SF,Xiao WJ and Tainosho Y. 2004. Discovery of the basic granulite from the Altai area:Evidence from mineralogy.Acta Petrologica Sinica,20(6):1445 - 1455 (in Chinese with English abstract)

      Li ZL,Li YQ,Chen HL,Santosh M,Xiao WJ and Wang HH. 2010.SHRIMP U-Pb zircon chronology of ultrahigh-temperature spinelorthopyroxene-garnet granulite from south Altay orogenic belt,northwestern China. Island Arc,19(3):506 -516

      Li ZL,Yang XQ,Li YQ,Santosh M,Chen HL and Xiao WJ. 2014.Late Paleozoic tectono-metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt:Constraints from metamorphic P-T pseudosection and zircon U-Pb dating of ultra-high-temperature granulite. Lithos,204:83 -96

      Long XP,Sun M,Yuan C,Xiao WJ,Lin SF,Wu FY,Xia XP and Cai KD. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai:Implications for the early Paleozoic tectonic evolution of the Central Asian Orogenic Belt.Tectonics,26(5):TC5015,doi:10.1029/2007TC002128

      Long XP,Yuan C,Sun M,Xiao WJ,Lin SF,Wang YJ and Cai KD.2008. Geochemiscal characteristics and sedimentary environments of Devonina low metamorphic clastic sedimentary rocks in the southern margin of the Chinese Altai,North Xinjiang. Acta Petrologica Sinica,24(4):718 -732 (in Chinese with English abstract)

      Newton R and Perkins D. 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclaseorthopyroxene (clinopyroxene)-quartz. American Mineralogist,67(3 -4):203 -222

      Pattison DRM,Chacko T,F(xiàn)arquhar J and McFarlane CRM. 2003.Temperatures of granulite-facies metamorphism:Constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology,44(5):867 -900

      Perchuk LL and Lavrentpeva IV. 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In:Saxena SK (ed.). Kinetics and Equilibrium in Mineral Reactions.New York,Berlin,Heidelberg:Springer-Verlag,199 -239

      Perkins D III and Chipera SJ. 1985. Garnet-orthopyroxene-plagioclasequartz barometry:Refinement and application to the English River subprovince and the Minnesota River valley. Contributions to Mineralogy and Petrology,89(1):69 -80

      Pirajno F,Mao JW,Zhang ZC,Zhang ZH and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens,NW China:Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences,32(2 -4):165 -183

      Powell R and Holland T. 1994. Optimal geothermometry and geobarometry. American Mineralogist,79(1 -2):120 -133

      Powell R,Holland TJB and Worley B. 1998. Calculating phase diagram involving solid solutions via no-linear equations,with examples using THERMOCALC. Journal of Metamorphic Geology,16(4):577-586

      Powell R and Holland T. 1999. Relating formulations of the thermodynamics of mineral solid solutions:Activity modeling of pyroxenes,amphiboles,and micas. American Mineralogist,84(1 -2):1 -14

      ?eng?r AMC,Natal’in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia.Nature,364(6435):299 -307

      Shen XM,Zhang HX and Ma L. 2013. LA-ICP-MS zircon U-Pb dating for Jieerkuduke acidic dykes in the southern Altay range. Xinjiang Geology,31(3):157 -161 (in Chinese with English abstract)

      Sun M,Long XP,Cai KD,Jiang YD,Wang BY,Yuan C,Zhao GC,Xiao WJ and Wu FY. 2009. Early Palaeozoic ridge subduction in the Chinese Altai:Insight from the abrupt change in zircon Hf isotopic compositions. Science in China (Series D),39(7):935 -948 (in Chinese)

      Tang GJ,Wang Q,Wyman DA,Li ZX,Zhao ZH and Yang YH. 2012.Late Carboniferous high εNd(t)-εHf(t)granitoids,enclaves and dikes in western Junggar,NW China:Ridge-subduction-related magmatism and crustal growth. Lithos,140(5):86 -102

      Tong LX,Chen YB,Xu YG and Liu WP. 2011. Occurrence of bearing Opx + Sil high-temperature pelitic granulite and its geological significance. Xi’an:Abstract of 2011’s National Symposium on Petrology and Geodynamics,214 (in Chinese)

      Tong LX,Chen YB,Xu YG,Zhou X and Liu Z. 2013. Zircon U-Pb ages of the ultrahigh-temperature metapelitic granulite from the Altai orogen,NW China,and geological implications. Acta Petrologica Sinica,29(10):3435 -3445 (in Chinese with English abstract)

      Tong L,Chen Y and Chen L. 2014a. Confirmation of ultrahightemperature metapelitic granulite in the Altay orogen and its geological significance. Chinese Science Bulletin,59(27):3441-3448

      Tong L,Xu YG,Cawood PA,Zhou X,Chen YB and Liu Z. 2014b.Anticlockwise P-T evolution at ~280Ma recorded from Opx-Silbearing metapelitic granulite in the Chinese Altai orogen,possible link with the Tarim mantle plume?Journal of Asian Earth Sciences,94:1 -11

      Tong Y,Wang T,Hong DW and Han BF. 2006. Pb isotopic composition of granitoids from the Altay orogen (China):Evidence for Mantlederived origin and continental growth. Acta Geologica Sinica,80(4):517 -528 (in Chinese with English abstract)

      Wang T,Hong DW,Tong Y,Han BF and Shi YR. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogen:Its implications for vertical continental growth.Acta Petrologica Sinica,21 (3):640 - 650 (in Chinese with English abstract)

      Wang T,Hong DW,Jahn BM,Tong Y,Wang YB,Han BF and Wang XX. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains,Northwest China:Implications for the tectonic evolution of an accretionary orogen.Journal of Geology,114(6):735 -751

      Wang T,Jahn BM,Kovach VP,Tong Y,Hong DW and Han BF.2009a. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the central Asian orogenic Belt. Lithos,110(1 -4):359 -372

      Wang W,Wei CJ,Wang T,Lou YX and Chu H. 2009b. Confirmation of pelitic granulite in the Altai orogen and its geological significance.Chinese Science Bulletin,54(14):2543 -2548

      Wang W,Wei CJ,Zhang YH,Chu H,Zhao Y and Liu XC. 2014. Age and origin of sillimanite schist from the Chinese Altai metamorphic belt:Implications for Late Palaeozoic tectonic evolution of the Central Asian Orogenic Belt. International Geology Review,56(2):224-236

      Wei CJ,Powell R and Clarke GL. 2004. Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. Journal of Metamorphic Geology,22(5):495-508

      Wei CJ,Clarke G,Tian W and Qiu L. 2007. Transition of metamorphic series from the kyanite- to andalusite-types in the Altai orogen,Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations. Lithos,96(3 -4):353-374

      Wells PRA. 1977. Pyroxene thermometry in the simple and complex systems. Contributions to Mineralogy and Petrology,62(2):129-139

      White RW,Powell R,Holland TJB and Worley BA. 2000. The effect of TiO2and Fe2O3on metapelitic assemblages at greenschist and amphibolite facies conditions:Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology,18(5):497 -511

      White RW,Powell R and Clarke GL. 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block,central Australia:Constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology,20(1):41 -55

      White RW,Powell R and Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology,25(5):511 -527

      Windley BF,Kr?ner A,Guo JH,Qu GS,Li YY and Zhang C. 2002.Neoproterozoic to Paleozoic geology of the Altai orogen,NW China:New zircon age data and tectonic evolution. Journal of Geology,110(6):719 -737

      Wood BJ and Banno S. 1973. Garnet-orthopyoxene and orthopyroxeneclinopyroxene relationship in simple and complex system. Contrib.Mineral. Petrol. 42(2):109 -124

      Wu CM,Pan YS and Wang KY. 1999. Refinement of the biotiteorthopyroxene geothermometer with applications. Acta Petrologica Sinica,15(3):463 -468 (in Chinese with English abstract)

      Wu CM,Zhang J and Ren LD. 2004. Empirical garnet-biotite-plagiocl as e-quartz (GBPQ ) geobarometry in medium- to high-grade metapelites. Journal of Petrology,45(9):1907 -1921

      Xiao W,Windley BF,Badarch G,Sun S,Li J,Qin K and Wang Z.2004. Palaeozoic accretion and convergent tectonics of the southern Altaids:Implications for the growth of Central Asia. Journal of the Geological Society,161(3):339 -342

      Xiao WJ,Han CM,Yuan C,Chen HL,Sun M,Lin SF,Li ZL and Mao QG. 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of northern Xinjiang (NW China):Constraints for the tectonics of the southern Paleoasian domain. Acta Petrologica Sinica,22(5):1062 -1076 (in Chinese with English abstract)

      Xiao WJ,Han CM,Yuan C,Sun M,Lin SF,Chen HL,Li ZL,Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences,32(2 -4):102 -117

      Xu XC,Zheng CQ and Zhao QY. 2005. Metamorphic types and crustal evolution of Hercynian orogenic belt in Altai region,Xinjiang.Journal of Jilin University (Earth Science Edition),35(1):7 -11(in Chinese with English abstract)

      Zhai MG and Liu WJ. 2001. The formation of granulite and its contribution to evolution of the continental crust. Acta Petrologica Sinica,17(1):28 -38 (in Chinese with English abstract)

      Zhang CG,Wei CJ and Qiu L. 2004. Evolution of metamorphism and its geologic significance in Altaids,Xinjiang. Xinjiang Geology,22(1):16 -23 (in Chinese with English abstract)

      Zhang CL,Li ZX,Li XH,Xu YG,Zhou G and Ye HM. 2010. A Permian large igneous province in Tarim and Central Aisian orogenic belt,NW China:Results of a ca.275Ma mantle plume?Geological Society of America Bulletin,122(11 -12):2020 -2040

      Zhang CL,Santosh M,Zou HB,Xu YG,Zhou G,Dong YG,Ding RF and Wang HY. 2012. Revisiting the “Irtish tectonic belt”:Implications for the Palaeozoic tectonic evolution of the Altai orogen.Journal of Asian Earth Science,52:117 -133

      Zheng CQ,Xu XC,Enami M and Kato T. 2005. Monazite ages and geological implications of andalusite-sillimanite type metamorphic belt in Aletai,Xinjiang. Global Geology,24(3):236 -242 (in Chinese with English abstract)

      Zheng CQ,Kato T,Enami M and Xu XC. 2007. CHIME monazite ages of metasediments from the Altai orogen in northwestern China:Devonian and Permian ages of metamorphism and their significance.Island Arc,16(4):598 -604

      Zheng CQ,Xu XC,Kato T and Enami M. 2007. Permian CHIME ages of monazites for the kyanite-sillimanite type metamorphic belt in Chonghuer area,Altai,Xinjiang and their geological implications.Geological Journal of China University,13(3):566 - 573 (in Chinese with English abstract)

      Zhuang YX. 1994. The PTSt evolution of metamorphism and development mechanism of the thermal-structural-gneiss domes in the Chinese Altaides. Acta Geologica Sinica,68(1):35 -47 (in Chinese with English abstract)

      Zou TR,Cao HZ and Wu BQ. 1988. Orogenic and anorogenic granitoids of the Altay Mountains,Xinjiang and their discrimination criteria.Acta Geologica Sinica,62(3):228 -243 (in Chinese with English abstract)

      附中文參考文獻(xiàn)

      陳漢林,楊樹鋒,厲子龍,余興,肖文交,袁超,林秀斌,李繼亮.2006. 阿爾泰造山帶富蘊(yùn)基性麻粒巖鋯石SHRIMP U-Pb 年代學(xué)及其構(gòu)造意義. 巖石學(xué)報(bào),22(5):1351 -1358

      陳立輝,韓寶福. 2006. 新疆北部烏恰溝地區(qū)鎂鐵質(zhì)侵入巖的年代學(xué)地球化學(xué)和同位素組成:對(duì)地幔源區(qū)特征和深部過程的約束. 巖石學(xué)報(bào),22(5):1201 -1214

      宮紅良,陳正樂,胡遠(yuǎn)清,李麗,賴新榮,馬慶佑,李玉英,胡博,張文貴. 2007. 阿爾泰額爾齊斯帶東段酸性巖墻群地球化學(xué)特征及其地質(zhì)意義. 巖石學(xué)報(bào),23(5):889 -899

      胡靄琴,張國新,張前鋒,李天德,張積斌. 2002. 阿爾泰造山帶變質(zhì)巖系時(shí)代問題的討論. 地質(zhì)科學(xué),37(2):129 -142

      胡靄琴,韋剛健,鄧文峰,陳林麗. 2006. 阿爾泰地區(qū)青河縣西南片麻巖中鋯石SHRIMP U-Pb 定年及其地質(zhì)意義. 巖石學(xué)報(bào),22(1):1 -10

      李會(huì)軍,何國琦,吳泰然,吳波. 2006. 阿爾泰-蒙古微大陸的確定及其意義. 巖石學(xué)報(bào),22(5):1369 -1379

      李天德,祁志明,吳柏青,肖世祿,趙昌龍,別斯帕耶夫XA,波利楊斯基HB,季亞契科夫BA,甘任科ГД,葉夫圖申科НП,葉夫圖申科ОП. 1996. 中國和哈薩克斯坦阿爾泰地質(zhì)及成礦研究的新進(jìn)展. 見:中國地質(zhì)學(xué)會(huì)編. 獻(xiàn)給三十屆國際地質(zhì)大會(huì)“八五”地質(zhì)科技重要成果學(xué)術(shù)交流會(huì)議論文選集. 北京:冶金工業(yè)出版社,256 -259

      厲子龍,陳漢林,楊樹鋒,肖文交,Tainosho Y. 2004. 阿爾泰基性麻粒巖的發(fā)現(xiàn):來自礦物學(xué)的證據(jù). 巖石學(xué)報(bào),20(6):1445-1455

      龍曉平,袁超,孫敏,肖文交,林壽發(fā),王毓靖,蔡克大. 2008. 北疆阿爾泰南緣泥盆系淺變質(zhì)碎屑沉積巖地球化學(xué)特征及其形成環(huán)境. 巖石學(xué)報(bào),24(4):718 -732

      沈曉明,張海祥,馬林. 2013. 阿爾泰南緣杰爾庫都克酸性巖脈LAICP-MS 鋯石U-Pb 測(cè)年. 新疆地質(zhì),31(3):157 -161

      孫敏,龍曉平,蔡克大,蔣映德,王步云,袁超,趙國春,肖文交,吳福元. 2009. 阿爾泰早古生代末期洋中脊俯沖:鋯石Hf 同位素組成突變的啟示. 中國科學(xué)(D 輯),39(7):935 -948

      仝來喜,陳義兵,徐義剛,劉文平. 2011. 阿爾泰造山帶含Opx+Sil高溫變泥質(zhì)麻粒巖的產(chǎn)出及其地質(zhì)意義. 西安:2011 年全國巖石學(xué)與地球動(dòng)力學(xué)研討會(huì)論文摘要(上冊(cè)),214

      仝來喜,陳義兵,徐義剛,周信,劉兆. 2013. 阿爾泰超高溫變泥質(zhì)麻粒巖的鋯石U-Pb 年齡及其地質(zhì)意義. 巖石學(xué)報(bào),29(10):3435 -3445

      童英,王濤,洪大衛(wèi),韓寶福. 2006. 中國阿爾泰造山帶花崗巖Pb同位素組成特征:幔源成因佐證及陸殼生長意義. 地質(zhì)學(xué)報(bào),80(4):517 -528

      王濤,洪大偉,童英,韓寶福,石玉若. 2005. 中國阿爾泰造山帶后造山喇嘛昭花崗巖體鋯石SHRIMP 年齡-成因及陸殼垂向生長意義. 巖石學(xué)報(bào),21(3):640 -650

      吳春明,潘裕生,王凱怡. 1999. 黑云母-斜方輝石溫度計(jì)的重新標(biāo)度及其應(yīng)用. 巖石學(xué)報(bào),15(3):463 -468

      肖文交,韓春明,袁超,陳漢林,孫敏,林壽發(fā),厲子龍,毛啟貴,張繼恩,孫樞,李繼亮. 2006. 新疆北部石炭紀(jì)-二疊紀(jì)獨(dú)特的構(gòu)造成礦作用:對(duì)古亞洲洋構(gòu)造域南部大地構(gòu)造演化的制約. 巖石學(xué)報(bào),22(5):1062 -1076

      徐學(xué)純,鄭常青,趙慶英. 2005. 阿爾泰海西造山帶區(qū)域變質(zhì)作用類型與地殼演化. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),35(1):7 -11

      翟明國,劉文軍. 2001. 麻粒巖的形成及其對(duì)大陸地殼演化的貢獻(xiàn).巖石學(xué)報(bào),17(1):28 -38

      張翠光,魏春景,邱林. 2004. 新疆阿爾泰造山帶變質(zhì)作用演化及其地質(zhì)意義. 新疆地質(zhì),22(1):16 -23

      鄭常青,徐學(xué)純,Enami M,Kato T. 2005. 新疆阿爾泰紅柱石-夕線石型變質(zhì)帶的獨(dú)居石年齡及其地質(zhì)意義. 世界地質(zhì),24(3):236 -242

      鄭常青,徐學(xué)純,Kato T,Enami M. 2007. 新疆阿爾泰沖乎爾地區(qū)藍(lán)晶石-夕線石型變質(zhì)帶獨(dú)居石CHIME 二疊紀(jì)年齡及其地質(zhì)意義. 高校地質(zhì)學(xué)報(bào),13(3):566 -573

      莊育勛. 1994. 中國阿爾泰造山帶變質(zhì)作用PTSt 演化和熱-構(gòu)造-片麻巖穹窿形成機(jī)制. 地質(zhì)學(xué)報(bào),68(1):35 -47

      鄒天人,曹惠志,吳柏青. 1988. 新疆阿爾泰造山花崗巖和非造山花崗巖及其判別標(biāo)志. 地質(zhì)學(xué)報(bào),62(3):228 -243

      猜你喜歡
      斜方阿爾泰石榴石
      Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
      媽媽的吻
      擺脫斜方肌,練出天鵝頸
      擺脫斜方肌,練出天鵝頸
      青春期健康(2020年4期)2020-03-21 06:11:10
      媽媽的吻
      做人與處世(2020年3期)2020-03-07 05:23:55
      空位缺陷對(duì)釔鋁石榴石在高壓下光學(xué)性質(zhì)的影響
      斜方棋
      石榴石
      中國寶玉石(2016年2期)2016-10-14 07:58:30
      如何正確的鑒別石榴石
      新疆阿爾泰鐵礦成礦規(guī)律淺析
      德惠市| 河曲县| 汉沽区| 汉寿县| 长海县| 保靖县| 丰镇市| 宁国市| 都昌县| 隆子县| 林芝县| 罗城| 灵武市| 怀柔区| 舒兰市| 宣武区| 黎城县| 玉田县| 徐汇区| 桐乡市| 卫辉市| 贵德县| 萨嘎县| 柞水县| 都匀市| 天全县| 稻城县| 长乐市| 紫云| 赤水市| 长岛县| 阿城市| 额敏县| 曲靖市| 平湖市| 阳春市| 遂宁市| 扬中市| 山丹县| 长垣县| 龙南县|