• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fuzzy immune algorithm and its application in solvent tower soft sensor modeling

    2015-03-03 08:01:24MENGKeDONGZhaoyangGAOXiaodanWANGHaimingLIXiao
    關(guān)鍵詞:計(jì)算精度測試函數(shù)徑向

    MENG Ke, DONG Zhao-yang, GAO Xiao-dan, WANG Hai-ming, LI Xiao

    (1. Centre for Intelligent Electricity Networks, The University of Newcastle, Callaghan 2308, Australia;2. School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia;3. School of Computer Science and Control Engineering, North University of China, Taiyuan 030051, China)

    ?

    A fuzzy immune algorithm and its application in solvent tower soft sensor modeling

    MENG Ke1,2, DONG Zhao-yang2, GAO Xiao-dan1, WANG Hai-ming1, LI Xiao3

    (1.CentreforIntelligentElectricityNetworks,TheUniversityofNewcastle,Callaghan2308,Australia;2.SchoolofElectricalandInformationEngineering,TheUniversityofSydney,Sydney2006,Australia;3.SchoolofComputerScienceandControlEngineering,NorthUniversityofChina,Taiyuan030051,China)

    An improved immune algorithm is proposed in this paper. The problems, such as convergence speed and optimization precision, existing in the basic immune algorithm are well addressed. Besides, a fuzzy adaptive method is presented by using the fuzzy system to realize the adaptive selection of two key parameters (possibility of crossover and mutation). By comparing and analyzing the results of several benchmark functions, the performance of fuzzy immune algorithm (FIA) is approved. Not only the difficulty of parameters selection is relieved, but also the precision and stability are improved. At last, the FIA is applied to optimization of the structure and parameters in radial basis function neural network (RBFNN) based on an orthogonal sequential method. And the availability of algorithm is proved by applying RBFNN in modeling in soft sensor of solvent tower.

    immune algorithm; fuzzy system; radial basis function neural network (RBFNN); soft sensor

    0 Introduction

    With the development of immunology and its research methods, the mechanism of biologic immune system has attracted increasing attention from researchers in recent years. Due to the powerful ability of information processing and special characteristics such as diversity, adaptive trait, biologic immune system has become a hot spot of artificial intelligence.

    Being the defense system of mammal, immune system plays a significant role in keeping the normal life activities of animals. If it is weakened or destroyed, lives will be endangered. The process that immune system annihilates viruses can be briefly described as follows:

    Once bacteria invade and enter the bloodstream or lymphatic system, they will encounter B cell and the antibodies withheld within B cell’s membrane will detect antigens in the bacteria. Thenceforth, T cells communicate with B cells based on the received information about the antigen from macrophages earlier and by so doing, B cells are inspired to propagate. The propagated B cells are converted into memory cells and antibodies are produced. With the aid of macrophages and other proteins within biologic bodies, antibodies bind to antigens and kill the antigens after they enter into blood system through the heart.

    Being an innovative optimization algorithm based on immune mechanism, the immune algorithm (IA)[1]is employed to address the multi-modal function optimization problem. It imitating the principle of our defense system annihilating foreign disease-causing bacteria or viruses through self-learning and self-adjusting. The capability of somatic theory and network hypothesis of immune system of multi-modal optimization problems has been examined in Ref.[2]. An IA is introduced in Ref.[3] to search for diverse solutions to design problems for electromagnetic devices, where optimal solutions are aggregated in memory cells.

    Differences in the production system for memory and antibodies distinguish IA from genetic algorithm (GA) although they are quite similar. Besides, IA manipulates a population of candidates simultaneously in the search space whereas GA manipulates just one. Compared with GA and other evolution programming, IA promotes the general search ability through the mechanism based on memory pool. At the same time, it realizes the function of self-adjusting by calculating affinity and concentration. To some extent, it avoids premature convergence.

    1 Soft sensor and RBF neural network

    In order to get eligible production, quality control wields an important role in industrial manufacture. Because of the complexity of industrial process especially in the petrochemical industry, it is very difficult to realize the real-time strict control of the quality of some products. Under many circumstances, the qualities of many products are tested off-line by labor because of the high price, difficulty of maintenance, time latency of on-line measure meters.

    The conception of soft sensors, which combines control knowledge and technologic theories together, was firstly brought forward in Ref.[4]. Some variables which can be easily measured are selected to compute real-time reliable estimates data of other ones which can not or is difficult to be measured by designing proper algorithms. Nonlinear modeling techniques are usually utilized to develop soft sensors to handle the peculiar nonlinearities of processes[4]. Not only can soft sensors be operated alone as a valuable, economic replacement of costly hardware sensors, but also work in parallel with real sensors to allow model-based techniques to be adopted in order to develop fault detection functions devoted to the analysis of the sensor’s health status.

    Radial basis function neural networks (RBFNN) is an excellent neural network in performance. In 1990, Girosi and Poggio had proved RBFNN can approach any nonlinear functions by discretionary precision[5]. RBF networks are gaining increasing popularity in many scientific and engineering fields as a result of their strengths compared with other types of artificial neural networks (ANN), e.g. improved approximation capabilities, simpler network structures and faster learning algorithms.

    RBF networks are composed of three layers, including the input, hidden and output layers, which form an unique neural network architecture. The input layer communicates the entire network to its outside environment. In the hidden layer, all the nodes are connected with centers, and they are vectors with a dimension identical to the number of inputs to the network. A RBF is employed to pass the node activity; the feedback from a hidden node is generated. Lastly, the output serves as a summation unit, which is linear. The structure of a typical RBFNN is presented in Fig.1.

    Fig.1 Typical MISO RBFNN

    But how to decide the number of neurons within the hidden layer has always been the problem counteracting the application of RBFNN. There is a possibility that a small network never converges, however, a large network converges fast but lacks the generalization ability. Besides a suitable network size, there are many other questions that need to be answered to use a network for a particular problem. Learning step, proper training procedure, number of layers, network initialization, value of gain and the number of neurons in each layer are some difficulties which block the wide application of neural network. In this paper an orthogonal sequential method[6]is represented producing RBFNN models based on an improved IA, which is used to auto-configure the structure of the network and obtain the model parameters.

    2 Fuzzy immune algorithm

    2.1 Basic principles of immune algorithm

    For the optimization problem, the antigens and antibodies in the immune system are represented as the objective functions and feasible solutions, respectively.

    The coding method for traditional IA is similar to that for the GA, which is coded in binary. In this paper a new real-coding based evolution IA because of the advantages of real coding algorithm in training neural network[7]is represented, which effectively improves the performance of traditional IA, solving the problems such as premature convergence, low speed of calculation and low precision.

    2.2 Calculation strategy of FIA

    The steps of FIA are illustrated as shown in Fig.2.

    Fig.2 Flow chart of FIA

    Step 1 (Recognize antigen)

    Antigen: objective function (generally minimum value).

    Antibody: feasible solutions.

    Step 2 (Produce initial antibody population and memory pool)

    In this step, the antibodies are generated randomly and then compartmentalized to the given intervals. The memory pool is a zero matrix of given size.

    Step 3 (Calculate the affinity values of all antibodies)

    IA uses affinity value as a discriminator of the quality of solutions represented by the antibodies in a population. Because the final target of the algorithm is searching the minimum value, function values of all the antibodies are calculated and sorted in ascending sequence.

    To calculate the affinity valueaffinity(i) of antibodyi, it is given by

    (1)

    whereris a random number in the interval [0.01,0.3].

    Step 4 (Update memory pool)

    Eminent antibodies from the present population are selected by their affinity values and concentrations in order to update memory pool which can be used to generate the offspring antibodies population.

    Step 5 (Select antibodies)

    1) To calculate the concentrationcon(i) of antibodyi, it is given by

    (2)

    where

    (3)

    2) To calculate the selection probabilityPs(i) of antibodyi, it is given by

    (4)

    3) A roulette selection is implemented based on the computed selection probability for the antibodies. This allocates each antibody a probability of being selected proportional to its relative affinity and concentration. A new antibody generation can therefore be formed by spinning the designed roulette.

    Step 6 (Determine crossover and mutation rates through fuzzy method)

    In IA, many parameters play an important role in determining convergence and convergent rate, such as crossover and mutation rates. Crossover is one key IA operator that promotes the new region exploration ability in the search space. Generally, crossover rate should be chosen comparatively big[8], between 0.7 and 1.0. Mutation is another IA operator which guarantees the diversity of the population. In Ref. [8], the mutation rate should be chosen between thousandths and hundredths.

    According to Ref.[9], statistical method, support vector machine or neural network can be utilized to adjust crossover and mutation rates. However, we have found that fuzzy system approach makes better contributions to the IA in both time consumption and precision when compared with above methodologies.

    Themembershipfunctionsforinputfd(t),andoutputΔPcareshowninFigs.3-6.Inthesamewaythemembershipfunctionsforinputfd(t), Pm,ΔPmandfuzzydecisiontableforΔPmcanbedrawn.

    Fig.3 Membership function of fd(t)

    Fig.4 Membership function of Pc

    Fig.5 Membership function of ΔPc

    Fig.6 Membership function of ΔPm

    According to a great deal of experimental data and expert knowledge, the fuzzy decision for ΔPcis made and presented in Table 1. By virtue of the same theory, the fuzzy decision table for ΔPmcan be generated. In the table, NH, NL, NM, NS, ZE, PS, PM, PL and PH are abbreviated for Negative Huge, Negative Large, Negative Medium, Negative Small, Zero, Positive Small, Positive Medium, Positive Large and Positive Huge, respectively.

    Table 1 Fuzzy decision table for ΔPc

    Step 7 (Crossover implementation)

    The crossover operator represents the mixing of antibiotic material from two selected parent antibodies to produce one or two child offspring antibody population. The amount of antibodies take part in crossover implementation is determined by crossover ratePc, which is adjusted by fuzzy method.

    An improved arithmetic crossover operator is described as

    (5)

    whereb1=0.5+b,b2=0.5-b, andbis a random number in interval [0,1].

    If the offspring antibody exceeds the given intervals, another operator will be selected.

    (6)

    Step 8 (Mutation implementation)

    An uneven mutation method[10-11]is described as follows:

    For one given parent antibody, if its elementxmis randomly selected to mutation, the corresponding element in its offspring is likely to change in two possibilities

    (7)

    (8)

    whereTis maximum generation;tis current generation;ris a fixed uneven parameter, usuallyr=2;bis a random number in the interval [0,1].

    In this paper, an improved mutation method is introduced, and its idea mainly comes from differential algorithm[12].

    (9)

    whereantibodybestis the optimal antibody of the current generation which is stored in memory pool.

    Step 9 (Generate new antibody population and update memory pool)

    Antibodies with high affinity value will evolve into next generation and be added into memory pool. Given number of new antibodies will be added into antibody population replacing antibodies with low affinity value.

    Step 10 (Termination criterion).

    For this step, the search is terminated if the following conditions are satisfied:

    1) The values for minvaluedo not change for several generations.

    2) When the set number of evolutionTis achieved.

    2.3 Test examples

    Several standard test functions are used to examine the ability of FIA and its advantages superior to other algorithms in the same test environment and condition. Except for parameters adaptive selection, the FIA is similar to other algorithms in flow and thought. The standard test functions and test results are shown in Table 2 and Table 3, respectively.

    Table 2 Three standard test functions

    Table 3 Results of test functions

    The above data indicate that FIA can effectively solve the premature problem and is suitable for complex optimization problems. The algorithm is not trapped by the local optimal solution and can promptly and accurately obtain a full set of global optimal solutions, which are incomparable in other similar algorithms.

    3 Configuration of RBFNN using FIA

    Like GA and other evolution algorithms[7,13], IA has three main applications in neural network:

    1) The parameters learning of neural network;

    2) The topology structure selection of neural network;

    3) The parameters and structure optimization of neural network.

    And the standard procedure for RBF networks learning problem can be decomposed into two steps: The first one is obtaining the number and centers of the nodes in hidden layer and the second one is calculation of the connection weights using simple linear regression.

    3.1 General ideas and theories[6]

    For typical RBFNN, ifwidenotes output weights, φi(X,Ci)denotestheoutputofithneuron, X=[x1,x2,…,xm]isinputvector, Cidenotesthehiddennodecenterlocationsofithneuronandydenoteslinearsummationofoutputofhiddenlayerneurons.IftheRBFisGaussfunction,

    (10)

    (11)

    Foronesetoftrainingdata,theequationcanbetransformedinto

    (12)

    Andthen

    (13)

    (14)

    (15)

    Sothegivenequationscanbetransformedinto

    (16)

    (17)

    (18)

    3.2 Two-step learning strategy of RBFNN

    3.2.1 Design of network structure

    Real-coded algorithm is suitable for neural network training because the antibodies are the real values in neural network. The real-coded method forithantibody is that the formern+1 columns are relevantncenters and one warp and the last column is affinity value of the antibody.

    The steps of RBFNN training are depicted as:

    Step 1: Initialization.i=1, E0=Y.

    Step 3: If output satisfies stopping criterion, network training will stop. Otherwise,i=i+1, and another neuron will be added.

    3.2.2 Design of network output layer

    Because of the output layer is linear and it serves as a summation unit, the least square method can be chosen to calculate

    (19)

    3.3 Result of soft sensor

    One pure-terephthalic acid (PTA) solvent tower is chosen as research object in this paper and the ultimately target is to establish the soft sensor model for acid content of the bottom flow of the solvent tower. Solvent dehydration is an important unit in PTA manufacture process. Because of the long delay and slow dynamic response of the rectify process, it is very difficult to realize the real-time control of the production quality. The running situation of the control system largely depends on the operators’ technical levels and habits. Although the set can run smoothly in a short time, it cannot reach the optimal state. Great care was taken in both selecting the appropriate set of training examples, which covered all the operating conditions of the plant. According to technologic flow, three parameters (conductance, temperature and pressure) are selected as inputs to the RBF neural network, whereas the output is the relevant acid content. For 175 metrical data, former 100 are chosen to train neural network and the other 75 are used to determine the availability and generalization ability of the neural network.

    To avoid over-learning phenomena, an early stopping approach is used. The parameters in FIA are set as

    Popsize=50, Memorypool=20,

    And the results of training and estimation are shown in Figs.7 and 8. Parameters comparison between different neural netowkrs are presented in Table 4.

    Fig.7 RBFNN training result

    Fig.8 Comparison between NN estimation and corresponding actual data

    Table 4 Parameters comparison between different neural networks

    NetworksNumberofnodesinhiddenlayerMSEMaxrelativeerrorStandardrelativeerrorFIARBF80.11680.01870.0028OLSRBF90.13360.02240.0031ConventionalRBF120.14190.023540.0033

    4 Conclusion

    The simulation results indicate that the proposed methodology is effective and accurate. The parameters of neural network are optimized by using FIA, not only the number of nodes in hidden layer can be reduced, but also the generalization ability can be improved. As the study of combining FIA and RBFNN in soft sensor modeling is emerging recently, there are many aspects we can borrow from the immune system and fuzzy system, and further research is needed.

    [1] Liao G C, Tsao T P. Application embedded chaos search immune genetic algorithm for short-term unit commitment. Electric Power Systems Research, 2004, 71(2): 135-144.

    [2] Fukuda T, Mori K, Tsukiyama M. Parallel search for multi-modal function optimization with diversity and learning of immune algorithm. Artificial Immune Systems and Their Applications, 1999: 210-220.

    [3] Chun J S, Lim, J P, Jung H K, et al. Multisolution optimization of permanent magnet linear synchronous motor for high thrust and acceleration operation. In: Proceedings of International Conference on Electric Machines and Drives (IEMD 99), 1999: 57-59.

    [4] Fortuna L, Rizzo A, Sinatra M, et al. Soft analyzers for a sulfur recovery unit. Control Engineering Practice, 2003, 11(12): 1491-1500.

    [5] Girosi F, Piggio T. Networks and the best approximation property. Biological Cybernetics, 1990, 63(3): 169-179.

    [6] BAO Zhi-jun, WANG Xian-lai. RBF neural networks based on orthogonal sequential genetic algorithm. In: Proceeding of the 22nd Chinese Control Conference, Yichang, China, 2003: 1.

    [7] Michalewicz Z. Genetic algorithms + data structures=evolution program. New York: Springer Verlag, 1994.

    [8] Braberman V A. Verification of real-time design: combining scheduling theory with automatic formal verficaton. Software Engineering Notes, 1999, 24(6): 494-511.

    [9] Shi Y, Eberhart R, Chen Y. Implementation of evolutionary fuzzy system. IEEE Transactions on Fuzzy System, 1999, 7(2): 109-119.

    [10] Thompson J M, Miller S P. Specification-based prototyping for embedded. Software Engineering Notes, 1999, 24(6): 163-180.

    [11] Fierz H. The CIP method: component- and model-based construction of embedded system. Software Engineering Notes, 1999, 24(6): 375-393.

    [12] Lopez-Cruz I L, van Willigenburg L G, van Straten G. Efficient differential evolution algorithms for multimodal optimal control problems. Applied Soft Computing, 2003, 3: 97-122.

    [13] Goldberg D E. Genetic Algorithms in search, optimization and machine learning. MA: Addison-Wesley, 1989.

    模糊免疫算法及其在溶劑脫水塔軟測量建模中的應(yīng)用

    孟 科1, 2, 董朝陽2, 高曉丹1, 王海明1, 李 曉3

    (1. Centre for Intelligent Electricity Networks, The University of Newcastle, Callaghan 2308, Australia;2. School of Electrical and Information Engineering, The University of Sydney, Sydney 2006, Australia;3. 中北大學(xué) 計(jì)算機(jī)與控制工程學(xué)院, 山西 太原 030051)

    本文針對(duì)基本免疫算法收斂速度慢、 計(jì)算精度低等缺點(diǎn), 提出了模糊免疫算法。 該算法引入模糊技術(shù), 對(duì)關(guān)鍵參數(shù)(交叉概率和變異概率)實(shí)現(xiàn)了模糊自適應(yīng)調(diào)整。 通過標(biāo)準(zhǔn)測試函數(shù)實(shí)驗(yàn)結(jié)果的對(duì)比, 其可行性和有效性得到證明, 不僅減輕了原始算法中參數(shù)確定存在的困難, 而且提高了算法的計(jì)算速度和精度。 其次, 本文將模糊免疫算法用于徑向基神經(jīng)網(wǎng)絡(luò)的訓(xùn)練, 并將該神經(jīng)網(wǎng)絡(luò)應(yīng)用于溶劑脫水塔軟測量模型。 仿真實(shí)驗(yàn)證明, 模糊免疫算法優(yōu)化的徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)具有良好的泛化性能。

    免疫算法; 模糊系統(tǒng); 徑向基神經(jīng)網(wǎng)絡(luò); 軟測量

    MENG Ke, DONG Zhao-yang, GAO Xiao-dan, et al. A fuzzy immune algorithm and its application in solvent tower soft sensor modeling. Journal of Measurement Science and Instrumentation, 2015, 6(2): 197-204.

    10.3969/j.issn.1674-8042.2015.02.016

    MENG Ke (ke.meng@newcastle.edu.cn)

    1674-8042(2015)02-0197-08 doi: 10.3969/j.issn.1674-8042.2015.02.016

    Received date: 2015-02-25

    CLD number: TP273+.4 Document code: A

    猜你喜歡
    計(jì)算精度測試函數(shù)徑向
    淺探徑向連接體的圓周運(yùn)動(dòng)
    RN上一類Kirchhoff型方程徑向?qū)ΨQ正解的存在性
    基于PID+前饋的3MN徑向鍛造機(jī)控制系統(tǒng)的研究
    一類無窮下級(jí)整函數(shù)的Julia集的徑向分布
    基于SHIPFLOW軟件的某集裝箱船的阻力計(jì)算分析
    廣東造船(2018年1期)2018-03-19 15:50:50
    具有收縮因子的自適應(yīng)鴿群算法用于函數(shù)優(yōu)化問題
    帶勢函數(shù)的雙調(diào)和不等式組的整體解的不存在性
    約束二進(jìn)制二次規(guī)劃測試函數(shù)的一個(gè)構(gòu)造方法
    單元類型和尺寸對(duì)拱壩壩體應(yīng)力和計(jì)算精度的影響
    鋼箱計(jì)算失效應(yīng)變的沖擊試驗(yàn)
    波多野结衣巨乳人妻| 国产极品天堂在线| 久久99蜜桃精品久久| 在线免费观看的www视频| 日日干狠狠操夜夜爽| 久久精品夜色国产| 国内精品久久久久精免费| 国产黄片美女视频| 亚洲欧美成人综合另类久久久 | 变态另类丝袜制服| 精品久久久久久久末码| 亚洲av电影不卡..在线观看| 黄色配什么色好看| 亚洲成人精品中文字幕电影| 日本一二三区视频观看| 最近最新中文字幕大全电影3| 精品少妇黑人巨大在线播放 | 精品一区二区免费观看| videossex国产| 极品教师在线视频| 国产精品国产高清国产av| 免费看a级黄色片| 亚洲综合色惰| 校园人妻丝袜中文字幕| 91精品国产九色| 国产色婷婷99| 国产精品一区二区性色av| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线观看吧| 国产老妇伦熟女老妇高清| 免费看av在线观看网站| 悠悠久久av| 亚洲欧美日韩东京热| 九九在线视频观看精品| 人体艺术视频欧美日本| 日本黄色视频三级网站网址| 黄色日韩在线| 免费看光身美女| 黄色配什么色好看| av在线亚洲专区| 欧美高清成人免费视频www| 久久久精品大字幕| 人妻久久中文字幕网| 99热这里只有精品一区| 色尼玛亚洲综合影院| 别揉我奶头 嗯啊视频| 午夜精品一区二区三区免费看| 日韩在线高清观看一区二区三区| 国产一级毛片七仙女欲春2| 日韩欧美一区二区三区在线观看| 亚洲五月天丁香| 亚洲av电影不卡..在线观看| 人体艺术视频欧美日本| 91麻豆精品激情在线观看国产| 免费搜索国产男女视频| 天堂影院成人在线观看| 日本黄大片高清| 在线免费观看的www视频| 18禁裸乳无遮挡免费网站照片| 欧美成人精品欧美一级黄| 成人永久免费在线观看视频| 3wmmmm亚洲av在线观看| 在线观看午夜福利视频| 直男gayav资源| 国产白丝娇喘喷水9色精品| 免费观看a级毛片全部| 亚洲av一区综合| 人妻系列 视频| 久久久精品大字幕| 久久久午夜欧美精品| 国产一区二区亚洲精品在线观看| 亚洲国产精品成人久久小说 | 亚洲一区二区三区色噜噜| 亚洲成人av在线免费| 69av精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 春色校园在线视频观看| 久久久久久久午夜电影| 波多野结衣高清无吗| 少妇熟女aⅴ在线视频| 欧美xxxx性猛交bbbb| 亚洲七黄色美女视频| av视频在线观看入口| 色综合站精品国产| 青春草亚洲视频在线观看| 淫秽高清视频在线观看| 男女视频在线观看网站免费| 麻豆成人午夜福利视频| 亚洲一区高清亚洲精品| 天天一区二区日本电影三级| 精品少妇黑人巨大在线播放 | 国产精品久久久久久久电影| 国产伦精品一区二区三区视频9| 97在线视频观看| 日韩亚洲欧美综合| 中出人妻视频一区二区| 丝袜喷水一区| 国产午夜精品一二区理论片| 欧美人与善性xxx| 亚洲欧美日韩高清在线视频| 日本熟妇午夜| 大又大粗又爽又黄少妇毛片口| 国产成人精品一,二区 | 高清日韩中文字幕在线| 狂野欧美激情性xxxx在线观看| 亚洲欧美清纯卡通| 内地一区二区视频在线| 成人午夜精彩视频在线观看| 一个人看的www免费观看视频| 亚洲乱码一区二区免费版| 久久久久久久久大av| 国产精品精品国产色婷婷| 一边摸一边抽搐一进一小说| 成年av动漫网址| 搞女人的毛片| 午夜精品一区二区三区免费看| 黄色配什么色好看| 日韩欧美 国产精品| 亚洲成人精品中文字幕电影| 午夜福利高清视频| 欧美3d第一页| 性欧美人与动物交配| 欧美极品一区二区三区四区| 国产激情偷乱视频一区二区| 成人午夜精彩视频在线观看| 国产探花极品一区二区| 国产精品乱码一区二三区的特点| 国产高清三级在线| 一卡2卡三卡四卡精品乱码亚洲| 最近最新中文字幕大全电影3| 亚洲精华国产精华液的使用体验 | 婷婷六月久久综合丁香| or卡值多少钱| 成人无遮挡网站| 免费在线观看成人毛片| 99在线视频只有这里精品首页| 欧美成人精品欧美一级黄| 亚洲精品乱码久久久v下载方式| 色5月婷婷丁香| 亚洲第一区二区三区不卡| 亚洲精品成人久久久久久| 久久久成人免费电影| 麻豆成人av视频| 亚洲国产色片| 久久久久久久久久久丰满| 内射极品少妇av片p| 免费无遮挡裸体视频| 亚洲中文字幕一区二区三区有码在线看| 伊人久久精品亚洲午夜| 插逼视频在线观看| 精品人妻视频免费看| av免费在线看不卡| 欧美日本亚洲视频在线播放| 成人国产麻豆网| 国产乱人视频| 人人妻人人看人人澡| 一本精品99久久精品77| 可以在线观看毛片的网站| 搞女人的毛片| 12—13女人毛片做爰片一| 99热这里只有精品一区| 久久久久性生活片| 高清在线视频一区二区三区 | av在线播放精品| 秋霞在线观看毛片| 少妇高潮的动态图| 男女边吃奶边做爰视频| 别揉我奶头 嗯啊视频| 精品一区二区三区人妻视频| 观看美女的网站| 亚洲精品乱码久久久v下载方式| 寂寞人妻少妇视频99o| 欧美性猛交黑人性爽| 欧美成人免费av一区二区三区| 亚洲成人av在线免费| 有码 亚洲区| 青春草国产在线视频 | 一级毛片电影观看 | 直男gayav资源| 成人毛片60女人毛片免费| 嫩草影院精品99| 亚洲美女搞黄在线观看| 大型黄色视频在线免费观看| 久久午夜福利片| 青春草视频在线免费观看| 2022亚洲国产成人精品| 日韩av在线大香蕉| 波多野结衣巨乳人妻| 欧美bdsm另类| 能在线免费观看的黄片| 一级黄色大片毛片| or卡值多少钱| 亚洲av成人精品一区久久| 日日啪夜夜撸| 一本久久中文字幕| 搞女人的毛片| 亚洲欧洲日产国产| 欧美极品一区二区三区四区| 久久欧美精品欧美久久欧美| 禁无遮挡网站| 99久久九九国产精品国产免费| 国产精品一区二区三区四区久久| 午夜精品国产一区二区电影 | 免费观看人在逋| 亚洲国产精品国产精品| 国产精品无大码| 性色avwww在线观看| 看黄色毛片网站| 午夜a级毛片| 亚洲欧美日韩高清专用| 网址你懂的国产日韩在线| 99久久中文字幕三级久久日本| 99热6这里只有精品| 国产成人freesex在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内精品一区二区在线观看| 久久久久久久午夜电影| 又黄又爽又刺激的免费视频.| 亚洲真实伦在线观看| 在线观看午夜福利视频| 日韩,欧美,国产一区二区三区 | 我要搜黄色片| 久久精品国产99精品国产亚洲性色| 夫妻性生交免费视频一级片| 少妇的逼水好多| 婷婷精品国产亚洲av| 男女下面进入的视频免费午夜| 日韩精品青青久久久久久| 两个人的视频大全免费| 18禁黄网站禁片免费观看直播| 成人漫画全彩无遮挡| 亚洲欧美日韩高清在线视频| 国产免费男女视频| 国产精品一区二区性色av| 国产精品,欧美在线| 日韩av在线大香蕉| 午夜福利成人在线免费观看| 久久亚洲国产成人精品v| 2021天堂中文幕一二区在线观| 国产一区二区激情短视频| 午夜精品在线福利| 蜜桃亚洲精品一区二区三区| 成人一区二区视频在线观看| 欧美日韩国产亚洲二区| 91aial.com中文字幕在线观看| 国产精品免费一区二区三区在线| 亚洲欧美日韩卡通动漫| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 一级黄色大片毛片| 一区福利在线观看| 亚洲av熟女| 国产精品久久电影中文字幕| 久久99蜜桃精品久久| 亚洲av免费高清在线观看| 天天一区二区日本电影三级| 亚洲av成人av| a级毛色黄片| 免费av不卡在线播放| 精品久久久久久久久av| 国产亚洲欧美98| 免费av不卡在线播放| av在线天堂中文字幕| 国产乱人偷精品视频| 日日啪夜夜撸| 好男人在线观看高清免费视频| 黄色配什么色好看| 欧美日韩乱码在线| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 又爽又黄a免费视频| 国产精品福利在线免费观看| 给我免费播放毛片高清在线观看| 黄色日韩在线| 岛国在线免费视频观看| 97超碰精品成人国产| 日韩欧美三级三区| 亚洲美女搞黄在线观看| 欧美日本亚洲视频在线播放| 亚洲成人久久爱视频| 欧美最新免费一区二区三区| 我要搜黄色片| 18+在线观看网站| 99久久中文字幕三级久久日本| 中出人妻视频一区二区| 免费看a级黄色片| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 欧美一区二区亚洲| kizo精华| 国产精品一区二区三区四区久久| 国产在视频线在精品| 婷婷色综合大香蕉| 又爽又黄无遮挡网站| 91久久精品电影网| 日韩亚洲欧美综合| 成人特级黄色片久久久久久久| 免费看美女性在线毛片视频| 国产精品人妻久久久久久| 亚洲av免费在线观看| 中文字幕制服av| 国产精品久久久久久亚洲av鲁大| 久99久视频精品免费| 高清午夜精品一区二区三区 | 亚洲国产日韩欧美精品在线观看| 成年女人永久免费观看视频| 久久久久久久亚洲中文字幕| 美女黄网站色视频| 中文在线观看免费www的网站| 少妇被粗大猛烈的视频| 欧美成人精品欧美一级黄| 99国产极品粉嫩在线观看| 麻豆国产av国片精品| av天堂中文字幕网| 卡戴珊不雅视频在线播放| 搞女人的毛片| 日韩成人av中文字幕在线观看| 欧美变态另类bdsm刘玥| 色哟哟·www| 老女人水多毛片| 热99在线观看视频| 成人亚洲精品av一区二区| 大型黄色视频在线免费观看| 久久午夜亚洲精品久久| 欧美日韩一区二区视频在线观看视频在线 | 可以在线观看的亚洲视频| 国产亚洲精品久久久久久毛片| 99国产精品一区二区蜜桃av| 国产成人freesex在线| 国产精品精品国产色婷婷| 99久久精品一区二区三区| 在线免费观看的www视频| 欧美高清性xxxxhd video| 亚洲自拍偷在线| 欧美xxxx性猛交bbbb| 两个人的视频大全免费| 成人av在线播放网站| 亚洲国产高清在线一区二区三| 日本爱情动作片www.在线观看| 中国美白少妇内射xxxbb| 一级毛片电影观看 | 国产午夜精品论理片| 有码 亚洲区| 欧美一级a爱片免费观看看| 99热网站在线观看| 精品人妻一区二区三区麻豆| 日韩制服骚丝袜av| 日本三级黄在线观看| 日韩中字成人| 欧美另类亚洲清纯唯美| 日韩精品有码人妻一区| 亚洲人成网站在线播| 亚洲精品成人久久久久久| 女人被狂操c到高潮| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 日本免费一区二区三区高清不卡| 乱系列少妇在线播放| 亚洲一区二区三区色噜噜| 禁无遮挡网站| 成人毛片60女人毛片免费| 久久九九热精品免费| 日本黄色视频三级网站网址| 男人和女人高潮做爰伦理| 人人妻人人澡人人爽人人夜夜 | 97人妻精品一区二区三区麻豆| 国产美女午夜福利| 亚洲国产精品合色在线| 午夜a级毛片| 三级男女做爰猛烈吃奶摸视频| 看非洲黑人一级黄片| 毛片一级片免费看久久久久| 美女被艹到高潮喷水动态| 悠悠久久av| 国产精品精品国产色婷婷| 精品久久久久久成人av| 寂寞人妻少妇视频99o| 国产精品国产三级国产av玫瑰| 人妻系列 视频| 久久久精品欧美日韩精品| 99热全是精品| 高清午夜精品一区二区三区 | 国产 一区精品| 日韩欧美 国产精品| 能在线免费看毛片的网站| 少妇熟女aⅴ在线视频| 综合色av麻豆| 国产综合懂色| 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 国产精品1区2区在线观看.| 亚洲精品国产成人久久av| 级片在线观看| 欧美日本亚洲视频在线播放| 最后的刺客免费高清国语| 久久精品国产亚洲av天美| 久久99蜜桃精品久久| 久久精品夜色国产| 亚洲欧美精品自产自拍| 少妇猛男粗大的猛烈进出视频 | 淫秽高清视频在线观看| 国产乱人偷精品视频| 欧美精品一区二区大全| 免费人成视频x8x8入口观看| 国产伦在线观看视频一区| 国产一区亚洲一区在线观看| 欧美丝袜亚洲另类| 日本黄色视频三级网站网址| 国产黄片视频在线免费观看| 精品久久久久久成人av| 国产精品综合久久久久久久免费| 麻豆国产97在线/欧美| 免费搜索国产男女视频| 能在线免费观看的黄片| 国产大屁股一区二区在线视频| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久久丰满| 国产亚洲精品久久久久久毛片| 久久这里只有精品中国| 亚洲国产精品成人久久小说 | 偷拍熟女少妇极品色| 天堂影院成人在线观看| av天堂中文字幕网| 中文精品一卡2卡3卡4更新| 午夜精品在线福利| 欧美+日韩+精品| 国产精品,欧美在线| 欧美极品一区二区三区四区| 波多野结衣高清无吗| 亚洲,欧美,日韩| 婷婷色综合大香蕉| 日本撒尿小便嘘嘘汇集6| 一进一出抽搐gif免费好疼| 能在线免费看毛片的网站| 日韩在线高清观看一区二区三区| 亚洲精品粉嫩美女一区| 日本在线视频免费播放| 日韩精品青青久久久久久| 毛片女人毛片| 内射极品少妇av片p| 草草在线视频免费看| 韩国av在线不卡| 小说图片视频综合网站| 日韩中字成人| 久久久久久大精品| 一本久久中文字幕| 国模一区二区三区四区视频| 在线播放无遮挡| 亚洲最大成人av| 国产乱人偷精品视频| 精华霜和精华液先用哪个| 国产视频内射| av天堂在线播放| 一进一出抽搐动态| 寂寞人妻少妇视频99o| 免费观看的影片在线观看| 不卡视频在线观看欧美| 久久久精品欧美日韩精品| 99热这里只有是精品50| 久久久久久伊人网av| 99久国产av精品| ponron亚洲| 精品欧美国产一区二区三| 波野结衣二区三区在线| 日韩av在线大香蕉| 国产免费男女视频| 午夜亚洲福利在线播放| 亚洲精品乱码久久久v下载方式| 最好的美女福利视频网| 最近2019中文字幕mv第一页| 国产成人精品久久久久久| 成人漫画全彩无遮挡| 97超视频在线观看视频| 国内精品宾馆在线| av福利片在线观看| 少妇裸体淫交视频免费看高清| 看片在线看免费视频| 少妇的逼好多水| 天堂网av新在线| 国产精品国产三级国产av玫瑰| 久久人妻av系列| 精品一区二区免费观看| 亚洲久久久久久中文字幕| 国产真实伦视频高清在线观看| 美女 人体艺术 gogo| 边亲边吃奶的免费视频| 在现免费观看毛片| 欧美区成人在线视频| 免费人成视频x8x8入口观看| 少妇熟女aⅴ在线视频| av在线播放精品| 成人高潮视频无遮挡免费网站| 日本免费a在线| 熟妇人妻久久中文字幕3abv| av在线天堂中文字幕| 亚洲av中文字字幕乱码综合| 日韩强制内射视频| 中文资源天堂在线| 中国国产av一级| 国产精品不卡视频一区二区| 欧美性感艳星| 久久久久免费精品人妻一区二区| 青春草亚洲视频在线观看| 国产午夜精品论理片| 99九九线精品视频在线观看视频| 日韩成人伦理影院| 成人漫画全彩无遮挡| 两性午夜刺激爽爽歪歪视频在线观看| 免费大片18禁| 熟妇人妻久久中文字幕3abv| 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| 观看美女的网站| 久久精品国产亚洲av涩爱 | 麻豆成人午夜福利视频| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 国产熟女欧美一区二区| 99久久精品国产国产毛片| 悠悠久久av| 亚洲四区av| 精品日产1卡2卡| 久久99蜜桃精品久久| 色视频www国产| 国产一区二区三区av在线 | 男人舔奶头视频| 中文字幕精品亚洲无线码一区| 日日啪夜夜撸| 久久草成人影院| 久久精品国产亚洲av香蕉五月| 国产又黄又爽又无遮挡在线| 自拍偷自拍亚洲精品老妇| 成人二区视频| www日本黄色视频网| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播放欧美日韩| 一本久久精品| 悠悠久久av| 人妻系列 视频| 亚洲成人中文字幕在线播放| 国产精品蜜桃在线观看 | 亚洲五月天丁香| 成年版毛片免费区| 一本久久中文字幕| 不卡一级毛片| 在线免费十八禁| 91午夜精品亚洲一区二区三区| 一级黄片播放器| 亚洲乱码一区二区免费版| 少妇熟女欧美另类| 精华霜和精华液先用哪个| 成人亚洲精品av一区二区| 九九久久精品国产亚洲av麻豆| 天堂影院成人在线观看| 精品午夜福利在线看| 久久久久久久久中文| 中文字幕熟女人妻在线| 亚洲在久久综合| 亚洲国产精品成人综合色| 熟女电影av网| 久久久色成人| 国产爱豆传媒在线观看| 精品无人区乱码1区二区| 日本五十路高清| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 天天躁日日操中文字幕| 人人妻人人澡人人爽人人夜夜 | 午夜视频国产福利| 超碰av人人做人人爽久久| 亚洲欧美日韩东京热| 久久6这里有精品| 亚洲色图av天堂| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看| 国产视频首页在线观看| 亚洲欧美日韩东京热| 18禁在线无遮挡免费观看视频| 一级黄色大片毛片| 91久久精品国产一区二区成人| 欧美最新免费一区二区三区| 男人和女人高潮做爰伦理| 亚洲精品乱码久久久久久按摩| 极品教师在线视频| 久久久成人免费电影| 久久人妻av系列| 久久精品国产清高在天天线| 国产在视频线在精品| 97超视频在线观看视频| 联通29元200g的流量卡| 18禁在线播放成人免费| 成年版毛片免费区| 99久久无色码亚洲精品果冻| 欧美日韩综合久久久久久| 精品欧美国产一区二区三| 欧美又色又爽又黄视频| 国产v大片淫在线免费观看| 精品一区二区免费观看| 99热这里只有是精品50| 国产视频首页在线观看| 九草在线视频观看| 久久国内精品自在自线图片| 欧美精品一区二区大全| 国产亚洲欧美98| 久久亚洲精品不卡| 久久久久久久亚洲中文字幕| 久久久精品94久久精品| 99精品在免费线老司机午夜| 欧美一区二区亚洲| 亚洲图色成人| 波多野结衣高清作品| 欧美日韩国产亚洲二区| 一区二区三区免费毛片| 国产高清三级在线| 一级毛片电影观看 |