• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kernel principal component analysis networkfor image classification

    2015-03-01 08:07:20WuDanWuJiasongZengRuiJiangLongyuLotfiSenhadjiShuHuazhong

    Wu Dan  Wu Jiasong  Zeng Rui  Jiang LongyuLotfi Senhadji  Shu Huazhong

    (1Key Laboratory of Computer Network and Information Integration of Ministry of Education,Southeast University, Nanjing 210096, China)(2Institut National de la Santé et de la Recherche Médicale U 1099, Rennes 35000, France)(3Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35000, France)(4Centre de Recherche en Information Biomédicale Sino-Fran?ais, Nanjing 210096, China)

    ?

    Kernel principal component analysis networkfor image classification

    Wu Dan1,4Wu Jiasong1,2,3,4Zeng Rui1,4Jiang Longyu1,4Lotfi Senhadji2,3,4Shu Huazhong1,4

    (1Key Laboratory of Computer Network and Information Integration of Ministry of Education,Southeast University, Nanjing 210096, China)(2Institut National de la Santé et de la Recherche Médicale U 1099, Rennes 35000, France)(3Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes 35000, France)(4Centre de Recherche en Information Biomédicale Sino-Fran?ais, Nanjing 210096, China)

    Abstract:In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network (KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results show that the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network (PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.

    Key words:deep learning; kernel principal component analysis net (KPCANet); principal component analysis net (PCANet); face recognition; object recognition; handwritten digit recognition

    Received 2015-05-04.

    Biographies:Wu Dan (1990—), female, graduate; Shu Huazhong (corresponding author), male, doctor, professor, shu.list@seu.edu.cn.

    Foundation items:The National Natural Science Foundation of China (No.61201344, 61271312, 61401085, 11301074), the Research Fund for the Doctoral Program of Higher Education (No.20120092120036), the Program for Special Talents in Six Fields of Jiangsu Province (No.DZXX-031), Industry-University-Research Cooperation Project of Jiangsu Province (No.BY2014127-11), “333” Project (No.BRA2015288), High-End Foreign Experts Recruitment Program (No.GDT20153200043), Open Fund of Jiangsu Engineering Center of Network Monitoring (No.KJR1404).

    Citation:Wu Dan, Wu Jiasong, Zeng Rui, et al. Kernel principal component analysis network for image classification[J].Journal of Southeast University (English Edition),2015,31(4):469-473.[doi:10.3969/j.issn.1003-7985.2015.04.007]

    Amajor difficulty of image classification is the considerable intra-class variability, arising from different illuminations, rigid deformations, non-rigid deformations and occlusions, which are useless for classification and should be eliminated. Deep learning structures like deep convolutional networks have the ability to learn invariant features[1]. Bruna et al.[2]built a scattering network (ScatNet) which is invariant to both rigid and non-rigid deformations. Chan et al.[3]constructed a principal component analysis network (PCANet), which cascaded principal component analysis (PCA), binary hashing, and block-wise histogram. PCANet achieves the state-of-the-art accuracy in many datasets of classification tasks, such as extended Yale B dataset, AR dataset, and FERET dataset. Kernel PCA (KPCA)[4-5]is a nonlinear generalization of PCA in the sense that it performs PCA in the feature spaces of arbitrary large dimension. KPCA can generally provide a better recognition rate than ordinary PCA due to the following two reasons: 1) KPCA uses an arbitrary number of nonlinear components, while ordinary PCA uses only a limited number of linear principal components; 2) KPCA has more flexibility than ordinary PCA since KPCA can choose different kernel functions (for example, Gaussian kernel, Polynomial kernel, etc.) for different recognition tasks, while ordinary PCA uses only linear kernel functions.

    In this paper, we propose a new deep learning network named kernel principal component network (KPCANet), which cascades two KPCA stages and one pooling stage. When the kernel function is linear, the proposed KPCANet degrades to the PCANet[3]. Experimental results show that the proposed KPCANet is invariant to illumination and stable to slight non-rigid deformation, and it generally outperforms PCANet in both face recognition and object recognition tasks.

    1KPCANet

    Fig.1 shows the whole structure of the proposed KPCANet, which consists of two KPCA stages and one pooling stage. Suppose that the patch size isk1×k2at all stages, and all the input images are of sizem×n.

    1.1 The first stage of KPCANet

    We inputNimages Ii(i=1,2,…,N) that belong tocclasses, and take a patch pi,j∈Rk1×k2centered in thej-th

    Fig.1 The detailed block diagram of the proposed KPCANet

    T: Rk1k2×k1k2→F,X|→XF

    (1)

    (2)

    1.2 The second stage of KPCANet

    1.3 The pooling stage of KPCANet

    EveryL2input images are binarized and converted to an image with

    i=1,2,…,N;l=1,2,…,L1

    (3)

    whereHis the Heaviside step (like) function[3].

    Each of theL1images Pi,l(l=1,2,…,L1) is then partitioned intoBblocks. We compute the histogram of the decimal values in each block, and concatenate all theBhistograms into one vector denoted as Bhist(Pi,l). Finally, the KPCANet features of Iiare given by

    fi=[Bhist(Pi,1),Bhist(Pi,2),…,Bhist(Pi,L1)]T∈R(2L2)L1B

    (4)

    Since deep architectures are composed of multiple levels of nonlinear operations, such as in complicated propositional figuree re-using many sub-figuree[6], the first two stages of KPCANet are set to be the same in this paper, we can re-use the whole structure of the first stage as well.

    2Experimental Results

    We evaluate the performance of the proposed KPCANet on various databases including MNIST, USPS, Yale face dataset, COIL-100 objects dataset, and AR dataset. Besides, we compare KPCANets that cascade various (from one to three) stage(s) of the KPCA layer in this paper. All the features learned by KPCANet are classified with a SVM classifier.

    2.1 Comparison of KPCANet in different recognition tasks

    In this section, we use various kernel functions to evaluate the performance of the proposed KPCANet in recog-

    nition tasks including handwritten digit recognition, face recognition and object recognition. Kernel functions that are used in this paper are presented in Tab.1.

    MNIST[7]and USPS[8]are used to evaluate the performance of KPCANet on handwritten images. MNIST contains 60 000 train images and 10 000 test images, and all images are of size 28×28 pixel. USPS contains 9 298 images of size 16×16 pixel in total, 5 000 of which are chosen randomly to train KPCANet and the rest are for testing. The Yale face database[9]is used to evaluate the performance of the proposed KPCANet on face images. It contains 165 grayscale images of 15 individuals in GIF format, and each individual contains 11 images with different facial expressions or configurations: center-light, wearing glasses, happy, left-light, wearing no glasses, normal, right-light, sad, sleepy, surprised, and winking. All images of this database are cropped to size 64×64 pixel, 90 of which are chosen randomly to train the proposed KPCANet and the rest are for testing. COIL-100 (Columbia Object Image Library)[10]is a database of the color images of 100 objects. The images of the objects are taken at pose intervals of 5°, and they correspond to 72 poses per object. All images are transformed into gray images and cropped to size 32×32 pixel. Half images of each object are chosen randomly to train KPCANet and the others are for testing.

    Tab.1 Various kernel functions used in this paper

    The performances of different kernel functions on datasets including MNIST, USPS, Yale face dataset and COIL-100 dataset are presented in Tab.2. Both the patch size and the block size are set to be 8×8 pixel, and the filter number is set to be 8 at all stages. The overlapping ratio of block is 0.5.

    Tab.2 Comparison of error rates of KPCANet with various kernel functions on different datasets %

    It can be seen from Tab.2 that the performance of PCANet performs better than KPCANet in handwritten digit recognition generally, while the latter outperforms the former in face recognition and object recognition.

    2.2 Face recognition on AR face dataset

    The properties of KPCANet are tested by performing KPCANet on the AR dataset[11]. The AR dataset contains about 4 000 color images of size 165×120 pixel from 126 individuals. The subset of the data that contains 100 individuals including 50 males and 50 females is chosen. The color images are converted to gray scale ones. Each individual consists of two images with frontal illumination and neutral expression, which is used as the training samples. The other images including 24 images varying from illumination to disguise are used for testing.

    The patch size and the block size are set to be 7×7 pixel and 8×8 pixel, respectively. The overlapping ratio of the block is 0.5. We compare the proposed KPCANet with LBP[12]and P-LBP[13]in Tab.3. KPCANet with linear kernel function and Laplacian kernel function is used in this experiment. From Tab.3, one can see that when the images only undergo the change of illumination, the testing accuracy rate achieves 100% with both linear kernel KPCANet and Laplacian kernel KPCANet. It is demonstrated that KPCANet is invariant to illumination. Besides, KPCANet outperforms LBP[12]and P-LBP[13]on different expressions and disguises under various illumination conditions, showing that KPCANet is robust to small deformation and occlusion.

    Tab.3 Comparison of accuracy rates of the methods on the AR face database %

    2.3 KPCANet with various stages in AR face dataset

    KPCANet, which cascades different numbers of the KPCA filter bank layer and a pooling layer, is performed with the AR face dataset used in Section 2.2, and all images are cropped to size 32×32 pixel. Linear kernel, sigmoid kernel and circular kernel are chosen here in order to simplify the results. The patch size and the block size are set to be 7×7 pixel and 8×6 pixel, respectively. The overlapping ratio of the block is 0.5. The results are shown in Tab.4.

    Tab.4 Comparison of accuracy rates of KPCANet with different number of stages on the AR face dataset %

    From Tab.4, we can see that the accuracy rate increases as the number of KPCA filter bank layers increases in the KPCANet, however, the training time grows exponentially at the same time.

    3Conclusion

    In this paper, we propose the KPCANet, which is an extension of PCANet, for image classification. The proposed KPCANet cascades kernel PCA, binary hashing and block-wise histogram. Experiments prove that KPCANet with different kernel functions is stable in general and also is invariant to illumination and stable to slight deformation and occlusion. Moreover, KPCANet is suitable for the recognition of handwritten images, face images and object images.

    References

    [1]LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision[C]//Proceedingsof2010IEEEInternationalSymposiumonCircuitsandSystems. Paris, France, 2010: 253-256.

    [2]Bruna J, Mallat S. Invariant scattering convolution networks[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2013, 35(8): 1872-1886.

    [3]Chan T H, Jia K, Gao S, et al. PCANet: a simple deep learning baseline for image classification?[J].arXivpreprintarXiv: 1404.3606, 2014.

    [4]Sch?lkopf B, Smola A, Müller K R. Kernel principal component analysis[C]//InternationalConferenceonArtificialNeuralNetworks. Lausanne, Switzerland, 1997: 583-588.

    [5]Sch?lkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J].NeuralComputation, 1998, 10(5): 1299-1319.

    [6]Bengio Y. Learning deep architectures for AI[J].FoundationsandTrends?inMachineLearning, 2009, 2(1): 1-127.

    [7]LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J].ProceedingsoftheIEEE, 1998, 86(11): 2278-2324.

    [8]Hull J J. A database for handwritten text recognition research[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 1994, 16(5): 550-554.

    [9]Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2001, 23(6): 643-660.

    [10]Nene S A, Nayar S K, Murase H. Columbia object image library (COIL-20), CUCS-005-96 [R]. New York: Department of Computer Science, Columbia University: 1996.

    [11]Martinez A M, Benavente R. The AR face database, CVC technical report #24[R]. CVC, 1998.

    [12]Ahonen T, Hadid A, Pietik?inen M. Face description with local binary patterns: application to face recognition[J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2006, 28(12): 2037-2041.

    [13]Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J].IEEETransactionsonImageProcessing, 2010, 19(6): 1635-1650.

    doi:10.3969/j.issn.1003-7985.2015.04.007

    欧美亚洲日本最大视频资源| 神马国产精品三级电影在线观看 | 成年女人毛片免费观看观看9| www.熟女人妻精品国产| 老司机深夜福利视频在线观看| 午夜两性在线视频| 男女做爰动态图高潮gif福利片 | 后天国语完整版免费观看| 中文字幕色久视频| 精品卡一卡二卡四卡免费| 日韩中文字幕欧美一区二区| 他把我摸到了高潮在线观看| 18美女黄网站色大片免费观看| 国产精品亚洲av一区麻豆| 久久 成人 亚洲| 中文亚洲av片在线观看爽| 精品国产一区二区三区四区第35| 久久久久久久精品吃奶| 亚洲欧美精品综合久久99| 99久久99久久久精品蜜桃| 久久婷婷成人综合色麻豆| 亚洲第一青青草原| 久久久久九九精品影院| 国产在线精品亚洲第一网站| 精品国产亚洲在线| 欧美日本中文国产一区发布| 国产国语露脸激情在线看| 99精品在免费线老司机午夜| 嫩草影视91久久| 日本黄色日本黄色录像| 精品熟女少妇八av免费久了| 中文字幕高清在线视频| 亚洲精品在线观看二区| 91av网站免费观看| 午夜成年电影在线免费观看| 亚洲欧美激情在线| 宅男免费午夜| 成人手机av| 国产成人啪精品午夜网站| 女人爽到高潮嗷嗷叫在线视频| 久久久久久人人人人人| 久久精品人人爽人人爽视色| 成人国语在线视频| 757午夜福利合集在线观看| 麻豆成人av在线观看| 国产成人系列免费观看| 狠狠狠狠99中文字幕| 97超级碰碰碰精品色视频在线观看| 真人做人爱边吃奶动态| 婷婷精品国产亚洲av在线| 亚洲中文av在线| 欧美色视频一区免费| 久久久久久久久免费视频了| 精品国产超薄肉色丝袜足j| 欧美午夜高清在线| 欧美日韩视频精品一区| 淫妇啪啪啪对白视频| 动漫黄色视频在线观看| 亚洲中文av在线| 18禁黄网站禁片午夜丰满| 精品国内亚洲2022精品成人| 日本免费一区二区三区高清不卡 | 后天国语完整版免费观看| 久久影院123| 97人妻天天添夜夜摸| 在线观看免费视频网站a站| 欧美成人性av电影在线观看| 99久久综合精品五月天人人| 777久久人妻少妇嫩草av网站| 亚洲第一av免费看| 人成视频在线观看免费观看| 国产高清国产精品国产三级| 欧美日韩黄片免| 美女高潮喷水抽搐中文字幕| 免费在线观看黄色视频的| 黄色怎么调成土黄色| 12—13女人毛片做爰片一| 日韩三级视频一区二区三区| 免费不卡黄色视频| 看片在线看免费视频| 大型黄色视频在线免费观看| 久久人妻熟女aⅴ| 成人三级做爰电影| 欧美日韩av久久| 精品人妻在线不人妻| 亚洲精华国产精华精| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清| 国产精品免费一区二区三区在线| 69精品国产乱码久久久| 搡老熟女国产l中国老女人| 91成人精品电影| 日本免费a在线| 久久久久国产一级毛片高清牌| 欧美国产精品va在线观看不卡| 丁香欧美五月| 日韩大码丰满熟妇| 真人做人爱边吃奶动态| 啦啦啦免费观看视频1| 亚洲国产精品一区二区三区在线| 国产高清videossex| 国产视频一区二区在线看| 宅男免费午夜| 性少妇av在线| 国产精品免费视频内射| 亚洲av成人av| 精品久久久久久电影网| 成年版毛片免费区| 99国产精品免费福利视频| 久9热在线精品视频| 人人澡人人妻人| 精品国产国语对白av| 看免费av毛片| 人妻丰满熟妇av一区二区三区| 91精品国产国语对白视频| 无限看片的www在线观看| 999久久久精品免费观看国产| 亚洲av成人av| 国产亚洲欧美98| 热99国产精品久久久久久7| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 国产熟女xx| 在线视频色国产色| 亚洲五月天丁香| 国产在线精品亚洲第一网站| 亚洲成人精品中文字幕电影 | 一区二区三区国产精品乱码| 一a级毛片在线观看| 丝袜人妻中文字幕| 一级毛片精品| 亚洲成人免费av在线播放| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 成年版毛片免费区| 国产亚洲欧美在线一区二区| 亚洲avbb在线观看| 欧美日韩亚洲高清精品| 欧美成人性av电影在线观看| av国产精品久久久久影院| 波多野结衣高清无吗| 久久人妻熟女aⅴ| 男女高潮啪啪啪动态图| 日本免费一区二区三区高清不卡 | 99久久综合精品五月天人人| 丝袜在线中文字幕| 亚洲av第一区精品v没综合| 国产精品永久免费网站| 亚洲av成人不卡在线观看播放网| 日韩人妻精品一区2区三区| 欧美久久黑人一区二区| 国产男靠女视频免费网站| 欧美在线一区亚洲| 日日爽夜夜爽网站| 在线观看一区二区三区| 在线观看免费午夜福利视频| 欧美精品啪啪一区二区三区| 天堂√8在线中文| 日本撒尿小便嘘嘘汇集6| 欧美日韩av久久| 99国产精品免费福利视频| av片东京热男人的天堂| 亚洲三区欧美一区| 国产成人精品在线电影| 久久午夜综合久久蜜桃| 日本免费一区二区三区高清不卡 | 成人三级做爰电影| 亚洲成人久久性| 免费女性裸体啪啪无遮挡网站| 亚洲国产中文字幕在线视频| 好男人电影高清在线观看| 51午夜福利影视在线观看| 国产高清videossex| 精品电影一区二区在线| 精品福利永久在线观看| 亚洲av片天天在线观看| a级片在线免费高清观看视频| 三级毛片av免费| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 欧美一级毛片孕妇| 精品久久久久久,| 久久精品国产亚洲av高清一级| 最新美女视频免费是黄的| 亚洲全国av大片| 精品免费久久久久久久清纯| 制服人妻中文乱码| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 国产亚洲精品综合一区在线观看 | 精品国产乱子伦一区二区三区| 国产av在哪里看| 亚洲一区二区三区欧美精品| 午夜免费鲁丝| 精品久久久久久,| 高清毛片免费观看视频网站 | 99精品欧美一区二区三区四区| av片东京热男人的天堂| 999精品在线视频| 丝袜美腿诱惑在线| 日韩大尺度精品在线看网址 | 18禁美女被吸乳视频| 国产aⅴ精品一区二区三区波| 亚洲精品在线观看二区| 午夜精品在线福利| 97人妻天天添夜夜摸| 女生性感内裤真人,穿戴方法视频| 精品午夜福利视频在线观看一区| 亚洲全国av大片| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 国产蜜桃级精品一区二区三区| 国产国语露脸激情在线看| 亚洲色图av天堂| 国产精品九九99| 色综合欧美亚洲国产小说| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久男人| 久久国产精品人妻蜜桃| 国产又色又爽无遮挡免费看| 久99久视频精品免费| 一边摸一边抽搐一进一出视频| 99在线人妻在线中文字幕| 久久久久国产一级毛片高清牌| 丝袜在线中文字幕| 国产精品 国内视频| 丁香六月欧美| 精品乱码久久久久久99久播| 国产成人啪精品午夜网站| 欧美+亚洲+日韩+国产| 满18在线观看网站| 色综合婷婷激情| 日韩欧美一区二区三区在线观看| 女人被狂操c到高潮| 国产一区二区三区视频了| 欧美成人性av电影在线观看| 午夜91福利影院| 国产精品免费一区二区三区在线| 免费久久久久久久精品成人欧美视频| 免费看a级黄色片| 嫁个100分男人电影在线观看| 香蕉久久夜色| 在线天堂中文资源库| 一级片'在线观看视频| 999久久久国产精品视频| 老鸭窝网址在线观看| 99国产精品99久久久久| 亚洲成av片中文字幕在线观看| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| 亚洲精品国产精品久久久不卡| 欧洲精品卡2卡3卡4卡5卡区| 国产又爽黄色视频| 成人国语在线视频| 国产精品影院久久| 日本一区二区免费在线视频| 国产99白浆流出| 国产精品久久久久久人妻精品电影| 怎么达到女性高潮| 国产91精品成人一区二区三区| 少妇的丰满在线观看| 99久久久亚洲精品蜜臀av| 色精品久久人妻99蜜桃| 亚洲午夜精品一区,二区,三区| videosex国产| 中文字幕av电影在线播放| 久久精品国产清高在天天线| 亚洲男人的天堂狠狠| 纯流量卡能插随身wifi吗| 中国美女看黄片| 老司机深夜福利视频在线观看| 国产一区二区激情短视频| 伦理电影免费视频| 两个人免费观看高清视频| 性少妇av在线| 波多野结衣高清无吗| 欧美日韩视频精品一区| 国产99白浆流出| a级毛片在线看网站| 又黄又粗又硬又大视频| av在线天堂中文字幕 | 久久天堂一区二区三区四区| 多毛熟女@视频| 久久久国产欧美日韩av| 操美女的视频在线观看| 嫩草影视91久久| 香蕉国产在线看| av免费在线观看网站| 国产伦人伦偷精品视频| 香蕉久久夜色| 叶爱在线成人免费视频播放| 91精品国产国语对白视频| 美女高潮喷水抽搐中文字幕| 两个人看的免费小视频| 91麻豆精品激情在线观看国产 | 欧美黄色片欧美黄色片| 在线播放国产精品三级| 99re在线观看精品视频| 精品日产1卡2卡| 99国产极品粉嫩在线观看| 欧美色视频一区免费| 精品少妇一区二区三区视频日本电影| 久久亚洲真实| 欧美日韩av久久| 男女之事视频高清在线观看| 欧美乱色亚洲激情| 国产有黄有色有爽视频| 国产成+人综合+亚洲专区| 五月开心婷婷网| 精品一区二区三区av网在线观看| 久久中文看片网| 亚洲精品国产一区二区精华液| 日韩成人在线观看一区二区三区| 十分钟在线观看高清视频www| 嫩草影视91久久| 一级作爱视频免费观看| 少妇粗大呻吟视频| 免费在线观看黄色视频的| 999精品在线视频| 亚洲五月婷婷丁香| 成人特级黄色片久久久久久久| 久久香蕉激情| 精品一区二区三区视频在线观看免费 | 亚洲七黄色美女视频| 91九色精品人成在线观看| 女生性感内裤真人,穿戴方法视频| 黄片播放在线免费| 午夜福利,免费看| 色综合欧美亚洲国产小说| 亚洲中文字幕日韩| 国产一区二区三区视频了| 日韩国内少妇激情av| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 欧美亚洲日本最大视频资源| 欧美成人性av电影在线观看| 黄色丝袜av网址大全| 男人舔女人的私密视频| 极品教师在线免费播放| 可以免费在线观看a视频的电影网站| 国产成+人综合+亚洲专区| 国产精品久久久av美女十八| 视频区欧美日本亚洲| 操出白浆在线播放| 国产熟女xx| 国产主播在线观看一区二区| 成年人黄色毛片网站| 欧美最黄视频在线播放免费 | 99国产精品免费福利视频| bbb黄色大片| 午夜福利影视在线免费观看| 日本 av在线| 在线观看免费午夜福利视频| 日韩精品中文字幕看吧| 日韩三级视频一区二区三区| 久久久国产一区二区| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 999精品在线视频| 欧美日韩视频精品一区| 纯流量卡能插随身wifi吗| av福利片在线| 久久久久亚洲av毛片大全| 国产精品秋霞免费鲁丝片| 午夜精品国产一区二区电影| 热99re8久久精品国产| 三上悠亚av全集在线观看| 操出白浆在线播放| 精品人妻1区二区| 97超级碰碰碰精品色视频在线观看| av天堂在线播放| 精品国产一区二区久久| 亚洲精品一区av在线观看| 日本撒尿小便嘘嘘汇集6| 免费看a级黄色片| 国产97色在线日韩免费| 精品一区二区三卡| 黄色丝袜av网址大全| 丰满的人妻完整版| 久久国产精品人妻蜜桃| 亚洲熟妇熟女久久| 国产99久久九九免费精品| 久久久水蜜桃国产精品网| 看免费av毛片| 国产一区二区三区在线臀色熟女 | av超薄肉色丝袜交足视频| 九色亚洲精品在线播放| 亚洲人成电影观看| 少妇粗大呻吟视频| 极品人妻少妇av视频| 日本五十路高清| 女人精品久久久久毛片| av在线播放免费不卡| 日本三级黄在线观看| 另类亚洲欧美激情| 黄片播放在线免费| 色综合站精品国产| 好看av亚洲va欧美ⅴa在| 中文字幕另类日韩欧美亚洲嫩草| 女性被躁到高潮视频| 免费搜索国产男女视频| 国产视频一区二区在线看| 国产精华一区二区三区| 午夜精品国产一区二区电影| 最新在线观看一区二区三区| 日韩精品免费视频一区二区三区| 久久影院123| 亚洲精品美女久久久久99蜜臀| 久久青草综合色| 女性生殖器流出的白浆| 女人爽到高潮嗷嗷叫在线视频| 黄色视频,在线免费观看| 欧美 亚洲 国产 日韩一| 日日干狠狠操夜夜爽| 国产精品99久久99久久久不卡| 在线观看午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡人人看| 亚洲少妇的诱惑av| 老司机福利观看| 国产精品久久久人人做人人爽| 天堂影院成人在线观看| 久久久水蜜桃国产精品网| 丝袜美足系列| 一夜夜www| 国产精品99久久99久久久不卡| a在线观看视频网站| 国产成人欧美| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品sss在线观看 | 精品一区二区三卡| 最近最新中文字幕大全电影3 | 伊人久久大香线蕉亚洲五| 最新在线观看一区二区三区| 两个人免费观看高清视频| 亚洲情色 制服丝袜| 日本黄色日本黄色录像| 美国免费a级毛片| 国产精品一区二区在线不卡| 日本精品一区二区三区蜜桃| 在线国产一区二区在线| 国产成人精品无人区| 侵犯人妻中文字幕一二三四区| 日韩大码丰满熟妇| 男人舔女人的私密视频| 99久久综合精品五月天人人| 亚洲成人国产一区在线观看| 久久 成人 亚洲| 日韩欧美免费精品| 亚洲一区中文字幕在线| 黄片大片在线免费观看| 国产深夜福利视频在线观看| 校园春色视频在线观看| 亚洲成av片中文字幕在线观看| 麻豆一二三区av精品| 精品国产乱码久久久久久男人| 精品福利观看| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 黄色丝袜av网址大全| 国产一区二区三区综合在线观看| 国产亚洲精品一区二区www| 满18在线观看网站| 热re99久久精品国产66热6| 国产成人一区二区三区免费视频网站| 搡老岳熟女国产| av天堂久久9| 久久香蕉国产精品| 女性被躁到高潮视频| 超色免费av| 欧美一区二区精品小视频在线| 两人在一起打扑克的视频| 在线观看免费视频网站a站| 91老司机精品| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看 | 亚洲国产精品sss在线观看 | 久久亚洲精品不卡| 脱女人内裤的视频| 国产伦人伦偷精品视频| 一区二区三区激情视频| 午夜老司机福利片| 国产不卡一卡二| 精品久久久久久久久久免费视频 | 欧美最黄视频在线播放免费 | 国产成人精品久久二区二区免费| 亚洲黑人精品在线| 午夜视频精品福利| 精品午夜福利视频在线观看一区| 深夜精品福利| 亚洲一区二区三区不卡视频| 日韩大码丰满熟妇| 亚洲精品在线观看二区| 男女高潮啪啪啪动态图| 色综合站精品国产| 国产乱人伦免费视频| 一级作爱视频免费观看| 美女午夜性视频免费| 最近最新中文字幕大全电影3 | 亚洲美女黄片视频| 国产aⅴ精品一区二区三区波| 久久久久久大精品| 成年版毛片免费区| 在线观看免费午夜福利视频| 久久狼人影院| 国产99久久九九免费精品| 久久人妻熟女aⅴ| 夜夜看夜夜爽夜夜摸 | 色哟哟哟哟哟哟| 女人被狂操c到高潮| a级片在线免费高清观看视频| 精品卡一卡二卡四卡免费| a级毛片在线看网站| 日本免费一区二区三区高清不卡 | 国产精品98久久久久久宅男小说| 久久香蕉激情| 一a级毛片在线观看| 国产99久久九九免费精品| 日本a在线网址| 欧美日韩黄片免| 国产单亲对白刺激| 99精品欧美一区二区三区四区| av电影中文网址| 丝袜人妻中文字幕| 最好的美女福利视频网| 天堂影院成人在线观看| 99国产综合亚洲精品| 精品少妇一区二区三区视频日本电影| x7x7x7水蜜桃| 亚洲激情在线av| 欧美乱码精品一区二区三区| 丝袜人妻中文字幕| 91成人精品电影| 制服人妻中文乱码| 精品国产乱码久久久久久男人| 成人特级黄色片久久久久久久| 国产精品美女特级片免费视频播放器 | 国产xxxxx性猛交| xxxhd国产人妻xxx| 69av精品久久久久久| 少妇粗大呻吟视频| 法律面前人人平等表现在哪些方面| 国产精品九九99| 水蜜桃什么品种好| 99久久国产精品久久久| 国产欧美日韩一区二区三| 欧美日韩国产mv在线观看视频| 18禁裸乳无遮挡免费网站照片 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图 男人天堂 中文字幕| 在线视频色国产色| 久久青草综合色| 啪啪无遮挡十八禁网站| 自线自在国产av| 天堂影院成人在线观看| 欧美激情高清一区二区三区| 色哟哟哟哟哟哟| 成人亚洲精品av一区二区 | 欧美日韩瑟瑟在线播放| 一级作爱视频免费观看| 精品人妻在线不人妻| 9191精品国产免费久久| 黄片大片在线免费观看| 久久国产精品男人的天堂亚洲| 欧美最黄视频在线播放免费 | 欧美 亚洲 国产 日韩一| 国产熟女午夜一区二区三区| av欧美777| 99久久99久久久精品蜜桃| 男人的好看免费观看在线视频 | 黄色怎么调成土黄色| cao死你这个sao货| 自线自在国产av| 精品久久蜜臀av无| 精品国产美女av久久久久小说| 欧美最黄视频在线播放免费 | 成人精品一区二区免费| 天堂中文最新版在线下载| 侵犯人妻中文字幕一二三四区| 桃色一区二区三区在线观看| 亚洲精品美女久久久久99蜜臀| 老司机在亚洲福利影院| 日韩一卡2卡3卡4卡2021年| 久久中文看片网| 色婷婷久久久亚洲欧美| 午夜老司机福利片| 免费在线观看完整版高清| 欧美激情久久久久久爽电影 | 成人永久免费在线观看视频| 后天国语完整版免费观看| 精品国产一区二区三区四区第35| 一区二区三区国产精品乱码| 桃红色精品国产亚洲av| 午夜福利欧美成人| 看黄色毛片网站| 午夜免费激情av| 午夜福利欧美成人| 亚洲国产欧美网| 久久精品亚洲av国产电影网| 国产真人三级小视频在线观看| 热re99久久国产66热| 久久精品亚洲av国产电影网| 国产精品香港三级国产av潘金莲| 亚洲精品av麻豆狂野| 久久久久九九精品影院| 精品国产一区二区三区四区第35| 精品卡一卡二卡四卡免费| 后天国语完整版免费观看| 国产av一区二区精品久久| 午夜福利影视在线免费观看| 中文字幕人妻熟女乱码| 他把我摸到了高潮在线观看| 免费日韩欧美在线观看|