• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zirconium-mediated Synthesis and Crystal Structure of 3,6-Diiodo-4,5-dialkyl-phthalic Acid Dimethyl Ester

    2015-03-02 07:26:44LIXuDongWANGHuiLIJunQiuMENYiCanQUHongMei
    結(jié)構(gòu)化學(xué) 2015年9期

    LI Xu-Dong WANG Hui LI Jun-Qiu MEN Yi-Can QU Hong-Mei

    (Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Department of Pharmaceutical Engineering,School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China)

    1 INTRODUCTION

    Introducing different substituents efficiently to the ring to get desired benzene derivatives has become a research hotspot of organic chemistry. Poly-substituted benzene derivatives are important organic compounds which have great theoretical significance in synthetic chemistry, organic chemistry methodologies and other numerous applications[1-3]. Reppe[4,5]firstly discovered the Ni-catalyzed cyclization of ethyne affording benzene in 1948, which developed a new method to synthesize benzene derivatives.Subsequently, transition metal-mediated cyclotrimerization of alkynes had been extensively studied by Vollhardt, Schore, Yamamoto, et al[6-11].However, when unsymmetrical alkynes were used, a mixture of several benzene derivatives was obtained[12,13]. Therefore, one of the major problems for the reactions is the difficulty in region-selective intermolecular cyclotrimerization with unsymmetrical alkynes to give multi-substituted benzene derivatives[14].

    The pioneering studies on zirconocene chemistry from Takahashi, Xi and Liu et al.[15-21]groups were significant because benzene derivatives could be synthesized by intermolecular coupling of three alkynes mediated by zirconocene. Recently, we have reported the zirconocene-mediated synthesis of novel poly-substituted benzene derivatives from alkynes[22,23]. However, there are no reports on the preparation of 3,6-diiodo-4,5-dialkyl-phthalic acid dimethyl esters.

    On the basis of our previous studies, a novel series of hexasubstituted benzene derivatives,3,6-diiodo-4,5-dialkyl-phthalic acid dimethyl esters,were synthesized via cycloaddition of two TMS-substituted alkynes and dimethyl acetylenedicarboxylate, which was mediated by zirconocene.After diiodination, three new compounds of 3,6-diiodo-4,5-dimethyl-phthalic acid dimethyl ester(3a), 3,6-diiodo-4,5-dipropyl-phthalic acid dimethyl ester (3b) and 3,6-diiodo-4,5-dibutyl-phthalic acid dimethyl ester (3c) were obtained in high regioselectivity and yields, and their crystal structures were determined by single-crystal X-ray diffraction to confirm the configurations. By this means, specific substituents can be introduced to the benzene ring efficiently by changing the types of alkynes. Being reported as a critical raw material of oligo and polymeric phenylene ethynylene molecules(OPEs)[24], these para-diiodobenzene derivatives are widely used as molecular wires[25]and rigid scaffolds in the construction of nanometric architectures[26,27], dendrimers[28], foldamers[29]and sensors[30–32]. In addition, they can also decorate CBP derivatives applied in organic light-emitting diodes(OLEDs)[33,34].

    2 EXPERIMENTAL

    2. 1 Materials and instruments

    All organic solvents and materials for synthesis were of reagent grade and used without further purification.1H-NMR spectra were acquired on a BRUKER AVANCE III 400MHz and13C-NMR on a 100MHz spectrometer in CDCl3solutions. X-ray diffractions were performed using a Rigaku Saturn CCD area detector diffractometer.

    2. 2 Synthesis of 3,6-diiodo-4,5-dimethyl(dipropyl,dibutyl)-phthalic acid dimethyl esters (3a, 3b, 3c)

    The title three new compounds were synthesized as shown in Scheme 1.

    Scheme 1. Synthetic procedure of 3,6-diiodo-4,5-dialkyl-phthalic acid dimethyl esters

    2. 2. 1 Synthesis of 3,6-bis(trimethylsilyl)-4,5-dimethyl(dipropyl,dibutyl)-phthalic acid dimethyl esters (2a, 2b, 2c)

    The compounds 2a, 2b, and 2c were synthesized according to our previous work[35], as shown in Scheme 1. A solution of Cp2ZrCl2(365 mg, 1.25 mmol) in 10 mL of THF was cooled to -78 ℃ , and then n-BuLi (1.60 M hexane solution, 1.56 mL,2.50 mmol) was added. After stirring for 15 min,the solution was warmed to –40 ℃ for 30 min and then recooled to –78 ℃ . After 15 min, 1-trimethylsilyl-1-propyne (300 μL, 2.0 mmol) was added to the mixture, and it was warmed to room temperature. After 3 h, the solution was cooled to 0 ℃,and then CuCl (298 mg, 3.0 mmol) and DMAD(0.48 mL, 4.0 mmol) were added. The solution was warmed to room temperature and stirred for 6 h.The mixture was quenched with 3 N HCl and extracted with ethyl acetate. The combined organic phase was washed with water, saturated aqueous NaHCO3solution, and brine. The solution was dried over anhydrous Na2SO4. The solvent was evaporated, and the resulting brown viscous oil was purified by a flash chromatography (silica gel, hexane : ethyl acetate = 5:1 as eluent) to afford the title compounds 1a and 2a as colorless solids. When Dewar benzene 1a was heated in toluene at 100 ℃ for 3 h,benzene 2a was obtained in quantitative yield. So,the title compound 2a was obtained with a total isolated yield of 52%.

    2a:1H NMR (CDCl3, Me4Si) δ: 0.32 (s, 18 H),2.37 (s, 6 H), 3.80 (s, 6 H).

    Preparation of 3,6-bis(trimethylsilyl)-4,5-dipropyl-phthalic acid dimethyl ester (2b). The synthesis was carried out according to the procedure of 2a with 1-trimethylsilyl-1-pentyne (366 μL, 2.0mmol)as a starting material.

    2b: pale-yellow solid; 61% total isolated yield.1H NMR (CDCl3, Me4Si) δ: 0.31 (s, 18 H), 1.01 (t, J =7.2 Hz, 6 H), 1.34~1.44 (m, 4 H), 2.77~2.81 (m, 4 H), 3.80 (s, 6 H).

    Preparation of 3,6-bis(trimethylsilyl)-4,5-dibutylphthalic acid dimethyl ester (2c). The synthesis was carried out according to the procedure of 2a with 1-trimethylsilyl-1-hexyne (404 μL, 2.0mmol) as a starting material.

    2c: pale-yellow oil; 65% total isolated yield.1H NMR (CDCl3, Me4Si) δ: 0.31 (s, 18 H), 0.95 (t, J =7.2 Hz, 6H), 1.31~1.46(m, 8 H), 2.80~2.84 (m,4H), 3.80 (s, 6 H).

    2. 2. 2 Synthesis of 3,6-diiodo-4,5-dimethyl(dipropyl,dibutyl)-phthalic acid dimethyl ester (3a, 3b, 3c)

    A solution of 4,5-dimethyl-3,6-bis(trimethylsilyl)phthalic acid dimethyl ester (2a, 367 mg, 1 mmol) in 5 mL of CH2Cl2was cooled to 0 ℃ with stirring, and a solution of ICl in dichloromethane(2.5 mL, 2.5 mmol) was added dropwise over 10 min. The reaction was kept at 0 ℃ for 6 h. The mixture was quenched with 10w% aqueous NaOH solution, and extracted with CH2Cl2. The combined organic layer was dried over MgSO4and evaporated to dryness. The residue was purified by a flash column chromatography (silica gel, hexane:ethyl acetate = 10:1 as eluent) to afford the title compound 3a as white solid (85% isolated yield).

    3a:1H NMR (CDCl3) δ: 2.67(s, 6H), 3.91(s, 6H).

    3b: colorless solid, 89% isolated yield.1H NMR(CDCl3) δ: 1.07 (t, J = 7.5 Hz, 6 H), 1.50~1.60 (m,4 H), 2.89~2.95 (m, 4 H), 3.89 (s, 6 H);13C NMR(CDCl3) δ: 14.3, 22.9, 42.1, 53.0, 100.4, 138.2,146.1, 167.6.

    3c: white solid, 80% isolated yield.1H NMR(CDCl3) δ: 1.01(t, J = 6.4 Hz, 6H), 1.44~1.58(m,8H), 2.92~3.03(m,4H), 3.92(s, 6H).

    2. 3 X-ray crystallographic analysis

    Compounds 3a, 3b and 3c were recrystallized by hexane and ethyl acetate to give colorless single crystals suitable for X-ray analysis.

    Single crystals of the title compounds 3a(0.24mm × 0.12mm × 0.10mm), 3b (0.20mm ×0.18mm × 0.12mm) and 3c (0.26mm × 0.12mm ×0.10mm) were mounted on glass fibers in a random orientation for single crystal diffraction. The data were collected at 133(2) K on a Rigaku Saturn CCD area-detector diffractometer equipped with a graphite-monochromatic Mo-Kα (λ = 0.71073 ?)radiation by using an ω scan mode. The structure was solved by direct methods using SHELXS-97 program[36]and refined by full-matrix least-squares on F2with SHELXL-97 program[37]package. All non-hydrogen atoms were refined anisotropically,and hydrogen atoms were added according to theoretical models. For compound 3a, a total of 6953 reflections were collected in the range of 2.46≤θ≤27.83o (–10≤h≤9, –9≤k≤12, –14≤l≤14),and 3238 were independent with Rint= 0.0351, of which 2644 were observed with I > 2σ(I) and used in the succeeding refinements. The final R = 0.0229 and wR = 0.0547 (w = 1/[σ2(Fo2) + (0.0175P)2+0.0000P], where P = (Fo2+ 2Fc2)/3), S = 1.014,(Δ/σ)max= 0.001, (Δρ)max= 0.730 and (Δρ)min=–0.720 e/?3. For compound 3b, a total of 10618 reflections were collected in the range of 2.07≤θ≤30.03o (–13≤h≤13, –13≤k≤14, –15≤l≤14) by using an ω scan mode with 5339 independent ones(Rint= 0.0354), of which 3971 were observed with I > 2σ(I) and used in the succeeding refinements.The final refinement give R = 0.0428, wR = 0.1072(w = 1/[σ2(Fo2) + (0.0420P)2+ 2.8398P], where P =(Fo2+ 2Fc2)/3), S = 1.115, (Δ/σ)max= 0.004, (Δρ)max= 1.968 and (Δρ)min= –1.604 e/?3. For compound 3c, 55241 total reflections were collected in the range of 1.54≤θ≤27.88o (–34≤h≤34, –11≤k≤11, –33≤l≤33) by using an ω scan mode with 14208 independent ones (Rint= 0.0458), of which 13056 were observed with I > 2σ(I) and used in the succeeding refinements. The final refinement give R= 0.0424, wR = 0.0766 (w = 1/[σ2(Fo2) + (0.0222P)2+ 8.7030P], where P = (Fo2+ 2Fc2)/3), S = 1.154,(Δ/σ)max= 0.003, (Δρ)max= 2.429 and (Δρ)min=–2.289 e/?3.

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis

    The strategy for the synthesis is shown in Scheme 1.The reaction of Cp2Zr(II) species with silylalkynes proceeds with excellent regioselectivity to afford the corresponding 2,5-disilylsubstituted zirconacyclopenta dienes as single products in high yields.Cycloaddition reaction of the 2,5-disilylzirconacyclopentadiene with an internal alkyne can afford para-disilylbenzene. Our group had reported the synthesis of a series of 1,2,4,5-tetrasubstituted benzenes by the removal of introduced silyl groups[22]. Herein, the 3,6-diiodo-4,5-dialkyl-phthalic acid dimethyl esters were obtained by further iodination. Iodine, N-iodosuccinimide and iodine monochloride were demonstrated in this iodination process. When N-iodosuccinimide was used, no reaction occurred. Specially, the reaction proceeds as Scheme 2 when iodine was treated as iodination reagent. A desilylation product was got in 25%NMR yield. It suggests that iodine electric polarization is not strong enough for this iodination reaction. Consequently, when iodine monochloride was employed, the reaction proceeds almost completely with more than 80% isolated yield.

    Scheme 2. Iodination of para-disilylbenzene by iodine

    3. 2 X-ray crystallographic analysis

    The crystal structures of the three compounds were determined and studied. The crystals of the new three compounds are colorless and stable in air at room temperature. Fig. 2 depicts the molecular structures of the title three compounds.

    The 3,6-diiodo-4,5-dimethyl-phthalic acid dimethyl ester (3a) crystallizes in the triclinic P1 space group. The 3,6-diiodo-4,5-dipropyl-phthalic acid dimethyl ester (3b) crystallizes in the triclinic Pspace group. And the 3,6-diiodo-4,5-dibutyl-phthalic acid dimethyl ester (3c) crystallizes in the monoclinic P21/c space group.

    Selected bond lengths and bond angles for the compound are given in Tables 1~3 and Fig. 2.

    Fig 1. 1H NMR and 13C NMR of the three title compounds

    Fig. 2. Crystal structures of the title three compounds

    For the three title compounds, the bond lengths of C–I were 2.100(3) and 2.108(3) ? for 3a, 2.107(5)and 2.112(5) ? for 3b, and 2.106(4) and 2.110(4) ? for 3c, which are slightly longer than those in 2,5-dibenzoyl-1,4-diiodobenzene (2.091(9) and 2.099(9) ?)[38]. The lengths of C–I and C–O bonds of one of the three compounds agree with the corresponding values in the other two molecules. It seems that the bond lengths are influenced by the steric hindrance of substituents on the benzene ring.

    In the benzene ring of compound 3a, the internal angles at the two carbon atoms differ by 2.7°(C(1)–C(2)–C(3) = 118.9(3)° and C(6)–C(1)–C(2) =121.6(3)°), 0.6° (C(1)–C(2)–C(3) = 118.9(3)° and C(1)–C(6)–C(5) = 119.5(3)°) and 2.1° (C(6)–C(1)–C(2) = 121.6(3)° and C(1)–C(6)–C(5) =119.5(3)°). In the benzene ring of compound 3b, the internal angles at the two carbon atoms differ by 2.3° (C(7)–C(6)–C(5) = 119.1(4)° and C(8)–C(7)–C(6) = 121.4(4)°), 0.7° (C(3)–C(8)–C(7) = 120.7(4)°and C(8)–C(7)–C(6) = 121.4(4)°) and 1.6°(C(7)–C(6)–C(5) = 119.1(4)° and C(3)–C(8)–C(7) =120.7(4)°). In the benzene ring of compound 3c, the internal angles at the two carbon atoms differ by 4.2° (C(1)–C(6)–C(5) = 122.0(4)° and C(6)–C(5)–C(4) = 117.8(4)°), 2.0° (C(6)–C(1)–C(2) = 119.8(3)°and C(6)–C(5)–C(4) = 117.8(4)°) and 2.2°(C(1)–C(6)–C(5) = 122.0(4)° and C(6)–C(1)–C(2) =119.8(4)°), which are expected for their different types.

    Intermolecular hydrogen bonding is important supramolecular force to link the layers into a 3D supramolecular structure. Non-classical hydrogenbond parameters and symmetry codes for different interactions are given in Table 4 and Fig. 3. In compound 3a, non-classical hydrogen bonding interactions linked by atom C(8) in the molecule at(x, y, z) serve as a hydrogen-bond donor via H(8B),to atom O(2) in the molecule at (–x, –y, 2–z ).Similarly, atom C(11) at (x, y, z) acts as a hydrogen donor via H(11C), to atom O(1) at (1–x, –y, 1–z ).In compound 3b, atom C(10) at (x, y, z) serves as a hydrogen-bond donor via H(10B), to atom O(2) in the molecule at (–x, 1–y, 1–z ). Atom C(13) at (x, y,z) serves as a hydrogen-bond donor via H(13B), to atom O(2) in the molecule at (1–x, 2–y, 2–z ). In compound 3c, atom C(53) at (x, y, z) acts as a hydrogen-bond donor via H(53C), to atom O(1) in the molecule at (x, 1/2–y, –1/2+z).

    Fig. 3. Packing diagram of the title compounds, showing the hydrogen bonds (dashed lines)

    In addition, in the crystal structure, the neighboring layers are linked by non-classical intermolecular C–H…O hydrogen bonds of ester oxygen atoms with C…O distances of 3.512(4) and 3.320(4)? for compound 3a, 3.224(10) and 3.497(9) ? for compound 3b, and 3.328(6) ? for compound 3c,respectively (Table 4). However, their contribution to the overall lattice energy must be very small. Thus the intermolecular hydrogen bonding plays an important role in stabilizing the structure.

    4 CONCLUSION

    In conclusion, we provide a method for the preparation of para-diiodobenzene derivatives via cycloaddition of two TMS-substituted alkynes and dimethyl acetylenedicarboxylate with zirconocene and sequentially diiodination in high regionselectivity and yields. Crystal structures were determined and analyzed by single-crystal X-ray diffraction. In addition, these novel compounds can be derived to give a series of compounds which are used as molecular wires, foldamers, sensors and luminescent materials.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Compound (3a)

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) for Compound (3b)

    Angle (°) Angle (°)C(2)–O(1)–C(1) 115.1(4) C(7)–C(6)–C(11) 119.5(4)C(3)–C(4)–I(1) 117.1(3) C(7)–C(8)–C(9) 121.7(4)C(3)–C(8)–C(7) 120.7(4) C(8)–C(3)–C(2) 117.9(4)C(3)–C(8)–C(9) 117.5(4) C(8)–C(3)–C(4) 118.1(4)C(4)–C(3)–C(2) 123.9(4) C(8)–C(7)–C(6) 121.4(4)C(4)–C(5)–C(6) 118.2(4) C(8)–C(7)–I(2) 117.5(3)C(4)–C(5)–C(14) 120.9(4) C(9)–O(4)–C(10) 115.1(5)C(5)–C(4)–C(3) 122.4(4) C(13)–C(12)–C(11) 111.1(5)C(5)–C(4)–I(1) 120.2(3) C(16)–C(15)–C(14) 111.4(5)C(5)–C(6)–C(11) 121.4(4) O(1)–C(2)–C(3) 111.4(4)C(5)–C(14)–C(15) 114.8(4) O(2)–C(2)–O(1) 124.4(5)C(6)–C(5)–C(14) 120.8(4) O(2)–C(2)–C(3) 124.2(5)C(6)–C(7)–I(2) 121.0(3) O(3)–C(9)–O(4) 124.7(5)C(6)–C(11)–C(12) 114.4(4) O(3)–C(9)–C(8) 124.2(5)C(7)–C(6)–C(5) 119.1(4) O(4)–C(9)–C(8) 111.0(4)

    Table 3. Selected Bond Lengths (?) and Bond Angles (°) for Compound (3c)

    Table 4. Non-classical Hydrogen Bond Geometries (?, °) for Compounds 3a, 3b and 3c

    Symmetry codes: (i) –x, –y, 2–z; (ii) 1–x, –y, 1–z; (iii) –x, 1–y, 1–z; (iV) 1–x, 2–y, 2–z; (V) x, 1/2–y, –1/2+z

    (1) Batool, T.; Rasool, N.; Gull, Y.; Noreen, M.; Nasim, F. H.; Yaqoob, A.; Zubair, M.; Rana, U. A.; Khan, S. U. U.; Jaafar, H. Z. E. A convenient method for the synthesis of (prop-2-ynyloxy)benzene derivatives via reaction with propargyl bromide, their optimization, scope and biological Evaluation.PLoS ONE 2014, 9, 12–19.

    (2) Cai, S. Q.; Ye, J.; Xu, F.; Li, C.; Yang, H.; Wan, D.; Gao, X. L. Application of benzene derivatives in preparation of analgesic and anti-inflammatory agents. Faming Zhuanli Shenqing 2014, CN 104116723A.

    (3) Kim, H. M.; Seo, M. S.; Jeon, S. J.; Cho, B. R. Two-photon absorption properties of hexa-substituted benzene derivatives. Comparison between dipolar and octupolar molecules. Chem. Commun. 2009, 7422–7424.

    (4) Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Cyclizing polymerization of acetylene. I. Cyclo-octatetraene. Justus Liebigs Ann. Chem. 1948, 560,1–92.

    (5) Reppe, W.; Schweckendiek, W. J. Cyclisierende polymerisation von acetylen III benzol, benzolderivate und hydroaromatische verbindungen. Justus Liebigs Ann. Chem. 1948, 560, 104–116.

    (6) Vollhardt, K.; Peter, C. Transition-metal-catalyzed acetylene cyclizations in organic synthesis. Acc. Chem. Res. 1977, 10, 1–8.

    (7) Vollhardt, K.; Peter, C. Cobalt-mediated [2 + 2+ 2]-cyclo-additions: a maturing synthetic strategy. Angew. Chem. Int. Ed. Engl. 1984, 23, 539–556.

    (8) Schore, N. E. Transition-metal-mediated cyclo-addition reactions of alkynes in organic synthesis. Chem. Rev. 1988, 88, 1081–1119.

    (9) Schore, N. E.; Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis. Pergamon Press: Oxford 1991, 5, 1129–1162.

    (10) Saito, S.; Yamamoto, Y. Recent advances in the transition-metal-catalyzed region-selective approaches to poly-substituted benzene derivatives.Chem. Rev. 2000, 100, 2901–2915.

    (11) Yamamoto, Y. Recent advances in intra-molecular alkyne cyclotrimerization and its applications. Curr. Org. Chem. 2005, 9, 503–519.

    (12) Sauer, J. C.; Cairns, T. L. A mechanism study of the 2,4,6-heptatrienenitrile synthesis from acrylonitrile and acetylene. J. Am. Chem. Soc. 1957, 79,2659–2660.

    (13) Donda, A. F.; Moretti, G. Aromatization reactions of acetylenic hydrocarbons in the presence of the (Ph3P)2NiCl2-NaBH4catalyst. J. Org. Chem.1966, 31, 985–987.

    (14) Wakatsuki, Y.; Kuramitsu, T.; Yamazaki, H. Cobaltacyclopentadiene complexes as starting materials in the synthesis of substituted benzenes,cyclohexadienes, thiophenes, selenophenes and pyrroles. Tetrahedron Lett. 1974, 4549–4552. Perduon Press. Printed in Great Britain.

    (15) Takahashi, T.; Xi, Z. F.; Yamazak, A.; Liu, Y. H.; Nakajima, K.; Kotore, M. Cycloaddition reaction of zirconacyclopentadienes to alkynes: highly selective formation of benzene derivatives from three different alkynes. J. Am. Chem. Soc. 1998, 120, 1672–1680.

    (16) Takahashi, T.; Li, Y. Z. Titanium and zirconium in organic synthesis. I. Marek eds., Wiley-VCH, Weinheim 2002, 50–85.

    (17) Xi, Z. F.; Zhang, W. X. Synthetic methods for multiply substituted butadiene-containing building blocks. Synlett. 2008, 17, 2557–2570.

    (18) Xi, Z. F.; Li, Z. P. Construction of carbocycles via zirconacycles and titanacycles. Topics in Organometallic Chem. 2005, 8, 27–56.

    (19) Chen, C.; Xi, C. J.; Jiang, Y. F.; Hong, X. Y. 1,1-Cycloaddition of oxalyl dichloride with ialkenylmetal compounds: formation of cyclopentadienone derivatives by the reaction of 1,4-dilithio-1,3-dienes or zirconacyclopentadienes with oxalyl chloride in the presence of CuCl. J. Am. Chem. Soc.2005, 127, 8024–8025.

    (20) Liu, Y. H.; Gao, H. J.; Zhou, L. S. Highly stereoselective synthesis of TMS-, alkyl-, or aryl-substituted cis-[3]cumulenols via α-alkynylated zirconacyclopentenes. Angew. Chem. Int. Ed. 2006, 45, 4163–4167.

    (21) Xi, Z. F.; Takahashi, T. Strategy for selective one-pot aromatization of three different alkynes by organometallic compounds. Acta Chimica Sinica 2000, 58, 1177–1185.

    (22) Li, S.; Qu, H. M.; Zhou, L. S.; Kamo, K.; Guo, Q. X.; Shen, B, J.; Takahashi, T. Zircomium-mediated selective synthesis of 1,2,4,5-tetrasubstituted benzenes from two sily-substituted alkynes and one internal alkyne. Organic Letters 2009, 11, 3318–3321.

    (23) Zhang, J.; Qu, H. M.; Zhang, Z. Y.; Zhou, L. S. Diethyl 4,5-diphenyl-3,6-bis(trimethylsilyl)benzene-1,2-dicarboxylate. Acta Cryst. 2011, E67,o1864.

    (24) Zhou, C. Z.; Liu, T. X.; Xu, J. M.; Chen, Z. K. Synthesis, characterization, and physical properties of monodisperse oligo(p-phenyleneethynylene)s.Macromolecules 2003, 36, 1457–1464

    (25) Tour, J. M. Molecular electronics. synthesis and testing of components. Acc. Chem. Res. 2000, 33, 791–804.

    (26) Mayor, M.; Didschies, C. A giant conjugated molecular ring. Angew. Chem., Int. Ed. 2003, 42, 3176–3179.

    (27) Lehmann, M.; Levin, J. Rigid phenylene ethynylene units linked by a V-shaped centre. an approach to biaxial nematogens. Mol. Cryst. Liq. Cryst.2004, 411, 1315–1323.

    (28) Beinhoff, M.; Karakaya, B.; Schluter, A. D. Synthesis of low generation phenylenealkylene dendrons as nonpolar building blocks for a dendrimer construction set. Synthesis 2003, 79–90.

    (29) Ray, C. R.; Moore, J. S. Supramolecular organization of foldable phenylene ethynylene oligomers. Adv. Polym. Sci. 2005, 177, 91–149.

    (30) Bunz, U. H. F. Synthesis and structure of PAEs. Adv. Polym. Sci. 2005, 177, 1–52.

    (31) Hill, E. H.; Zhang, Y.; Evans, D. G.; Whitten, D. G. Enzyme-specific sensors via aggregation of charged p-phenylene ethynylenes. ACS Applied Materials & Interfaces (2015), Ahead of Print.

    (32) Hill, E. H.; Zhang, Y.; Whitten, D. G. Aggregation of cationic p-phenylene ethynylenes on laponite clay in aqueous dispersions and solid films. J.Colloid Interface Sci. (2014), http://dx.doi.org/10.1016/j.jcis.2014.12.006.

    (33) Wang, Y.; Wang, D. X.; Xu, C. H.; Wang, R.; Han, J. J. Click polymerization: synthesis of novel σ-π conjugated organosilicon polymers. Journal of Organometallic Chemistry 2011, 696, 3000–3005.

    (34) Deng, L. J.; Wang, X. Z.; Zhang, Z. C.; Li, J. Y. Durene-decorated CBP derivatives as phosphorescent hosts and exciton-blocking materials for efficient blue OLEDs. J. Mater. Chem. 2012, 22, 19700–19708.

    (35) Li, S.; Qu, H.; Zhou, L.; Kanno, K. I.; Guo, Q.; Shen, B.; Takahashi, T. Zirconium-mediated selective synthesis of 1,2,4,5-tetrasubstituted benzenes,from two silyl-substituted alkynes and one internal alkyne. Org. Lett. 2009, 11, 3318–3321.

    (36) Sheldrick, G. M. S HELXS-97, Program for Crystal Structure Solution. University of G?ttingen, Germany 1997.

    (37) Sheldrick , G. M. SHELXL-97, Program for Crystal Structure Refinement. university of G?ttingen, Germany 1997

    (38) Xiao, Q.; Liu, R.; Chen, H. B.; Chang, J.; Zhu, H. J. Synthesis and crystal structure of 2,5-dibenzoyl-1,4diiodobenzene. JOURNAL OF NAN JING UNIVERSITY OF TECHNOLOGY (NaturalScience Edition) 2010, 32, 81–85.

    or卡值多少钱| av超薄肉色丝袜交足视频| 久久国产精品人妻蜜桃| 日韩欧美一区二区三区在线观看| 国产亚洲av高清不卡| 日韩欧美国产在线观看| 美女扒开内裤让男人捅视频| 亚洲一码二码三码区别大吗| 亚洲精品色激情综合| 天天一区二区日本电影三级| 级片在线观看| 成人手机av| 1024视频免费在线观看| 国产亚洲av嫩草精品影院| 亚洲人成电影免费在线| av超薄肉色丝袜交足视频| 色精品久久人妻99蜜桃| 亚洲人成77777在线视频| 久久精品综合一区二区三区| 国产精品av视频在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 九色成人免费人妻av| 18禁黄网站禁片免费观看直播| 国产精品久久久av美女十八| 一级毛片女人18水好多| 黄色视频不卡| 精品国产亚洲在线| 国产精品电影一区二区三区| 操出白浆在线播放| 国产亚洲欧美98| 亚洲欧美精品综合久久99| 久久久久精品国产欧美久久久| 两个人看的免费小视频| 中文资源天堂在线| 妹子高潮喷水视频| 国产成人系列免费观看| 九色成人免费人妻av| 我要搜黄色片| 国产精华一区二区三区| 美女扒开内裤让男人捅视频| 超碰成人久久| 一进一出抽搐gif免费好疼| 一级a爱片免费观看的视频| 亚洲男人天堂网一区| 欧美日韩亚洲综合一区二区三区_| 99riav亚洲国产免费| 99久久无色码亚洲精品果冻| 国产熟女午夜一区二区三区| 国内揄拍国产精品人妻在线| 久久精品影院6| 国产高清有码在线观看视频 | 精品人妻1区二区| 国产蜜桃级精品一区二区三区| 久久久水蜜桃国产精品网| 欧美日韩亚洲综合一区二区三区_| 两个人视频免费观看高清| 午夜福利视频1000在线观看| 桃色一区二区三区在线观看| 久久久精品大字幕| svipshipincom国产片| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆 | 日韩欧美三级三区| 免费看日本二区| 亚洲18禁久久av| 欧美 亚洲 国产 日韩一| 成年女人毛片免费观看观看9| www日本黄色视频网| 757午夜福利合集在线观看| 亚洲欧美日韩高清在线视频| 欧美在线一区亚洲| 国产高清激情床上av| 动漫黄色视频在线观看| 亚洲国产日韩欧美精品在线观看 | 欧美黄色片欧美黄色片| 伊人久久大香线蕉亚洲五| 又黄又粗又硬又大视频| aaaaa片日本免费| 成人手机av| 最近最新免费中文字幕在线| 亚洲自拍偷在线| 一区二区三区国产精品乱码| 午夜免费激情av| a级毛片在线看网站| 在线观看一区二区三区| 欧美日韩一级在线毛片| 国产av不卡久久| 亚洲 国产 在线| 非洲黑人性xxxx精品又粗又长| 女人被狂操c到高潮| 男人的好看免费观看在线视频 | 色在线成人网| 成年版毛片免费区| 精品久久久久久久人妻蜜臀av| 母亲3免费完整高清在线观看| 免费看a级黄色片| 亚洲中文字幕一区二区三区有码在线看 | 手机成人av网站| 久久久久精品国产欧美久久久| 麻豆国产97在线/欧美 | 看黄色毛片网站| 国产熟女午夜一区二区三区| 国产一区在线观看成人免费| 久久香蕉精品热| 757午夜福利合集在线观看| 啦啦啦韩国在线观看视频| 国产成人影院久久av| 我要搜黄色片| 一个人免费在线观看的高清视频| 久久亚洲精品不卡| 三级国产精品欧美在线观看 | 一个人免费在线观看的高清视频| 亚洲九九香蕉| 国产成人影院久久av| 男人的好看免费观看在线视频 | bbb黄色大片| 亚洲成人久久爱视频| 亚洲av电影不卡..在线观看| 脱女人内裤的视频| 午夜两性在线视频| 美女午夜性视频免费| 女生性感内裤真人,穿戴方法视频| 听说在线观看完整版免费高清| 两性夫妻黄色片| 欧美丝袜亚洲另类 | 成人18禁在线播放| 日日夜夜操网爽| 亚洲专区国产一区二区| 欧美在线黄色| 久久久久久久午夜电影| 99在线视频只有这里精品首页| 99热这里只有精品一区 | 日韩高清综合在线| 国产精品 国内视频| 男女视频在线观看网站免费 | 欧美黑人精品巨大| 男人舔奶头视频| 色av中文字幕| 成人av在线播放网站| 在线观看美女被高潮喷水网站 | 操出白浆在线播放| 国产精品日韩av在线免费观看| 老熟妇乱子伦视频在线观看| 99精品在免费线老司机午夜| 日本黄大片高清| 黄片小视频在线播放| 亚洲精品中文字幕在线视频| 亚洲欧洲精品一区二区精品久久久| 久久香蕉激情| 国产精品一及| 无限看片的www在线观看| 丝袜人妻中文字幕| 最近视频中文字幕2019在线8| 亚洲av成人av| 亚洲精品色激情综合| 日韩欧美三级三区| 他把我摸到了高潮在线观看| 五月伊人婷婷丁香| 国产精品亚洲一级av第二区| 欧美不卡视频在线免费观看 | 日本三级黄在线观看| 精品免费久久久久久久清纯| 搡老岳熟女国产| 免费看美女性在线毛片视频| 午夜激情福利司机影院| 中出人妻视频一区二区| 国产伦一二天堂av在线观看| 男人舔女人的私密视频| 欧美性猛交黑人性爽| 亚洲五月婷婷丁香| 黄色丝袜av网址大全| 亚洲国产精品合色在线| 婷婷六月久久综合丁香| 日本a在线网址| aaaaa片日本免费| 丰满人妻熟妇乱又伦精品不卡| 91在线观看av| 搡老岳熟女国产| 俄罗斯特黄特色一大片| 亚洲av电影在线进入| bbb黄色大片| 夜夜躁狠狠躁天天躁| 亚洲熟女毛片儿| 国产在线观看jvid| 亚洲七黄色美女视频| 可以免费在线观看a视频的电影网站| 在线国产一区二区在线| 99久久久亚洲精品蜜臀av| 精品国产美女av久久久久小说| 国产黄色小视频在线观看| 母亲3免费完整高清在线观看| 香蕉国产在线看| 亚洲无线在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲七黄色美女视频| 久久中文字幕一级| 久久久久国产一级毛片高清牌| 韩国av一区二区三区四区| 又粗又爽又猛毛片免费看| 欧美av亚洲av综合av国产av| 波多野结衣高清作品| av福利片在线观看| 琪琪午夜伦伦电影理论片6080| 欧美日韩中文字幕国产精品一区二区三区| 欧美最黄视频在线播放免费| 国产亚洲欧美98| 久久午夜综合久久蜜桃| 黄色丝袜av网址大全| 国产区一区二久久| 88av欧美| 亚洲九九香蕉| 熟妇人妻久久中文字幕3abv| 成人国产综合亚洲| 丝袜人妻中文字幕| АⅤ资源中文在线天堂| 亚洲精品美女久久av网站| 巨乳人妻的诱惑在线观看| 亚洲片人在线观看| 三级国产精品欧美在线观看 | 国产欧美日韩一区二区精品| 一进一出抽搐动态| 日韩有码中文字幕| 国产成人av教育| 亚洲人成伊人成综合网2020| 97超级碰碰碰精品色视频在线观看| 日本在线视频免费播放| 国产1区2区3区精品| 又黄又爽又免费观看的视频| 国产精品免费视频内射| 日本黄大片高清| 一级a爱片免费观看的视频| 一区二区三区高清视频在线| av在线天堂中文字幕| 91国产中文字幕| 可以免费在线观看a视频的电影网站| 好看av亚洲va欧美ⅴa在| 亚洲精品在线观看二区| 露出奶头的视频| 熟女少妇亚洲综合色aaa.| 亚洲欧美精品综合一区二区三区| 亚洲国产看品久久| av超薄肉色丝袜交足视频| 国产精品 欧美亚洲| 中文亚洲av片在线观看爽| 一进一出好大好爽视频| 91国产中文字幕| 看片在线看免费视频| 亚洲专区中文字幕在线| 69av精品久久久久久| 欧美3d第一页| 久久久久国产精品人妻aⅴ院| 亚洲av美国av| 国产熟女午夜一区二区三区| 国产亚洲精品av在线| 丁香欧美五月| 99久久无色码亚洲精品果冻| 天堂av国产一区二区熟女人妻 | 老汉色∧v一级毛片| 制服丝袜大香蕉在线| 日本一本二区三区精品| 人人妻,人人澡人人爽秒播| 18禁裸乳无遮挡免费网站照片| 久久婷婷人人爽人人干人人爱| 可以在线观看的亚洲视频| 99国产精品99久久久久| av中文乱码字幕在线| 免费观看人在逋| 亚洲av电影不卡..在线观看| 我的老师免费观看完整版| 草草在线视频免费看| 亚洲精品久久国产高清桃花| 中文字幕av在线有码专区| 亚洲av美国av| 制服人妻中文乱码| 亚洲美女视频黄频| 欧美日韩亚洲国产一区二区在线观看| 欧美av亚洲av综合av国产av| av片东京热男人的天堂| 午夜福利高清视频| 两性夫妻黄色片| 亚洲一区中文字幕在线| 免费高清视频大片| 国产人伦9x9x在线观看| 久久99热这里只有精品18| 国产区一区二久久| 动漫黄色视频在线观看| 欧美黄色片欧美黄色片| 国产69精品久久久久777片 | 男女那种视频在线观看| 亚洲国产精品合色在线| 亚洲精品美女久久久久99蜜臀| 午夜福利视频1000在线观看| 不卡av一区二区三区| 日韩欧美三级三区| 亚洲欧美精品综合久久99| 国产精品综合久久久久久久免费| 91成年电影在线观看| 母亲3免费完整高清在线观看| 精品高清国产在线一区| 亚洲精品久久成人aⅴ小说| 日韩高清综合在线| 亚洲人成网站高清观看| 国产精品久久久久久精品电影| 美女 人体艺术 gogo| 国产午夜福利久久久久久| 久久亚洲真实| 国产精品一区二区精品视频观看| 日本a在线网址| 韩国av一区二区三区四区| 亚洲精品国产精品久久久不卡| 高清在线国产一区| 日韩欧美一区二区三区在线观看| 欧美日韩亚洲国产一区二区在线观看| 日韩 欧美 亚洲 中文字幕| 免费在线观看亚洲国产| 日本免费一区二区三区高清不卡| 久9热在线精品视频| 小说图片视频综合网站| www.www免费av| 无限看片的www在线观看| 一个人免费在线观看的高清视频| aaaaa片日本免费| 亚洲国产精品久久男人天堂| 日韩欧美免费精品| 亚洲七黄色美女视频| 婷婷丁香在线五月| 国产精品亚洲美女久久久| 黄色 视频免费看| 欧美黑人欧美精品刺激| 久99久视频精品免费| 可以在线观看毛片的网站| 免费在线观看影片大全网站| 亚洲国产精品合色在线| 国产69精品久久久久777片 | 后天国语完整版免费观看| av超薄肉色丝袜交足视频| 国产v大片淫在线免费观看| 国内精品久久久久精免费| 国产人伦9x9x在线观看| 欧美成人免费av一区二区三区| 欧美日韩国产亚洲二区| 18禁观看日本| 中文字幕人妻丝袜一区二区| 嫁个100分男人电影在线观看| a级毛片在线看网站| 少妇的丰满在线观看| 天堂av国产一区二区熟女人妻 | 香蕉国产在线看| 黄色毛片三级朝国网站| 国产欧美日韩精品亚洲av| 国产97色在线日韩免费| 久久精品91蜜桃| 亚洲七黄色美女视频| av片东京热男人的天堂| 免费在线观看影片大全网站| 亚洲自拍偷在线| 好男人在线观看高清免费视频| 小说图片视频综合网站| av在线天堂中文字幕| 国产成人精品久久二区二区免费| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 岛国在线观看网站| 欧美性猛交黑人性爽| 正在播放国产对白刺激| 久久婷婷成人综合色麻豆| 美女午夜性视频免费| 国产精品日韩av在线免费观看| 成人三级做爰电影| 波多野结衣高清无吗| 麻豆av在线久日| 国产又黄又爽又无遮挡在线| 亚洲成人免费电影在线观看| 99在线人妻在线中文字幕| 中出人妻视频一区二区| 亚洲 欧美 日韩 在线 免费| 我要搜黄色片| 国产1区2区3区精品| 一二三四社区在线视频社区8| 精品久久久久久成人av| 亚洲欧美日韩无卡精品| 亚洲精品中文字幕一二三四区| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| 久久中文字幕人妻熟女| 夜夜躁狠狠躁天天躁| 久久亚洲精品不卡| 精品久久蜜臀av无| 日韩精品免费视频一区二区三区| 中文字幕最新亚洲高清| 十八禁网站免费在线| 18美女黄网站色大片免费观看| 我要搜黄色片| 少妇粗大呻吟视频| 国产一区二区在线av高清观看| 欧美zozozo另类| 久久香蕉激情| 亚洲欧美日韩高清在线视频| 手机成人av网站| 久久久国产成人免费| 国产区一区二久久| 久久精品亚洲精品国产色婷小说| 亚洲精品在线观看二区| 国产成年人精品一区二区| 国产精品1区2区在线观看.| 黄色女人牲交| 久久天躁狠狠躁夜夜2o2o| 国产97色在线日韩免费| 国产在线精品亚洲第一网站| 又紧又爽又黄一区二区| 麻豆久久精品国产亚洲av| 国产一区二区在线观看日韩 | 亚洲精品在线美女| 变态另类丝袜制服| 国内精品久久久久久久电影| 特级一级黄色大片| 色噜噜av男人的天堂激情| 1024视频免费在线观看| 午夜精品一区二区三区免费看| 每晚都被弄得嗷嗷叫到高潮| or卡值多少钱| √禁漫天堂资源中文www| 亚洲乱码一区二区免费版| 一进一出抽搐动态| 757午夜福利合集在线观看| 日韩欧美三级三区| 日本一本二区三区精品| 国产蜜桃级精品一区二区三区| 91麻豆av在线| 人人妻人人澡欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 变态另类丝袜制服| 正在播放国产对白刺激| 亚洲国产精品999在线| 国产成人aa在线观看| 每晚都被弄得嗷嗷叫到高潮| 免费人成视频x8x8入口观看| 曰老女人黄片| 丝袜美腿诱惑在线| 国产成人精品久久二区二区免费| 老汉色av国产亚洲站长工具| 啦啦啦韩国在线观看视频| 一二三四社区在线视频社区8| 欧美大码av| 国内揄拍国产精品人妻在线| 黄片大片在线免费观看| 久久久久久九九精品二区国产 | 日韩欧美在线乱码| 国产精品久久久久久精品电影| 久久香蕉激情| 国产成人精品久久二区二区免费| 日韩欧美国产在线观看| 国产精品野战在线观看| 99国产极品粉嫩在线观看| 色播亚洲综合网| 亚洲男人的天堂狠狠| 久久久久久免费高清国产稀缺| 国产精品免费一区二区三区在线| 91字幕亚洲| 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看电影 | 欧美黄色淫秽网站| 亚洲精品在线美女| 又大又爽又粗| 精品少妇一区二区三区视频日本电影| 国产成人精品无人区| www日本在线高清视频| 日韩av在线大香蕉| 国产成人精品久久二区二区免费| 最近视频中文字幕2019在线8| 91九色精品人成在线观看| 中文字幕熟女人妻在线| 男女那种视频在线观看| 99热只有精品国产| 国产精品一区二区免费欧美| 国产欧美日韩精品亚洲av| 中文字幕最新亚洲高清| 国产免费av片在线观看野外av| 成人国语在线视频| 亚洲一区二区三区色噜噜| 亚洲一码二码三码区别大吗| 又黄又爽又免费观看的视频| cao死你这个sao货| 老司机在亚洲福利影院| 免费观看人在逋| 搞女人的毛片| 久久人妻福利社区极品人妻图片| 波多野结衣巨乳人妻| 久久精品综合一区二区三区| 波多野结衣巨乳人妻| 叶爱在线成人免费视频播放| 国产熟女xx| 香蕉丝袜av| 91在线观看av| 黄色视频,在线免费观看| 国产亚洲精品av在线| 91成年电影在线观看| 国产成人精品久久二区二区免费| 亚洲av电影在线进入| 在线观看舔阴道视频| 香蕉丝袜av| 成年版毛片免费区| 丝袜人妻中文字幕| 国产精品久久久久久久电影 | 久久亚洲精品不卡| 老司机午夜十八禁免费视频| 2021天堂中文幕一二区在线观| 女警被强在线播放| ponron亚洲| aaaaa片日本免费| 亚洲欧美日韩无卡精品| 女人被狂操c到高潮| 日韩 欧美 亚洲 中文字幕| 午夜成年电影在线免费观看| 亚洲片人在线观看| 中文在线观看免费www的网站 | 制服人妻中文乱码| 亚洲精品美女久久av网站| 久久精品国产综合久久久| 久久中文字幕人妻熟女| 免费在线观看视频国产中文字幕亚洲| 日本a在线网址| 99国产精品99久久久久| 久久人妻福利社区极品人妻图片| 久久精品亚洲精品国产色婷小说| 亚洲人成77777在线视频| 亚洲一区二区三区不卡视频| 丰满人妻熟妇乱又伦精品不卡| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片 | 一区福利在线观看| 亚洲男人的天堂狠狠| 久久这里只有精品中国| 一本精品99久久精品77| 久久久久久九九精品二区国产 | 久久人人精品亚洲av| 中文字幕精品亚洲无线码一区| 国产爱豆传媒在线观看 | 日韩免费av在线播放| 久久这里只有精品19| 婷婷精品国产亚洲av在线| 后天国语完整版免费观看| 久久精品91蜜桃| 别揉我奶头~嗯~啊~动态视频| 一区二区三区高清视频在线| 制服诱惑二区| 日韩欧美 国产精品| e午夜精品久久久久久久| 久久久久亚洲av毛片大全| 欧美黄色淫秽网站| 亚洲美女视频黄频| 高清在线国产一区| 亚洲熟妇中文字幕五十中出| 怎么达到女性高潮| 亚洲性夜色夜夜综合| 国产av麻豆久久久久久久| 舔av片在线| 777久久人妻少妇嫩草av网站| 香蕉国产在线看| 男人舔女人的私密视频| 国产单亲对白刺激| 欧美黑人精品巨大| 欧美中文综合在线视频| 宅男免费午夜| 欧美一级a爱片免费观看看 | 日本一本二区三区精品| 日韩三级视频一区二区三区| 欧美高清成人免费视频www| а√天堂www在线а√下载| 国产精品亚洲一级av第二区| 女警被强在线播放| 亚洲国产精品999在线| 国产精品 欧美亚洲| 亚洲熟妇中文字幕五十中出| 亚洲 欧美一区二区三区| 国产精品自产拍在线观看55亚洲| 久久久久免费精品人妻一区二区| 黄色视频,在线免费观看| www日本在线高清视频| 中亚洲国语对白在线视频| 婷婷亚洲欧美| 久久精品91无色码中文字幕| 一级黄色大片毛片| 精品熟女少妇八av免费久了| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 午夜免费观看网址| 国产99久久九九免费精品| 亚洲中文av在线| 久久精品亚洲精品国产色婷小说| 久久天躁狠狠躁夜夜2o2o| 日本黄大片高清| 亚洲人成伊人成综合网2020| 国内揄拍国产精品人妻在线| 精品久久久久久久久久免费视频| 中文字幕人妻丝袜一区二区| 中文资源天堂在线| 色精品久久人妻99蜜桃| 999久久久精品免费观看国产| 国内精品久久久久久久电影| 在线视频色国产色| 国产av一区在线观看免费| www.999成人在线观看| 日本一本二区三区精品| 色综合站精品国产| 熟妇人妻久久中文字幕3abv| 18禁裸乳无遮挡免费网站照片| 亚洲成人久久性| 99在线视频只有这里精品首页| 成人国产一区最新在线观看| 国产视频内射|