• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kernel principal component analysis networkfor image classification

    2015-03-01 08:07:20WuDanWuJiasongZengRuiJiangLongyuLotfiSenhadjiShuHuazhong

    Wu Dan  Wu Jiasong  Zeng Rui  Jiang LongyuLotfi Senhadji  Shu Huazhong

    (1Key Laboratory of Computer Network and Information Integration of Ministry of Education,Southeast University, Nanjing 210096, China)(2Institut National de la Santé et de la Recherche Médicale U 1099, Rennes 35000, France)(3Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35000, France)(4Centre de Recherche en Information Biomédicale Sino-Fran?ais, Nanjing 210096, China)

    ?

    Kernel principal component analysis networkfor image classification

    Wu Dan1,4Wu Jiasong1,2,3,4Zeng Rui1,4Jiang Longyu1,4Lotfi Senhadji2,3,4Shu Huazhong1,4

    (1Key Laboratory of Computer Network and Information Integration of Ministry of Education,Southeast University, Nanjing 210096, China)(2Institut National de la Santé et de la Recherche Médicale U 1099, Rennes 35000, France)(3Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35000, France)(4Centre de Recherche en Information Biomédicale Sino-Fran?ais, Nanjing 210096, China)

    Abstract:In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network (KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results show that the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network (PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.

    Key words:deep learning; kernel principal component analysis net (KPCANet); principal component analysis net (PCANet); face recognition; object recognition; handwritten digit recognition

    Received 2015-05-04.

    Biographies:Wu Dan (1990—), female, graduate; Shu Huazhong (corresponding author), male, doctor, professor, shu.list@seu.edu.cn.

    Foundation items:The National Natural Science Foundation of China (No.61201344, 61271312, 61401085, 11301074), the Research Fund for the Doctoral Program of Higher Education (No.20120092120036), the Program for Special Talents in Six Fields of Jiangsu Province (No.DZXX-031), Industry-University-Research Cooperation Project of Jiangsu Province (No.BY2014127-11), “333” Project (No.BRA2015288), High-End Foreign Experts Recruitment Program (No.GDT20153200043), Open Fund of Jiangsu Engineering Center of Network Monitoring (No.KJR1404).

    Citation:Wu Dan, Wu Jiasong, Zeng Rui, et al. Kernel principal component analysis network for image classification[J].Journal of Southeast University (English Edition),2015,31(4):469-473.[doi:10.3969/j.issn.1003-7985.2015.04.007]

    Amajor difficulty of image classification is the considerable intra-class variability, arising from different illuminations, rigid deformations, non-rigid deformations and occlusions, which are useless for classification and should be eliminated. Deep learning structures like deep convolutional networks have the ability to learn invariant features[1]. Bruna et al.[2]built a scattering network (ScatNet) which is invariant to both rigid and non-rigid deformations. Chan et al.[3]constructed a principal component analysis network (PCANet), which cascaded principal component analysis (PCA), binary hashing, and block-wise histogram. PCANet achieves the state-of-the-art accuracy in many datasets of classification tasks, such as extended Yale B dataset, AR dataset, and FERET dataset. Kernel PCA (KPCA)[4-5]is a nonlinear generalization of PCA in the sense that it performs PCA in the feature spaces of arbitrary large dimension. KPCA can generally provide a better recognition rate than ordinary PCA due to the following two reasons: 1) KPCA uses an arbitrary number of nonlinear components, while ordinary PCA uses only a limited number of linear principal components; 2) KPCA has more flexibility than ordinary PCA since KPCA can choose different kernel functions (for example, Gaussian kernel, Polynomial kernel, etc.) for different recognition tasks, while ordinary PCA uses only linear kernel functions.

    In this paper, we propose a new deep learning network named kernel principal component network (KPCANet), which cascades two KPCA stages and one pooling stage. When the kernel function is linear, the proposed KPCANet degrades to the PCANet[3]. Experimental results show that the proposed KPCANet is invariant to illumination and stable to slight non-rigid deformation, and it generally outperforms PCANet in both face recognition and object recognition tasks.

    1KPCANet

    Fig.1 shows the whole structure of the proposed KPCANet, which consists of two KPCA stages and one pooling stage. Suppose that the patch size isk1×k2at all stages, and all the input images are of sizem×n.

    1.1 The first stage of KPCANet

    We inputNimages Ii(i=1,2,…,N) that belong tocclasses, and take a patch pi,j∈Rk1×k2centered in thej-th

    Fig.1 The detailed block diagram of the proposed KPCANet

    T: Rk1k2×k1k2→F,X|→XF

    (1)

    (2)

    1.2 The second stage of KPCANet

    1.3 The pooling stage of KPCANet

    EveryL2input images are binarized and converted to an image with

    i=1,2,…,N;l=1,2,…,L1

    (3)

    whereHis the Heaviside step (like) function[3].

    Each of theL1images Pi,l(l=1,2,…,L1) is then partitioned intoBblocks. We compute the histogram of the decimal values in each block, and concatenate all theBhistograms into one vector denoted as Bhist(Pi,l). Finally, the KPCANet features of Iiare given by

    fi=[Bhist(Pi,1),Bhist(Pi,2),…,Bhist(Pi,L1)]T∈R(2L2)L1B

    (4)

    Since deep architectures are composed of multiple levels of nonlinear operations, such as in complicated propositional figuree re-using many sub-figuree[6], the first two stages of KPCANet are set to be the same in this paper, we can re-use the whole structure of the first stage as well.

    2Experimental Results

    We evaluate the performance of the proposed KPCANet on various databases including MNIST, USPS, Yale face dataset, COIL-100 objects dataset, and AR dataset. Besides, we compare KPCANets that cascade various (from one to three) stage(s) of the KPCA layer in this paper. All the features learned by KPCANet are classified with a SVM classifier.

    2.1 Comparison of KPCANet in different recognition tasks

    In this section, we use various kernel functions to evaluate the performance of the proposed KPCANet in recog-

    nition tasks including handwritten digit recognition, face recognition and object recognition. Kernel functions that are used in this paper are presented in Tab.1.

    MNIST[7]and USPS[8]are used to evaluate the performance of KPCANet on handwritten images. MNIST contains 60 000 train images and 10 000 test images, and all images are of size 28×28 pixel. USPS contains 9 298 images of size 16×16 pixel in total, 5 000 of which are chosen randomly to train KPCANet and the rest are for testing. The Yale face database[9]is used to evaluate the performance of the proposed KPCANet on face images. It contains 165 grayscale images of 15 individuals in GIF format, and each individual contains 11 images with different facial expressions or configurations: center-light, wearing glasses, happy, left-light, wearing no glasses, normal, right-light, sad, sleepy, surprised, and winking. All images of this database are cropped to size 64×64 pixel, 90 of which are chosen randomly to train the proposed KPCANet and the rest are for testing. COIL-100 (Columbia Object Image Library)[10]is a database of the color images of 100 objects. The images of the objects are taken at pose intervals of 5°, and they correspond to 72 poses per object. All images are transformed into gray images and cropped to size 32×32 pixel. Half images of each object are chosen randomly to train KPCANet and the others are for testing.

    Tab.1 Various kernel functions used in this paper

    The performances of different kernel functions on datasets including MNIST, USPS, Yale face dataset and COIL-100 dataset are presented in Tab.2. Both the patch size and the block size are set to be 8×8 pixel, and the filter number is set to be 8 at all stages. The overlapping ratio of block is 0.5.

    Tab.2 Comparison of error rates of KPCANet with various kernel functions on different datasets %

    It can be seen from Tab.2 that the performance of PCANet performs better than KPCANet in handwritten digit recognition generally, while the latter outperforms the former in face recognition and object recognition.

    2.2 Face recognition on AR face dataset

    The properties of KPCANet are tested by performing KPCANet on the AR dataset[11]. The AR dataset contains about 4 000 color images of size 165×120 pixel from 126 individuals. The subset of the data that contains 100 individuals including 50 males and 50 females is chosen. The color images are converted to gray scale ones. Each individual consists of two images with frontal illumination and neutral expression, which is used as the training samples. The other images including 24 images varying from illumination to disguise are used for testing.

    The patch size and the block size are set to be 7×7 pixel and 8×8 pixel, respectively. The overlapping ratio of the block is 0.5. We compare the proposed KPCANet with LBP[12]and P-LBP[13]in Tab.3. KPCANet with linear kernel function and Laplacian kernel function is used in this experiment. From Tab.3, one can see that when the images only undergo the change of illumination, the testing accuracy rate achieves 100% with both linear kernel KPCANet and Laplacian kernel KPCANet. It is demonstrated that KPCANet is invariant to illumination. Besides, KPCANet outperforms LBP[12]and P-LBP[13]on different expressions and disguises under various illumination conditions, showing that KPCANet is robust to small deformation and occlusion.

    Tab.3 Comparison of accuracy rates of the methods on the AR face database %

    2.3 KPCANet with various stages in AR face dataset

    KPCANet, which cascades different numbers of the KPCA filter bank layer and a pooling layer, is performed with the AR face dataset used in Section 2.2, and all images are cropped to size 32×32 pixel. Linear kernel, sigmoid kernel and circular kernel are chosen here in order to simplify the results. The patch size and the block size are set to be 7×7 pixel and 8×6 pixel, respectively. The overlapping ratio of the block is 0.5. The results are shown in Tab.4.

    Tab.4 Comparison of accuracy rates of KPCANet with different number of stages on the AR face dataset %

    From Tab.4, we can see that the accuracy rate increases as the number of KPCA filter bank layers increases in the KPCANet, however, the training time grows exponentially at the same time.

    3Conclusion

    In this paper, we propose the KPCANet, which is an extension of PCANet, for image classification. The proposed KPCANet cascades kernel PCA, binary hashing and block-wise histogram. Experiments prove that KPCANet with different kernel functions is stable in general and also is invariant to illumination and stable to slight deformation and occlusion. Moreover, KPCANet is suitable for the recognition of handwritten images, face images and object images.

    References

    [1]LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision[C]//Proceedingsof2010IEEEInternationalSymposiumonCircuitsandSystems. Paris, France, 2010: 253-256.

    [2]Bruna J, Mallat S. Invariant scattering convolution networks[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2013, 35(8): 1872-1886.

    [3]Chan T H, Jia K, Gao S, et al. PCANet: a simple deep learning baseline for image classification?[J].arXivpreprintarXiv: 1404.3606, 2014.

    [4]Sch?lkopf B, Smola A, Müller K R. Kernel principal component analysis[C]//InternationalConferenceonArtificialNeuralNetworks. Lausanne, Switzerland, 1997: 583-588.

    [5]Sch?lkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J].NeuralComputation, 1998, 10(5): 1299-1319.

    [6]Bengio Y. Learning deep architectures for AI[J].FoundationsandTrends?inMachineLearning, 2009, 2(1): 1-127.

    [7]LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J].ProceedingsoftheIEEE, 1998, 86(11): 2278-2324.

    [8]Hull J J. A database for handwritten text recognition research[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 1994, 16(5): 550-554.

    [9]Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2001, 23(6): 643-660.

    [10]Nene S A, Nayar S K, Murase H. Columbia object image library (COIL-20), CUCS-005-96 [R]. New York: Department of Computer Science, Columbia University: 1996.

    [11]Martinez A M, Benavente R. The AR face database, CVC technical report #24[R]. CVC, 1998.

    [12]Ahonen T, Hadid A, Pietik?inen M. Face description with local binary patterns: application to face recognition[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2006, 28(12): 2037-2041.

    [13]Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J].IEEETransactionsonImageProcessing, 2010, 19(6): 1635-1650.

    doi:10.3969/j.issn.1003-7985.2015.04.007

    亚洲黑人精品在线| netflix在线观看网站| 激情在线观看视频在线高清| 在线观看一区二区三区| 99国产精品一区二区蜜桃av| 国产单亲对白刺激| 国产精品乱码一区二三区的特点| 神马国产精品三级电影在线观看 | 天堂√8在线中文| 18禁裸乳无遮挡免费网站照片 | 自线自在国产av| 宅男免费午夜| 两性夫妻黄色片| 伦理电影免费视频| 国产乱人伦免费视频| 精品久久久久久,| 久久中文字幕人妻熟女| 久久久久久亚洲精品国产蜜桃av| 久久精品国产综合久久久| 男人舔女人的私密视频| 亚洲成av片中文字幕在线观看| 18美女黄网站色大片免费观看| 久久久久久亚洲精品国产蜜桃av| 少妇熟女aⅴ在线视频| 久久久久亚洲av毛片大全| 国产精品九九99| 免费看十八禁软件| 久久久久精品国产欧美久久久| 亚洲午夜精品一区,二区,三区| 日韩成人在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 久久亚洲真实| 视频区欧美日本亚洲| 国产成人欧美| 国产亚洲av高清不卡| 18禁观看日本| 国产精品香港三级国产av潘金莲| 亚洲av美国av| avwww免费| 亚洲第一av免费看| 欧洲精品卡2卡3卡4卡5卡区| 久久久国产精品麻豆| 欧美黄色片欧美黄色片| 97人妻精品一区二区三区麻豆 | www日本黄色视频网| 欧美黄色片欧美黄色片| 欧美日韩亚洲综合一区二区三区_| 麻豆av在线久日| 一区二区三区精品91| 成人欧美大片| 免费在线观看亚洲国产| 亚洲成人免费电影在线观看| 成人国产综合亚洲| 久久国产精品影院| 成人国产一区最新在线观看| 男女做爰动态图高潮gif福利片| 长腿黑丝高跟| 日本免费a在线| 搡老妇女老女人老熟妇| 国产亚洲欧美精品永久| 在线观看免费视频日本深夜| 国产成年人精品一区二区| a在线观看视频网站| 精品久久久久久久久久久久久 | 深夜精品福利| 国产精品美女特级片免费视频播放器 | 国产精品久久久久久精品电影 | 欧美亚洲日本最大视频资源| 长腿黑丝高跟| 国产97色在线日韩免费| 老熟妇乱子伦视频在线观看| 久久国产精品男人的天堂亚洲| 99国产综合亚洲精品| e午夜精品久久久久久久| 国产亚洲精品av在线| 久久久久亚洲av毛片大全| 听说在线观看完整版免费高清| 精品无人区乱码1区二区| 色播在线永久视频| 男女午夜视频在线观看| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 波多野结衣av一区二区av| 日韩欧美免费精品| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 女性生殖器流出的白浆| 很黄的视频免费| 韩国av一区二区三区四区| 国产精品综合久久久久久久免费| 黑丝袜美女国产一区| 99热6这里只有精品| 99久久99久久久精品蜜桃| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清 | 男女那种视频在线观看| 国产爱豆传媒在线观看 | 成人手机av| xxx96com| 国产亚洲精品第一综合不卡| 国产精品日韩av在线免费观看| 国产精品1区2区在线观看.| 999久久久精品免费观看国产| 欧美黑人精品巨大| 日本a在线网址| 在线看三级毛片| 久久久久精品国产欧美久久久| 久久久久免费精品人妻一区二区 | 12—13女人毛片做爰片一| 亚洲久久久国产精品| 国产精华一区二区三区| 国产人伦9x9x在线观看| 欧美不卡视频在线免费观看 | 国产视频一区二区在线看| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美三级三区| e午夜精品久久久久久久| 色婷婷久久久亚洲欧美| 国产精品二区激情视频| 亚洲成a人片在线一区二区| 欧美性长视频在线观看| 黄色女人牲交| 1024手机看黄色片| 欧美乱色亚洲激情| avwww免费| 午夜福利视频1000在线观看| netflix在线观看网站| 巨乳人妻的诱惑在线观看| 国产精品久久久久久人妻精品电影| 日本三级黄在线观看| 国产一级毛片七仙女欲春2 | 无限看片的www在线观看| 一区二区日韩欧美中文字幕| 在线观看免费午夜福利视频| 手机成人av网站| 国产一卡二卡三卡精品| 国产97色在线日韩免费| 精品国产超薄肉色丝袜足j| 99在线人妻在线中文字幕| 日本一区二区免费在线视频| 在线十欧美十亚洲十日本专区| 免费av毛片视频| 制服诱惑二区| 亚洲中文日韩欧美视频| 亚洲片人在线观看| bbb黄色大片| 成人永久免费在线观看视频| 亚洲av美国av| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼| 久久久精品欧美日韩精品| 久久精品国产99精品国产亚洲性色| 91在线观看av| 久久精品aⅴ一区二区三区四区| 视频在线观看一区二区三区| 国产亚洲精品一区二区www| 丁香欧美五月| 久久午夜亚洲精品久久| 国产精品乱码一区二三区的特点| 欧美激情极品国产一区二区三区| 法律面前人人平等表现在哪些方面| 动漫黄色视频在线观看| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆 | 亚洲自偷自拍图片 自拍| 男女做爰动态图高潮gif福利片| 91国产中文字幕| 一级毛片精品| 97人妻精品一区二区三区麻豆 | 久99久视频精品免费| 亚洲精品中文字幕一二三四区| 亚洲第一av免费看| 长腿黑丝高跟| 免费人成视频x8x8入口观看| 首页视频小说图片口味搜索| 黄色毛片三级朝国网站| 国产午夜福利久久久久久| 国产蜜桃级精品一区二区三区| 国产黄色小视频在线观看| 制服人妻中文乱码| 在线视频色国产色| www.www免费av| 亚洲av片天天在线观看| 日韩欧美一区视频在线观看| 好男人在线观看高清免费视频 | 女性生殖器流出的白浆| 天堂影院成人在线观看| 精品久久久久久,| 国产精品 国内视频| 啦啦啦韩国在线观看视频| 波多野结衣av一区二区av| 18美女黄网站色大片免费观看| 怎么达到女性高潮| 男人舔女人下体高潮全视频| www.www免费av| 亚洲午夜理论影院| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码| 久久国产精品影院| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 黄色片一级片一级黄色片| 757午夜福利合集在线观看| 少妇被粗大的猛进出69影院| 无人区码免费观看不卡| 国产精品国产高清国产av| 一二三四社区在线视频社区8| 亚洲免费av在线视频| 国产亚洲精品久久久久久毛片| 久久香蕉国产精品| 成人18禁在线播放| 欧美一区二区精品小视频在线| 欧美日韩乱码在线| 亚洲av中文字字幕乱码综合 | 黄色a级毛片大全视频| 美女大奶头视频| 麻豆国产av国片精品| 欧美精品啪啪一区二区三区| 国产精品九九99| 亚洲国产精品久久男人天堂| 久久精品人妻少妇| tocl精华| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 黄片播放在线免费| 美女午夜性视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费视频内射| 中文字幕另类日韩欧美亚洲嫩草| 成人一区二区视频在线观看| 婷婷六月久久综合丁香| 亚洲成国产人片在线观看| 精品一区二区三区视频在线观看免费| av视频在线观看入口| 啦啦啦韩国在线观看视频| 日韩欧美一区视频在线观看| 精品久久蜜臀av无| 国产精品影院久久| 国产av又大| 亚洲色图av天堂| 久久久久久久午夜电影| 国内久久婷婷六月综合欲色啪| 夜夜看夜夜爽夜夜摸| 亚洲欧美一区二区三区黑人| 国产精品电影一区二区三区| 宅男免费午夜| www.熟女人妻精品国产| 18禁黄网站禁片免费观看直播| 中文字幕人妻熟女乱码| 亚洲国产高清在线一区二区三 | 热re99久久国产66热| 色综合亚洲欧美另类图片| 三级毛片av免费| 日韩精品中文字幕看吧| 制服丝袜大香蕉在线| 窝窝影院91人妻| 久久婷婷人人爽人人干人人爱| 国产97色在线日韩免费| 国产精品久久久久久亚洲av鲁大| 最近在线观看免费完整版| 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 成人欧美大片| 免费电影在线观看免费观看| 亚洲精品国产一区二区精华液| 欧美+亚洲+日韩+国产| 禁无遮挡网站| 熟女电影av网| 日本 欧美在线| 国产熟女xx| 日本精品一区二区三区蜜桃| 伦理电影免费视频| 两个人免费观看高清视频| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线美女| 又大又爽又粗| 午夜激情av网站| 欧美激情高清一区二区三区| 亚洲av片天天在线观看| 成人免费观看视频高清| 亚洲 欧美一区二区三区| 免费av毛片视频| 欧美成人免费av一区二区三区| 午夜视频精品福利| 好男人在线观看高清免费视频 | 久久这里只有精品19| 国产一区二区三区视频了| 国产精品久久久久久人妻精品电影| 国产亚洲精品av在线| 久久久水蜜桃国产精品网| 亚洲欧洲精品一区二区精品久久久| 亚洲美女黄片视频| 亚洲免费av在线视频| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 白带黄色成豆腐渣| 最近最新中文字幕大全免费视频| 天天一区二区日本电影三级| 91av网站免费观看| 亚洲 欧美一区二区三区| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| 久久久国产欧美日韩av| 国产成人影院久久av| xxxwww97欧美| 中文字幕另类日韩欧美亚洲嫩草| a在线观看视频网站| 精品日产1卡2卡| 欧美精品啪啪一区二区三区| 99re在线观看精品视频| 十八禁人妻一区二区| 久久 成人 亚洲| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 久久青草综合色| 亚洲欧美日韩无卡精品| 中国美女看黄片| 久久国产亚洲av麻豆专区| 丁香欧美五月| 成人手机av| 欧美乱码精品一区二区三区| 在线观看一区二区三区| 1024手机看黄色片| 亚洲专区字幕在线| 日韩欧美一区二区三区在线观看| 又黄又爽又免费观看的视频| 婷婷六月久久综合丁香| 久久久国产欧美日韩av| 国产精品影院久久| АⅤ资源中文在线天堂| 最近在线观看免费完整版| 一级毛片女人18水好多| 亚洲精品一区av在线观看| 成人午夜高清在线视频 | 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 午夜免费鲁丝| 亚洲国产精品999在线| 十八禁人妻一区二区| 欧美乱码精品一区二区三区| 国产一卡二卡三卡精品| 免费在线观看成人毛片| 少妇 在线观看| 亚洲熟妇中文字幕五十中出| 亚洲一区高清亚洲精品| 国产亚洲精品久久久久久毛片| av在线天堂中文字幕| 国产aⅴ精品一区二区三区波| 91成人精品电影| 一本久久中文字幕| 国产亚洲精品一区二区www| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 一本大道久久a久久精品| 成人亚洲精品av一区二区| 成人欧美大片| 亚洲一区二区三区色噜噜| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 久久久久免费精品人妻一区二区 | 国产精品日韩av在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产av不卡久久| 啦啦啦韩国在线观看视频| 亚洲精品美女久久av网站| 欧美大码av| 久热这里只有精品99| 亚洲avbb在线观看| 丰满的人妻完整版| 天堂影院成人在线观看| 中文字幕人妻丝袜一区二区| 中文字幕av电影在线播放| 变态另类丝袜制服| 国产亚洲精品综合一区在线观看 | 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 操出白浆在线播放| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻熟女乱码| 好男人电影高清在线观看| 女警被强在线播放| 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 亚洲国产精品sss在线观看| 在线av久久热| 中文字幕人成人乱码亚洲影| 日韩欧美在线二视频| 日本 av在线| 在线播放国产精品三级| 精品国产美女av久久久久小说| 亚洲男人的天堂狠狠| 精华霜和精华液先用哪个| 免费看日本二区| 97人妻精品一区二区三区麻豆 | www.自偷自拍.com| 亚洲成a人片在线一区二区| 亚洲自拍偷在线| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 久久99热这里只有精品18| 国产片内射在线| 国产一卡二卡三卡精品| 亚洲 欧美一区二区三区| 成人免费观看视频高清| 亚洲专区字幕在线| 日本 欧美在线| 亚洲三区欧美一区| 操出白浆在线播放| 午夜福利18| 可以免费在线观看a视频的电影网站| 中文字幕人成人乱码亚洲影| 午夜久久久久精精品| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 黄色视频,在线免费观看| 欧美绝顶高潮抽搐喷水| 一个人观看的视频www高清免费观看 | 成年人黄色毛片网站| 久久久久久九九精品二区国产 | 搞女人的毛片| 久久精品91无色码中文字幕| 麻豆久久精品国产亚洲av| 黄色片一级片一级黄色片| 国产野战对白在线观看| √禁漫天堂资源中文www| 国产一卡二卡三卡精品| 国产激情偷乱视频一区二区| 国产伦人伦偷精品视频| 婷婷精品国产亚洲av| 国产精华一区二区三区| 嫩草影视91久久| 国产单亲对白刺激| 久热这里只有精品99| 久久久久久久久免费视频了| 天堂√8在线中文| 99久久99久久久精品蜜桃| 亚洲av第一区精品v没综合| 婷婷精品国产亚洲av| 国产精华一区二区三区| 精品电影一区二区在线| 女人被狂操c到高潮| 亚洲精品久久成人aⅴ小说| 正在播放国产对白刺激| 亚洲精品美女久久av网站| 国产精华一区二区三区| 国产99白浆流出| 99精品久久久久人妻精品| 免费看a级黄色片| 精品久久久久久成人av| 免费在线观看完整版高清| 久久国产亚洲av麻豆专区| 中文字幕另类日韩欧美亚洲嫩草| 国产黄片美女视频| 一级作爱视频免费观看| 在线视频色国产色| 制服人妻中文乱码| 久久久国产精品麻豆| 日本熟妇午夜| 51午夜福利影视在线观看| 国产伦在线观看视频一区| 女生性感内裤真人,穿戴方法视频| √禁漫天堂资源中文www| 欧美又色又爽又黄视频| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 久久久久久大精品| 日日摸夜夜添夜夜添小说| 亚洲性夜色夜夜综合| 国产成+人综合+亚洲专区| 夜夜爽天天搞| 一区二区三区高清视频在线| 老司机午夜福利在线观看视频| 国产欧美日韩一区二区三| 一级毛片女人18水好多| 免费女性裸体啪啪无遮挡网站| 久久国产精品影院| 热99re8久久精品国产| 国产又色又爽无遮挡免费看| 欧美一级a爱片免费观看看 | 亚洲第一欧美日韩一区二区三区| 91麻豆精品激情在线观看国产| 丁香六月欧美| 欧美zozozo另类| 国产一级毛片七仙女欲春2 | 久久中文看片网| 男男h啪啪无遮挡| 国产成人精品久久二区二区91| 熟女电影av网| av片东京热男人的天堂| 久久婷婷人人爽人人干人人爱| 国产精品电影一区二区三区| 两个人视频免费观看高清| 婷婷精品国产亚洲av| 1024视频免费在线观看| 国产精品98久久久久久宅男小说| 一级a爱片免费观看的视频| av超薄肉色丝袜交足视频| 亚洲av五月六月丁香网| 男人操女人黄网站| 搡老岳熟女国产| 人人澡人人妻人| 精品国产乱码久久久久久男人| 国产视频一区二区在线看| 非洲黑人性xxxx精品又粗又长| 日本 av在线| 丁香六月欧美| 一个人观看的视频www高清免费观看 | 久久亚洲真实| 大型黄色视频在线免费观看| 法律面前人人平等表现在哪些方面| 日韩三级视频一区二区三区| 婷婷亚洲欧美| 女警被强在线播放| 日韩欧美一区视频在线观看| 一区二区三区国产精品乱码| 久久天躁狠狠躁夜夜2o2o| 亚洲专区中文字幕在线| 国产久久久一区二区三区| 国产亚洲欧美在线一区二区| 亚洲午夜精品一区,二区,三区| 久久久国产成人免费| 久久国产精品男人的天堂亚洲| 亚洲欧美日韩高清在线视频| 国产亚洲精品久久久久5区| 在线观看www视频免费| 性欧美人与动物交配| 深夜精品福利| 欧美国产精品va在线观看不卡| 欧美色视频一区免费| 日韩成人在线观看一区二区三区| 黄色a级毛片大全视频| 亚洲欧美一区二区三区黑人| 12—13女人毛片做爰片一| 午夜福利成人在线免费观看| 女生性感内裤真人,穿戴方法视频| 激情在线观看视频在线高清| 日本一区二区免费在线视频| 国产高清激情床上av| 男男h啪啪无遮挡| 久久精品91无色码中文字幕| 国产男靠女视频免费网站| 观看免费一级毛片| 免费女性裸体啪啪无遮挡网站| 欧美日韩黄片免| 色综合欧美亚洲国产小说| 啦啦啦 在线观看视频| 免费无遮挡裸体视频| 99久久国产精品久久久| 一进一出好大好爽视频| 国产伦在线观看视频一区| 香蕉国产在线看| 精品国产一区二区三区四区第35| 免费在线观看日本一区| 久久亚洲真实| 精品人妻1区二区| 级片在线观看| 制服丝袜大香蕉在线| 久久婷婷成人综合色麻豆| 校园春色视频在线观看| 女性生殖器流出的白浆| 黑人巨大精品欧美一区二区mp4| 国产97色在线日韩免费| 一二三四社区在线视频社区8| 亚洲午夜精品一区,二区,三区| 国产国语露脸激情在线看| 欧美午夜高清在线| 搡老熟女国产l中国老女人| 成年人黄色毛片网站| 国产又色又爽无遮挡免费看| 亚洲中文日韩欧美视频| 桃红色精品国产亚洲av| 啦啦啦免费观看视频1| 国产激情偷乱视频一区二区| 在线观看午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 日日夜夜操网爽| 母亲3免费完整高清在线观看| 91字幕亚洲| 黄色丝袜av网址大全| 制服丝袜大香蕉在线| 日韩欧美 国产精品| 国产精品永久免费网站| 香蕉丝袜av| 国产高清视频在线播放一区| 国产av一区在线观看免费| 中文字幕另类日韩欧美亚洲嫩草| 少妇粗大呻吟视频| 伦理电影免费视频| 国产黄色小视频在线观看| ponron亚洲| 一本精品99久久精品77| 51午夜福利影视在线观看| 亚洲全国av大片| 九色国产91popny在线| 大型av网站在线播放| 人人妻,人人澡人人爽秒播| xxx96com| 国产精品久久久久久人妻精品电影| 午夜福利在线在线| 国内精品久久久久精免费| 亚洲五月天丁香| 欧美av亚洲av综合av国产av| 真人做人爱边吃奶动态| 一区二区三区精品91| 日韩精品免费视频一区二区三区| 在线观看舔阴道视频| tocl精华| 丰满的人妻完整版| 欧美国产精品va在线观看不卡| 99热6这里只有精品| 亚洲精品美女久久久久99蜜臀|