• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical method of minimum spacing of signalized intersectionson bidirectional two-lane highways

    2015-03-01 09:24:00MaYongfengYuanLiZhangWenbo

    Ma Yongfeng  Yuan Li  Zhang Wenbo

    (1School of Transportation, Southeast University, Nanjing 210096, China)(2College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)(3Department of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA)

    ?

    Analytical method of minimum spacing of signalized intersectionson bidirectional two-lane highways

    Ma Yongfeng1Yuan Li2Zhang Wenbo3

    (1School of Transportation, Southeast University, Nanjing 210096, China)(2College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)(3Department of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA)

    Abstract:In order to improve the smoothness of traffic flow on bidirectional two-lane highways, an analytical method is proposed to optimize the minimum spacing of the signalized intersections. The minimum signal spacing is determined by two parts, including the necessary distance for stabilizing the traffic flow after it passes through the signalized intersections and the length of the upstream functional area of intersection. For the former, based on the platoon dispersion theory, the stable distance determination problem of traffic flow is studied and a model of dispersion degrees varying with the distance from the upstream intersection is presented, in which the time headway is intended to yield the shifted negative exponential distribution. The parameters of the model for arterial and collector highways are estimated respectively based on the field data. Then, the section at which the slope of dispersion degree curve equals -0.1 is regarded as the beginning of the dispersion stable state. The length of the intersection upstream functional area is determined by three parts, including the distance traveled during perception-reaction time, the distance traveled while a driver decelerates to a stop, and the queue storage length. Based on the above procedures, the minimum signal spacing of each highway category is proposed.

    Key words:highway; signalized intersection; spacing; platoon dispersion

    Received 2015-01-30.

    Biography:Ma Yongfeng (1980—), male, doctor, associate professor, mayf@seu.edu.cn.

    Foundation item:The National Natural Science Foundation of China (No.51208100, 51308192).

    Citation:Ma Yongfeng, Yuan Li, Zhang Wenbo. Analytical method of minimum spacing of signalized intersections on bidirectional two-lane highways[J].Journal of Southeast University (English Edition),2015,31(4):547-552.[doi:10.3969/j.issn.1003-7985.2015.04.020]

    Intersection spacing is an important element in highway design and can greatly affect the operational efficiency and traffic safety. Closely-spaced or irregularly-spaced traffic signals on arterial or collector roadways can result in frequent stops, unnecessary delays, increased fuel consumption, excessive vehicular emissions, and high crash rates[1-4]. Wang et al.[5]examined 161 road segments of eight suburban arterials in Shanghai. Their modeling results showed that the density of signal spacing along arterials had a significant influence on minor injuries, severe injuries, and total crash frequencies; and non-uniform signal spacing had a significant impact on the occurrence of minor injury crashes. A long signal spacing interval increased the range of the cycle lengths and speeds, which can produce efficient traffic progression. When the signals are installed at a suboptimal location, a corresponding reduction in the through band or time will occur. Moreover, increasing signalized intersections per mile resulted in more stop-and-go movement, which may lead to more fuel consumption and vehicular emissions[1].

    Some indices have been introduced to research the intersection spacing, such as the weaving section distance, the additional left-turn lane, sight distance, deceleration lane distance, and traffic management, etc. AASHTO[6]indicates that the length between accesses and intersections should be not less than the length of the functional area of at-grade intersections. Generally speaking, few studies emphasized traffic flow characteristics. On the segment between two signalized intersections, the traffic flow characteristics present “turbulence-transition-stable moving-transition-turbulence”[4]. Due to the compression and splitting at signal lights, traffic flow is separated into series and moves downstream in platoons. Vehicles in platoons travel at different speeds due to the driving behaviors of drivers and the maneuvering characteristics of vehicles. While moving downstream, the platoon starts spreading out in a long segment. At the beginning, vehicles move at low speeds, are at small headways, and clusters, which can be seen as turbulence. Afterwards, vehicles speed up and attain suitable headways and similar operating states, which can be regarded as stable movement. This phenomenon, known as platoon dispersion, has been studied by many researchers[7-11]. Platoon dispersion is a procedure for determining the deterioration of platoon integrity, which means a change in the compactness of a platoon depending on the time[9].

    The purpose of this paper is to introduce a procedure to measure the minimum spacing of signalized intersections on bidirectional two-lane highways. Based on the platoon dispersion theory, an analytical method is proposed and calibrated. Furthermore, the minimum spacing criteria for bidirectional two-lane highways are computed.

    1Methodology

    1.1 Definition of minimum spacing

    According to the platoon dispersion theory, when the traffic flow departs from the upstream signalized intersection, the speed of each vehicle is affected by the speed of others, resulting in a high inter-vehicles influence degree. With the platoon moving downstream, the mean speed increases, some vehicles begin to overtake others, the inter-vehicles influence degree decreases, and the traffic flow ultimately reaches a stable state, meanwhile, the vehicles basically achieve their expected speeds. Before this, the traffic flow should not be affected by the downstream intersection. For presentation purposes, the platoon dispersion degree is adopted to express the inter-vehicles influence. The mathematical form of the minimum spacing is

    (1)

    with

    d2=l1+l2+l3

    The functional intersection area is critical to its function, in which motorists respond to the intersection, decelerate, and maneuver into the appropriate lane to stop or to complete a turn. It consists of the distance during perception-reaction time, the distance for maneuvering and deceleration, and the length of the queue storage, as shown in Fig.1. The current procedure and parameter values, which are used to determine the upstream functional intersection area, can be found in Refs.[1,4]. The emphasis in this paper is on determining the vehicles’ platoon stable distanced1.

    Fig.1 Illustration of minimum spacing

    1.2 Platoon stable distance

    The number of traffic conflicts is minimum when the platoon is completely in a dispersion state. Therefore, the platoon dispersion degree can be used to measure the safety performance of different road sections. The higher the platoon dispersion degree, the larger the headway, which means a high level of safety performance. The time headway is introduced to specify the platoon dispersion degree,

    (2)

    whereRis the platoon dispersion degree in the traffic flow;nis the total number of vehicles;f(hi) is the influence function between vehicles;hiis the time headway between vehicles, s;h0is the time headway threshold when vehicles have no effect on each other, s;hminis the minimum safe time headway threshold, s.

    WhenR=1, the traffic flow is under a free flow state; whenR=0, it is in a congested state. Using the platoon dispersion degree to describe the freedom degree of the traffic flow is a solid basis for studying the platoon dispersion process.

    1.2.1Relationship between volume and dispersion degree

    For a two-lane highway, the time headways yield different distribution forms under various traffic flow conditions. Each distribution form has its special characteristics and limitations. The shifted negative exponential distribution, which is not complicated and commonly suitable for low to medium volume conditions, was adopted in this paper. This distribution form can satisfy the precision requirement[10]. The mathematical form of the distribution is

    (3)

    whereqis the traffic flow rate, veh/s;τis the parameter estimation value, which can be estimated by the sample mean and variance, and its value interval is [1.0,1.5]. The time headway distribution is usually divided into three states: the overtaking state (0

    According to the definition of dispersion degreeRand influence degree functionf(h), whenh≥h0,f(h)=0; whenh≤hmin,f(h)=1; and for vehicles whose headway yieldsh∈{hmin,h0}, the mean influence degree yields the following equation:

    (4)

    Based on the calculated probabilities, Eq.(4) and the definition of influence degree functionf(h), the arithmetic mean value of the influence degree function under the dispersion stable state can be computed using the following equation:

    (P2-P1)E[f(h)]+(1-P2)

    (5)

    In Eqs.(4) and (5), the computation ofP1,P2can refer to Ref.[10]. Therefore, the expression of the dispersion degreeR1under stable state is

    (6)

    1.2.2Dispersion degree when vehicles departing

    When vehicles pass through an intersection, the traffic flow condition consists of two parts: 1) During the early green period, traffic flow is under saturation traffic flow, and 2) During the late green period, traffic flow is under the non-saturation state. In order to simplify the calculation, the number of vehicles that arrive in each cycle is assumed to yield a uniform distribution, then

    Nu=Q-N=qc-q(r+t)

    (7)

    with

    (8)

    1.2.3Model of dispersion degree along the segment

    Based on the above analysis, the dispersion degree along the segment can be figureted. Whenx=0,R=R0; whenx=∞,R=R1. Hence, the dispersion degree yields the following equation:

    R(x)=R0exp(-ax)+R1(1-exp(-bx))(9)

    whereR(x) is the dispersion degree value at a certain section which isxaway from the upstream intersection;aandbare the undetermined constants;xis the distance between the control point and the upstream intersection, km.

    The parametersaandbin Eq.(9) can be estimated by the field data, which should be collected from at least two control points. In order to ensure the precision of the estimation, four control points are investigated in this study on the spot, where the investigated results at 0 m are adopted in the parameter estimation.

    2Data Collection

    The field surveys were carried out on sections of arterial highways and collector highways. The following criteria were used in selecting and observing the sample road segments:

    1) Independent, fixed period and two-phase signalized intersection;

    2) Low external disturbance, low non-motorized vehicles, and pedestrians flow;

    3) Low lateral interference within 500 m of an intersection downstream area (e.g., driveway);

    4) The distance to the downstream intersection is longer than 1 000 m;

    5) The wide field of vision, favorable for the arrangement of traffic survey equipment.

    Segment 1Intersection “S122-G312” is located in Jiangsu province, signalized by a signal cycle of 58 s. The exit segment on S122 from west to east was observed. S122 belongs to the minor arterial highway (2B access classification) with a design speed of 80 km/h.

    Segment 2Signalized intersection “Danyang Road-G312” is located in Jiangsu province, with a signal cycle of 52 s. The exit segment from west to east on Danyang Road was observed. Danyang Road belongs to the 3C access classification with a design speed of 60 km/h.

    Cameras were deployed at the successive control points (100, 200, and 300 m) in the departure lane. The duration time of the synchronous observation was 1 h. The videos were processed with the help of Moviemaker software manually. At each control point, the vehicular license plate numbers and front bumper passing time were recorded. The time headways were extracted during each signal cycle. The dispersion degree was calculated under stable stateR1and at the starting point of the segmentR0.

    For each signal cycle, the number of vehicles that passed through the intersection under saturation traffic flow was found to be 60% of the total traffic volume.N/Q=0.6 was adopted during the calculation. After the data comparison of each cycle, the data of 20 signal cycles was selected. The data analysis results for the two segments are shown in Tab.1 and Tab.2. Overall, the waving range of the dispersion degree at different control points for each signal cycle is relatively large. However, the general distribution tendency is accordant; i.e., as the distance away from the upstream intersection increases, the platoon dispersion degree decreases.

    Tab.1 Field data analysis on Segment 1

    Tab.2 Field data analysis on Segment 2

    3Determination of Parameters

    3.1 Time headway threshold

    Numerous observations and statistics are required to determine the time headway threshold. Generally, the thresholds are related to vehicle speeds and vehicle types[12]. Due to the speeds varying along with road sections, the corresponding thresholds should be different. Furthermore, the differences in the proportions of vehicle types for various functional category highways will also result in different headway thresholds. Considering the numerous differences, we measured the headway threshold based on the previous research results[10-13]. The minimum time headwayhminto ensure safe driving is 2 s; the time headway threshold under free flow state is 5 s.

    3.2 Model parameter calibration

    Based on the conclusions of the field survey, the parameters used in the dispersion degree model were calibrated using the Leverberg-Marquardt method in SPSS. At the beginning of calibration,R0andR1were input as the known parameters. The initial value of parameterais 3, andbis 4. The model calibration results are shown in Tab.3.

    Tab.3 The results of model calibration

    Rarterial=0.651 3exp(-5.582x)+

    0.110 2(1-exp(-15.268x))

    (10)

    Rcollector=0.648 8exp(-9.348x)+

    0.102 8(1-exp(-29.34x))

    (11)

    3.3 Platoon dispersion stable distance

    According to Eq.(10) and Eq.(11), whenx→∞,R→R1. It is found that the curve is monotone decreasing, at least before reaching the stable state. Therefore, the slopefof the dispersion degree function can be used to estimate the stable point, the curve slope equations are

    farterial=1.682 5exp(-15.268x)-3.635 6exp(-5.582x)

    (12)

    fcollector=3.016 2exp(-29.34x)-6.065exp(-9.348x)

    (13)

    The changes in the dispersion degrees and slopes with increasing distances to the upstream signalized intersections can be observed (50 m interval), as shown in Fig.2 and Fig.3. Whenf=-0.1, the dispersion degrees are regarded as reaching a sufficient small value. The corresponding distance is the expected distance to stabilize the traffic flow. The dispersion stable distance for two-lane highways are shown in Tab.4.

    Fig.2 Platoon dispersion degree trend

    Fig.3 Curve slope of dispersion degree distribution trend

    Tab.4 Minimum spacing of signalized intersections

    3.4 Minimum spacing

    Based on the analysis above, the minimum spacing of highway signalized intersections can be measured as shown in Tab.4.

    4Conclusion

    Based on the platoon dispersion theory, an analytical method is proposed to measure the minimum spacing for signalized intersections, which is determined by the traffic flow stable distance and the length of the intersection upstream functional area. In order to obtain the minimum distance that will make the platoon dispersion stable, the changes in platoon dispersion are estimated with the varying distance to the upstream signalized intersection. The length of the upstream functional intersection area is determined based on previous research. This paper places particular emphasis on the theoretical analysis of optimal spacing of signalized intersections from the aspect of traffic flow stability. However, the traffic flow stable distance is influenced by various factors, such as the proportion of vehicle types, traffic volumes, and distribution of time headways. Future research should collect more detailed field data to calibrate the model. Furthermore, in engineering practice, the recommended specifications for signalized intersection spacing should be adjusted considering various influencing factors, such as access category, land use, driveways, and median openings.

    References

    [1]Williams K M, Stover V G, Dixon K K, et al.Accessmanagementmanual[M]. Washington, DC: Transportation Research Board, 2014.

    [2]Gluck J S, Levinson H S, Stover V G.Impactsofaccessmanagementtechniques[M]. Washington, DC: Transportation Research Board, 1999.

    [3]Ministry of Transport of the People’s Republic of China. JTG B01—2014 Technical standard of highway engineering [S]. Beijing: China Communications Press, 2014. (in Chinese)

    [4]Ma Yongfeng, Xiang Qiaojun, Lu Jian. Analysis of signalized intersection safety spacing of multi-lane based on traffic flow stability distance [J].ChinaJournalofHighwayandTransport, 2010, 23(3): 83-88. (in Chinese)

    [5]Wang X, Song Y, Yu R, et al. Safety modeling of suburban arterials in Shanghai, China [J].AccidentAnalysis&Prevention, 2014, 70: 215-224.

    [6]AASHTO.Apolicyongeometricdesignofhighwaysandstreets[M]. Washington, DC: American Association of State Highway and Transportation Officials, 2011.

    [7]Manar A, Baass K G. Traffic platoon dispersion modeling on arterial streets [J].TransportationResearchRecord, 1996, 1566: 49-53.

    [8]Wu W, Jin W, Shen L. Mixed platoon flow dispersion model based on speed-truncated Gaussian mixture distribution [J/OL].JournalofAppliedMathematics, 2013. http://dx.doi.org/10.1155/2013/480965.

    [9]Bonneson J A, Pratt M P, Vandehey M A. Predicting arrival flow profiles and platoon dispersion for urban street segments[J].TransportationResearchRecord, 2010, 2173: 28-35.

    [10]Yang Peikun, Huang Wenzhong, Che Peiming. Traffic flow model of platoon dispersion process for urban highways [J].TongjiUniversityTransaction, 1994, 22(3): 294-299. (in Chinese)

    [11]Bonneson J A, Pratt M P, Vandehey M A. Predicting arrival flow profiles and platoon dispersion for urban street segments[J].TransportationResearchRecord, 2010, 2173: 28-35.

    [12]Luo Xia, Du Jinyou, Huo Yamin. Study on the distribution patterns of time headway of vehicles [J].JournalofSouthwestJiaotongUniversity, 2001, 36(2): 113-116. (in Chinese)

    [13]Chang Yulin, Wang Wei, Deng Wei, et al. Research of the headway distribution models on two lane highways and their applications [J].JournalofSoutheastUniversity:NaturalScienceEdition, 1999, 29(6): 108-112. (in Chinese)

    doi:10.3969/j.issn.1003-7985.2015.04.020

    插阴视频在线观看视频| 国产亚洲最大av| 小说图片视频综合网站| 亚洲人成网站在线观看播放| 天堂影院成人在线观看| 成人av在线播放网站| 亚洲精品影视一区二区三区av| 一二三四中文在线观看免费高清| 国产黄片视频在线免费观看| 一边摸一边抽搐一进一小说| 亚洲高清免费不卡视频| 国产成人精品婷婷| 亚洲av免费在线观看| 国产免费一级a男人的天堂| 波多野结衣巨乳人妻| 99热这里只有是精品50| 精品99又大又爽又粗少妇毛片| 欧美xxxx性猛交bbbb| 欧美xxxx性猛交bbbb| 非洲黑人性xxxx精品又粗又长| 欧美色视频一区免费| 毛片女人毛片| 欧美一区二区亚洲| 自拍偷自拍亚洲精品老妇| 日本黄色视频三级网站网址| 国产黄色视频一区二区在线观看 | 麻豆乱淫一区二区| 国产一区二区在线av高清观看| 久久久久久九九精品二区国产| 在线观看66精品国产| 国产伦在线观看视频一区| 免费一级毛片在线播放高清视频| 午夜福利在线观看吧| 国产视频首页在线观看| 青青草视频在线视频观看| 国产精品一区二区三区四区久久| 国产成人福利小说| 亚洲18禁久久av| 国产av不卡久久| АⅤ资源中文在线天堂| 亚洲av福利一区| 国产免费福利视频在线观看| 免费av不卡在线播放| 特级一级黄色大片| 老女人水多毛片| 99热这里只有是精品在线观看| 男人的好看免费观看在线视频| 免费观看性生交大片5| 国产精品一区二区三区四区久久| 国产av不卡久久| 久久精品久久久久久噜噜老黄 | 最近的中文字幕免费完整| 91在线精品国自产拍蜜月| 欧美日韩精品成人综合77777| 三级经典国产精品| .国产精品久久| 三级国产精品欧美在线观看| 在线观看66精品国产| 欧美+日韩+精品| 老女人水多毛片| 51国产日韩欧美| 男插女下体视频免费在线播放| 日本欧美国产在线视频| 久久久久久久国产电影| 国产视频内射| 麻豆精品久久久久久蜜桃| 麻豆av噜噜一区二区三区| 亚洲中文字幕日韩| 观看免费一级毛片| 午夜免费男女啪啪视频观看| 久久久久久久亚洲中文字幕| 国产v大片淫在线免费观看| 五月玫瑰六月丁香| 99久久中文字幕三级久久日本| 少妇丰满av| 国产高潮美女av| 麻豆成人av视频| 一级爰片在线观看| 久久精品久久精品一区二区三区| 免费播放大片免费观看视频在线观看 | 一区二区三区乱码不卡18| 两个人视频免费观看高清| 亚洲精品色激情综合| 国产免费一级a男人的天堂| 中文字幕制服av| 水蜜桃什么品种好| 男人和女人高潮做爰伦理| 简卡轻食公司| 久久人人爽人人片av| 亚洲欧美日韩高清专用| 亚洲高清免费不卡视频| 国产精品爽爽va在线观看网站| 国产精品国产三级国产av玫瑰| 日韩制服骚丝袜av| 黑人高潮一二区| 22中文网久久字幕| 亚洲经典国产精华液单| 老司机福利观看| 欧美激情在线99| 变态另类丝袜制服| 国产精品女同一区二区软件| 国产精品综合久久久久久久免费| 国产日韩欧美在线精品| 最近的中文字幕免费完整| 精品午夜福利在线看| 色噜噜av男人的天堂激情| 日本五十路高清| 精品熟女少妇av免费看| 欧美日韩综合久久久久久| 国产免费男女视频| 午夜免费男女啪啪视频观看| 亚洲三级黄色毛片| av黄色大香蕉| 精品久久久噜噜| 久久久欧美国产精品| 18+在线观看网站| 久久久久久久亚洲中文字幕| 日韩欧美国产在线观看| 精品久久久久久久久久久久久| 国产伦精品一区二区三区四那| 青春草视频在线免费观看| 国产精品不卡视频一区二区| 永久免费av网站大全| 国产不卡一卡二| 男女国产视频网站| 亚洲综合精品二区| 蜜桃亚洲精品一区二区三区| 秋霞伦理黄片| 亚洲国产日韩欧美精品在线观看| 精品酒店卫生间| 亚洲精品,欧美精品| 又粗又硬又长又爽又黄的视频| 国产成人a∨麻豆精品| 久久久国产成人精品二区| 观看免费一级毛片| 中文字幕av在线有码专区| 白带黄色成豆腐渣| 看免费成人av毛片| 国产精品电影一区二区三区| av线在线观看网站| 青春草国产在线视频| 亚洲精品国产av成人精品| 欧美xxxx黑人xx丫x性爽| 亚洲av一区综合| 久久人人爽人人爽人人片va| 国产一区二区在线观看日韩| 国产亚洲5aaaaa淫片| 自拍偷自拍亚洲精品老妇| 边亲边吃奶的免费视频| 一个人看视频在线观看www免费| 日韩一区二区视频免费看| 日本三级黄在线观看| 三级国产精品片| 精品人妻熟女av久视频| 禁无遮挡网站| 国模一区二区三区四区视频| 国产成人aa在线观看| 久久6这里有精品| 日韩强制内射视频| 美女黄网站色视频| 亚洲成人精品中文字幕电影| 国产精品,欧美在线| 熟女电影av网| 大香蕉久久网| 一级黄色大片毛片| kizo精华| 国产淫语在线视频| 又黄又爽又刺激的免费视频.| 麻豆精品久久久久久蜜桃| 非洲黑人性xxxx精品又粗又长| 亚洲欧美一区二区三区国产| 在线免费十八禁| 亚洲欧美一区二区三区国产| 久久精品夜色国产| 三级毛片av免费| 日韩亚洲欧美综合| 欧美成人一区二区免费高清观看| av卡一久久| 国产精品久久久久久av不卡| 97热精品久久久久久| 成人午夜高清在线视频| av视频在线观看入口| 六月丁香七月| 亚洲精品影视一区二区三区av| 国产免费视频播放在线视频 | 神马国产精品三级电影在线观看| 亚洲真实伦在线观看| 国产精品一区二区性色av| 亚洲成av人片在线播放无| 99久久九九国产精品国产免费| 午夜福利在线在线| 亚洲一级一片aⅴ在线观看| 九九热线精品视视频播放| 美女黄网站色视频| 免费看美女性在线毛片视频| 国产精品久久视频播放| 国产黄色视频一区二区在线观看 | 大话2 男鬼变身卡| 国产精品福利在线免费观看| 变态另类丝袜制服| 一本一本综合久久| 尤物成人国产欧美一区二区三区| 国产精品乱码一区二三区的特点| 亚洲成人精品中文字幕电影| 一个人免费在线观看电影| 久久精品久久久久久久性| 熟妇人妻久久中文字幕3abv| 91aial.com中文字幕在线观看| 综合色丁香网| 美女高潮的动态| 国产精品99久久久久久久久| av国产免费在线观看| 一区二区三区四区激情视频| 欧美另类亚洲清纯唯美| 亚洲成色77777| 国产精品,欧美在线| 一级毛片我不卡| 中文字幕免费在线视频6| 久久久久久久久久成人| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 乱系列少妇在线播放| 如何舔出高潮| 国产大屁股一区二区在线视频| 99久久精品一区二区三区| 欧美区成人在线视频| 日产精品乱码卡一卡2卡三| 免费不卡的大黄色大毛片视频在线观看 | 在线观看66精品国产| 日韩人妻高清精品专区| 草草在线视频免费看| 男女边吃奶边做爰视频| 岛国在线免费视频观看| 久99久视频精品免费| 黄色欧美视频在线观看| 1000部很黄的大片| 精品午夜福利在线看| 国产精品久久久久久精品电影小说 | 午夜免费激情av| 国产精品永久免费网站| 夜夜爽夜夜爽视频| h日本视频在线播放| 亚洲精品日韩av片在线观看| 一边亲一边摸免费视频| 久久精品久久精品一区二区三区| 成人午夜高清在线视频| 最近中文字幕高清免费大全6| 久久精品夜色国产| 尤物成人国产欧美一区二区三区| 欧美潮喷喷水| 欧美人与善性xxx| 久久久亚洲精品成人影院| 久久久久久久久久黄片| 欧美zozozo另类| 日韩亚洲欧美综合| 亚洲人成网站在线播| 99久久精品一区二区三区| 日本黄色视频三级网站网址| 国产免费福利视频在线观看| 国内揄拍国产精品人妻在线| 国国产精品蜜臀av免费| 国产在视频线精品| 晚上一个人看的免费电影| a级一级毛片免费在线观看| 在线天堂最新版资源| 黄片无遮挡物在线观看| 久久久久精品久久久久真实原创| 丰满乱子伦码专区| 插阴视频在线观看视频| 91精品国产九色| 欧美变态另类bdsm刘玥| 国产高清不卡午夜福利| 哪个播放器可以免费观看大片| 欧美一区二区国产精品久久精品| 国产片特级美女逼逼视频| 亚洲美女搞黄在线观看| 国产亚洲精品av在线| 久久久久久九九精品二区国产| 九九久久精品国产亚洲av麻豆| 免费大片18禁| 韩国av在线不卡| 啦啦啦观看免费观看视频高清| 在线a可以看的网站| 日韩欧美精品v在线| a级毛片免费高清观看在线播放| 建设人人有责人人尽责人人享有的 | 国产真实伦视频高清在线观看| 嫩草影院精品99| 欧美3d第一页| 欧美日本视频| 成人毛片a级毛片在线播放| 天堂√8在线中文| 国产精品久久久久久精品电影小说 | 国产成人aa在线观看| 可以在线观看毛片的网站| 亚洲第一区二区三区不卡| 亚洲国产精品专区欧美| 男女视频在线观看网站免费| 亚洲美女搞黄在线观看| 国产老妇女一区| 亚洲精品乱久久久久久| 欧美成人a在线观看| 欧美成人午夜免费资源| 欧美日韩综合久久久久久| 亚洲av免费在线观看| 人妻少妇偷人精品九色| 尾随美女入室| 色噜噜av男人的天堂激情| 日日摸夜夜添夜夜爱| av线在线观看网站| 大话2 男鬼变身卡| 男女国产视频网站| 狂野欧美白嫩少妇大欣赏| 91狼人影院| 国产午夜精品久久久久久一区二区三区| 九九热线精品视视频播放| 久99久视频精品免费| 尾随美女入室| 国产私拍福利视频在线观看| 免费观看人在逋| 三级国产精品片| 国产淫语在线视频| 蜜臀久久99精品久久宅男| 亚洲av福利一区| 午夜亚洲福利在线播放| 麻豆乱淫一区二区| 久久久久久久亚洲中文字幕| 欧美激情久久久久久爽电影| 午夜福利在线在线| 狠狠狠狠99中文字幕| 久久精品国产亚洲av天美| 少妇熟女aⅴ在线视频| 成年女人看的毛片在线观看| 亚洲欧美成人综合另类久久久 | 国产激情偷乱视频一区二区| 久久精品91蜜桃| 国产亚洲91精品色在线| 亚洲国产色片| 丝袜喷水一区| 久久久久免费精品人妻一区二区| 免费观看a级毛片全部| 搡老妇女老女人老熟妇| 中文字幕精品亚洲无线码一区| 99热这里只有是精品50| 国产黄片美女视频| 高清日韩中文字幕在线| 国产亚洲av嫩草精品影院| 联通29元200g的流量卡| 国产精品久久久久久久电影| 亚洲av成人av| 亚洲av免费高清在线观看| 又黄又爽又刺激的免费视频.| 最近中文字幕2019免费版| 丰满人妻一区二区三区视频av| 一二三四中文在线观看免费高清| 欧美极品一区二区三区四区| 尾随美女入室| 日韩中字成人| 69人妻影院| 三级毛片av免费| 一级毛片aaaaaa免费看小| 精品一区二区三区人妻视频| 午夜a级毛片| 99久久无色码亚洲精品果冻| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 91久久精品国产一区二区三区| 韩国高清视频一区二区三区| 人妻制服诱惑在线中文字幕| 免费播放大片免费观看视频在线观看 | 国产精品av视频在线免费观看| 久久韩国三级中文字幕| 国产久久久一区二区三区| av天堂中文字幕网| 日韩欧美三级三区| 亚洲av免费高清在线观看| 日韩视频在线欧美| 国产爱豆传媒在线观看| 久久久久久久午夜电影| 日韩一区二区三区影片| 中国美白少妇内射xxxbb| 村上凉子中文字幕在线| 综合色丁香网| 亚洲人成网站在线播| 久久久久久久久久久免费av| 男女下面进入的视频免费午夜| 一二三四中文在线观看免费高清| 亚洲国产精品成人综合色| 三级毛片av免费| 日韩一区二区视频免费看| 久久精品人妻少妇| 亚洲精品国产成人久久av| 欧美3d第一页| 大香蕉久久网| 高清日韩中文字幕在线| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 国产午夜精品久久久久久一区二区三区| 日本爱情动作片www.在线观看| 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| АⅤ资源中文在线天堂| 国产乱来视频区| 国产精品一区二区在线观看99 | 亚洲成人av在线免费| 国产精品三级大全| 亚洲av电影不卡..在线观看| 美女脱内裤让男人舔精品视频| 一级二级三级毛片免费看| 国产91av在线免费观看| 永久免费av网站大全| 日本爱情动作片www.在线观看| 国产大屁股一区二区在线视频| 免费观看在线日韩| 18禁在线播放成人免费| 中文字幕免费在线视频6| 22中文网久久字幕| 久久韩国三级中文字幕| 男女那种视频在线观看| 亚洲乱码一区二区免费版| 欧美成人一区二区免费高清观看| 免费av观看视频| 99久久中文字幕三级久久日本| 三级国产精品片| 99视频精品全部免费 在线| 亚洲熟妇中文字幕五十中出| 在线免费十八禁| 天天一区二区日本电影三级| 中文精品一卡2卡3卡4更新| 欧美成人精品欧美一级黄| 麻豆久久精品国产亚洲av| av视频在线观看入口| 男女那种视频在线观看| 2022亚洲国产成人精品| 亚洲国产精品成人综合色| 赤兔流量卡办理| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品在线福利| 国产免费男女视频| 色哟哟·www| 尤物成人国产欧美一区二区三区| 国产老妇女一区| 国产亚洲91精品色在线| 99热6这里只有精品| 国产免费男女视频| 97超视频在线观看视频| 99热6这里只有精品| 老司机影院毛片| 久久综合国产亚洲精品| 国产成人精品一,二区| 深夜a级毛片| 最近手机中文字幕大全| 看免费成人av毛片| 18禁在线播放成人免费| 久久久a久久爽久久v久久| 日韩欧美 国产精品| 精品午夜福利在线看| 国产亚洲一区二区精品| 身体一侧抽搐| 免费大片18禁| 99热精品在线国产| 男女下面进入的视频免费午夜| 亚洲国产色片| 欧美人与善性xxx| 国产精品日韩av在线免费观看| 午夜精品国产一区二区电影 | 久久精品久久久久久噜噜老黄 | 麻豆久久精品国产亚洲av| 久久99热这里只频精品6学生 | 日本黄大片高清| 国产高清有码在线观看视频| 免费观看精品视频网站| 99久久精品热视频| 人妻系列 视频| 熟女电影av网| 视频中文字幕在线观看| av在线老鸭窝| 国产三级在线视频| 午夜老司机福利剧场| 国产伦理片在线播放av一区| 免费电影在线观看免费观看| 非洲黑人性xxxx精品又粗又长| 色综合色国产| 久久久精品94久久精品| 亚洲不卡免费看| 亚洲精品乱码久久久久久按摩| 亚洲国产精品成人综合色| 黄色欧美视频在线观看| 少妇被粗大猛烈的视频| 亚洲欧美中文字幕日韩二区| 三级经典国产精品| 乱人视频在线观看| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| 日本欧美国产在线视频| 日韩国内少妇激情av| 少妇的逼好多水| 精品久久久噜噜| 亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲一区二区精品| 日韩人妻高清精品专区| 国内精品宾馆在线| 亚洲成人av在线免费| 亚洲av熟女| 国产又色又爽无遮挡免| 久久人人爽人人爽人人片va| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看 | 日本一本二区三区精品| 亚洲精品乱久久久久久| 欧美成人午夜免费资源| 亚洲国产精品sss在线观看| 日本黄色片子视频| 久久久亚洲精品成人影院| 久99久视频精品免费| 午夜福利网站1000一区二区三区| 91精品伊人久久大香线蕉| 一个人看视频在线观看www免费| 我要看日韩黄色一级片| 夜夜爽夜夜爽视频| 在线免费观看的www视频| 日韩欧美国产在线观看| 最新中文字幕久久久久| 久久久久久久久久久丰满| 久久久午夜欧美精品| 最近2019中文字幕mv第一页| 纵有疾风起免费观看全集完整版 | 男女边吃奶边做爰视频| 亚洲丝袜综合中文字幕| 长腿黑丝高跟| 99久久精品一区二区三区| 亚洲av福利一区| 观看免费一级毛片| 国产私拍福利视频在线观看| 高清毛片免费看| 亚洲乱码一区二区免费版| 国产麻豆成人av免费视频| 免费观看在线日韩| 美女内射精品一级片tv| 伊人久久精品亚洲午夜| av在线天堂中文字幕| 中国美白少妇内射xxxbb| 噜噜噜噜噜久久久久久91| 国产午夜精品论理片| 狠狠狠狠99中文字幕| 亚洲成色77777| 亚洲精品影视一区二区三区av| 欧美区成人在线视频| 亚洲最大成人手机在线| 一区二区三区高清视频在线| 少妇人妻精品综合一区二区| 只有这里有精品99| 欧美成人精品欧美一级黄| 免费观看a级毛片全部| 午夜福利成人在线免费观看| 国产精品av视频在线免费观看| 老师上课跳d突然被开到最大视频| 亚洲自偷自拍三级| 成人综合一区亚洲| a级毛片免费高清观看在线播放| 欧美最新免费一区二区三区| 久久午夜福利片| 欧美日韩一区二区视频在线观看视频在线 | 天美传媒精品一区二区| 国产欧美日韩精品一区二区| 国产精品国产三级国产av玫瑰| 亚洲精品乱码久久久v下载方式| 欧美日韩精品成人综合77777| 亚洲一区高清亚洲精品| av在线观看视频网站免费| 国产乱来视频区| 欧美又色又爽又黄视频| 久久精品夜色国产| 久久久亚洲精品成人影院| 在线免费十八禁| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 在线观看av片永久免费下载| 午夜爱爱视频在线播放| 国产高潮美女av| 日韩 亚洲 欧美在线| 日韩av不卡免费在线播放| 日韩 亚洲 欧美在线| 日韩人妻高清精品专区| 秋霞在线观看毛片| www日本黄色视频网| 久久久久久久久久久丰满| 国产亚洲91精品色在线| 青春草视频在线免费观看| 精品久久国产蜜桃| 亚洲在久久综合| 我要搜黄色片| 特级一级黄色大片| 日本av手机在线免费观看| 不卡视频在线观看欧美| 午夜亚洲福利在线播放| 伊人久久精品亚洲午夜| 亚洲欧美日韩卡通动漫| 人妻制服诱惑在线中文字幕| 丝袜美腿在线中文| 免费av不卡在线播放| 六月丁香七月| 九九在线视频观看精品| 一级毛片我不卡| 身体一侧抽搐| 国产美女午夜福利| 波多野结衣高清无吗| 韩国av在线不卡| 黄片无遮挡物在线观看| 久久草成人影院| 日韩精品有码人妻一区|