• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Habitat evaluation for target species following deep-waterchannel project in the Yangtze River

    2015-03-01 08:07:33XuSudongLiRuiYinKai

    Xu Sudong  Li Rui  Yin Kai

    (School of Transportation, Southeast University, Nanjing 210096, China)

    ?

    Habitat evaluation for target species following deep-waterchannel project in the Yangtze River

    Xu Sudong Li Rui Yin Kai

    (School of Transportation, Southeast University, Nanjing 210096, China)

    Abstract:In order to optimize the design of a 12.5 m deep-water channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.

    Key words:deep-water channel project; hydrodynamic model; habitat suitability index; ecological engineering

    Received 2015-07-27.

    Biography:Xu Sudong (1980—), male, doctor, associate professor, sudongxu@seu.edu.cn.

    Foundation items:The National Natural Science Foundation of China (No.51209040, 51279134), the Natural Science Foundation of Jiangsu Province (No.BK2012341).

    Citation:Xu Sudong, Li Rui, Yin Kai. Habitat evaluation for target species following deep-water channel project in the Yangtze River[J].Journal of Southeast University (English Edition),2015,31(4):559-565.[doi:10.3969/j.issn.1003-7985.2015.04.022]

    In recent years, the human impact on the river ecosystem has gained increasing concern. Human activities, such as dam construction, dredging, channel regulation, can affect the river patterns and thus leave a significant impact on the river ecosystem[1]. The number of local species may decline or disappear due to human disruption. A major alteration of the river ecosystem is the hydrodynamic change caused by spur dikes and submerged dikes. The spur dikes and submerged dikes affect the velocity, depth, and substrate distributions which can detrimentally alter the physical habitat. Hydrologic processes are interconnected with biological communities[2]. Therefore, it is necessary to analyze, assess and quantify the impact of channel regulation works. With the sustained and rapid growth of the national economy in the Yangtze River Delta, a 12.5 m deep-water channel project was required urgently to take advantage of the ports along the Yangtze River and the deep-water channels[3]. Spur dikes and submerged dikes were constructed with the necessary dredging to scarify the requirements of the navigation for large tonnages carriers. Therefore, it is necessary to select an effective method to assess the impact of human modifications on the surrounding species.

    The habitat suitability index (HSI) model is one such way to monitor and predict changes in the ecosystem after channel regulation works. The HSI model was developed in the 1970s by the US Fish and Wildlife Service (USFWS)[4], which can define functioning relationships between animals and habitat variables based on the ecological theories on habitat selection, niche differentiation and restriction factors[5]. The HSI model is based on the assumptions that species will select and use areas that are best suited for a particular activity during a life stage, resulting in full use of a high quality habitat[6]. Thus, the HSI model was applied specifically to evaluate the effects of the main environment factors on species distribution and density. The lack of attention paid to the effects of artificial embankments and dams on their surrounding habitats resulted in a significant disturbance of the ecosystems of several rivers in China[7]. A HSI model was developed for a water quality sensitive fish (Greater Redhorse) and macroinvertebrate (Plecoptera) species to determine the restoration success of the St. John Dam removal for the Sandusky River (Ohio). The change in suitability of the model is mostly attributed to the change in river depth following dam removal for both the fish and invertebrate species[8]. The fish habitat model of Schizothorax chongi coupled with the water environmental model was developed according to the relationship between fish and the water environment factors. By running the model, river ecological flow was calculated based on the fish habitat conservation in the Jinping River Bend of Yalong River[9]. Yi et al.[7]created a habitat suitability index model combined with a two-dimensional mathematical model and used it to evaluate the impacts of the Gezhouba Dam and Three Gorges Project on Chinese sturgeon spawning sites. The results show that the impoundment of the Three Gorges Project has a significant effect on the habitat suitability index of Chinese sturgeon. However, the influence on the HSI of the target species generated by large-scale channel regulation was rarely discussed. In this paper, the ADCIRC+HSI model is employed to simulate the flow field changes generated by regulation works to evaluate the habitat for target species.

    1Study Area and Species

    1.1 Study area

    The study area (see Fig.1) is the Yangtze River next to the estuary from Tiansheng Port to Dangqianzha, with an area of 658 km2, which is an intertidal zone affected by runoff and the tide. The development of the economy promoted port building along the river and shipping demand. Channels in this area connect the Shanghai port with ports along the river, the depth of which is less than 12.5 m caused by an unstable river regime and swale changes. The deep-water channel regulations were established in August 2012 and aimed to achieve the navigation of 50 000 t ocean-going vessels. There are abundant fishery resources in the Yangtze River, and benthos play a significant role in purifying water pollution[10]. Target fish and benthos were selected to evaluate the impact of deep-water channel regulation engineering.

    Fig.1 Map of the study area located in the Yangtze River Delta near the estuary

    1.2 Target fish and target benthos

    Coilia nasus is one of typical ecological fishes in the Yangtze River estuary[11]. Coilia nasus are divided into two categories. One migrates from the ocean to the estuary in certain seasons, and the other settles in inland lakes[12].The waterways, along the Yangtze River downstream from Nanjing to Nantong, are usually the best concentrated living place for the fishing season of Coilia nasus[13], which is chosen as the target fish.

    Corbicula fluminea, also named the Asian clam, has an intensive distribution in the Yangtze River Delta[14]. Benthonic mollusks are the indicators of the aquatic environment. Corbicula fluminea have the ability to accumulate heavy metals and toxic substances, and can be found in sandy and muddy bottomed streams, rivers, ponds, lakes, and man-made canals[15]. Feeding on benthic algae, plankton and organic debris, Corbicula fluminea are omnivorous. Thus, Corbicula fluminea play an important role in ecological balance and are chosen as the target benthos.

    2Model Description

    2.1 Hydrodynamic model

    Hydraulic conditions, such as water surface elevations and vertically averaged velocities, are computed by the fully nonlinear two-dimensional, depth-integrated option of the ADCIRC model[16]. The ADCIRC model has had many successful applications in coastal and estuary numerical modeling[17].

    The governing equations are described in space using the linear finite element method and in time using the finite difference method. The basic governing continuity equation of the model is

    (1)

    and the momentum equations of the model are

    (2)

    (3)

    wheretis the time;x,yare the horizontal coordinates;ζis the free surface elevation;Uis the depth-averaged horizontal velocity;Vis the depth-averaged horizontal velocity;His the total water column depth,h+ζ;his the bathymetric depth;fis the Coriolis parameter;gis the acceleration due to gravity;ηis the Newtonian equilibrium tide potential;αis the earth elasticity factor;ρ0is the reference density of water;psis the atmospheric pressure at the free surface;τ*is the bottom stress;τsX,τsYare the applied free surface stress;MX,MYare the depth-integrated momentum dispersion.

    2.2 Habitat suitability model

    Generally, the habitat suitability model setup consists of five stages: 1) Obtain habitat data; 2) Setup the SI curve; 3) Give a weight to SI; 4) Choose a HSI calculation method and obtain the composite HSI score; 5) Scatterplot HSI[18]. It is assumed that the species and population directly choose a suitable habitat, meanwhile there is a linear relationship between the environment variables (food, water and abiotic factors) and the population[19].

    The minimum model (MINM) and geometric mean model (GMM) are the basic methods of HSI[20]. Depending on the minimum of various SI, the MINM is applied to the establishment and evaluation of fishery reserves, and the ecological system maintenance and management[21-22]. The GMM is one of the HSI model mostly applied to resource estimation and fishery analysis[23-24]. The GMM is not affected by the extreme of SI with various SI at the same level.

    H=min(S1,S2,…,Sn)

    (4)

    (5)

    2.2.1Coilia nasus suitability

    Variables which affect growth, survival, abundance, and other measures of Coilia nasus well-being, are considered in the creation of this model. Four aquatic ecological factors, which influence the habitat quality of Coilia nasus juveniles, are selected for the modeling as follows: 1) Water level amplitude for juvenilesV1; 2) Flow velocity for juvenilesV2; 3) Water temperature for adults and juvenilesV3; 4) Dissolved oxygen for juvenilesV4.

    The suitable ranges and suitability index (SI) curves of the four main ecological factors are proposed based on the previous research. As shown in Fig.2, the suitability index curves for the habitat of Coilia nasus are established. A GMM is developed by analyzing a combination of these ecological factors. This model can be used to evaluate the habitat changes caused by deep-water channel regulation works.

    Fig.2 Suitability index curves for habitat of Coilia nasus. (a) Water level amplitude; (b) Velocity; (c) Temperature; (d) Dissolved oxygen

    The HSI is defined for each grid in the simulation season. The habitat suitability index is

    HSI=(V1V2V3V4)1/4

    (6)

    whereV1toV4are the SIs. The SI curve quantifies physical habitat, such as water temperature and flow velocity. The habitat suitability ranges from unsuitable (0) to optimal habitat suitability (1). The intermediate values represent the suitability range based on a specified hydraulic variable.

    2.2.2Corbicula fluminea suitability

    Corbicula fluminea live in the rivers and lakes with sand and mud substrate. We find its distribution density at the joining point between the river and ocean. Five aquatic ecological factors are selected for the modeling as follows: 1) Water temperature (V1); 2) Water depth (V2); 3) Flow velocity (V3); 4) Substrate types (V4); 4) Substrate depth (V5).

    The components of this model are determined by the geometric mean of variables regardless of the values of the other habitat variables. The habitat suitability of flow conditionSFCis determined by the geometric mean variables (V1,V2,V3); while the habitat suitability of substrate conditionSSCis determined by the geometric mean variables (V4,V5).

    Suitability index curves established for the habitat of Corbicula fluminea are shown in Fig.3. A MINM was developed by analyzing the combination of these ecological factors. The HSI is defined for each grid in the simulation season. The habitat suitability index is

    HSI=min(SFC,SSC)

    (7)

    and

    SFC=(V1V2V3)1/3

    (8)

    SSC=(V4V5)1/2

    (9)

    The intermediate values represent the suitability range based on a specified hydraulic variable.

    3Model Setup and Verification

    3.1 Model setup

    The model domain is shown in Fig.3, which covers

    Fig.3 Suitability index curves for habitat of Corbicula fluminea. (a) Temperature; (b) Water depth; (c) Velocity; (d) Subtrate; (e) Subtrate depth fluminea

    the Yangtze River next to the estuary from Tiansheng Port to Dangqianzha. Three types of boundaries, namely, the inlet, outlet and solid walls are considered in the hydrodynamic model. The same unstructured finite-element mesh and bathymetry of this studied domain are developed for water depth and vertically averaged velocities. Meanwhile, habitat suitability index models calculating the final HSI score are programed, and the models are integrated with flow velocity and water depth.

    3.2 Hydrodynamic model verification

    To assess the modeling accuracy, the numerical model system is initially applied to simulate the hydrodynamic conditions. The stations for model verification are shown in Fig.4.

    Fig.4 Stations used for verification

    The hydrodynamic model is verified by comparing the observed tide level and velocity with the model simulation results in February 1998. As shown in Fig.5 and Fig.6, the tide levels of Xuliujing and the velocity of Yanglin stations match well with the observed datasets. The verified hydrodynamic model can be used in the following sections.

    Fig.5 Comparison between model-predicted and observed tide levels of Xuliujing station

    3.3 Habitat suitability index model verification

    The velocities and water depth were simulated during

    Fig.6 Comparison between the model-predicted and observed velocity of Yanglin station

    the 27th and 28th July, 2013 using the ADCIRC hydrodynamic model. Observed datasets include water temperature, dissolved oxygen, the density of the target species, etc. With simulated hydrodynamic conditions and observed datasets, the HSI score was calculated using the habitat suitability model. Simulated HSI and the observed density of Coilia nasus anchovy were fitted. The same method was taken to verify the Corbicula fluminea HSI model during the 10th and 11th November, 2012. As shown in Fig.7, the model simulation results of the two target species both have a good correspondence with the observed datasets. The association coefficient of the two datasets are 0.787 and 0.665, respectively, which proves that the HSI models calculated according to the above mentioned SI curves are practical.

    (a)

    (b)Fig.7 Fitting between model-predicted HSI and observed density. (a) Coilia nasus; (b) Corbicula fluminea

    4Effect of Regulation Project on HSI

    4.1 Hydrodynamic conditions change

    After a series verifications, the model can be applied to simulate the hydrodynamic conditions of the study area. The flow fields of pre- and post- regulation at ebb tide were simulated. The flow fields visualized are shown in Fig.8. Velocity changes occur around the spur dike and submerged dike. Particularly, in the R2area, regulation works influence the velocity field significantly, and decrease the velocity by as much as 2.0 m/s. In the R1area, the velocity changes range from 0 to 0.5 m/s. Meanwhile, the bodies of the spur dike and submerged dike decrease the water depth, and the bottom of the regulation works are covered by concrete structures. Other areas show little change. As an important ecological factor, the changes of the flow velocity can definitely affect the final HSI score.

    (a)

    (b)Fig.8 Velocity at ebb tide from the hydrodynamic model in the study area. (a) Pre-regulation; (b) Post-regulation

    4.2 Coilia nasus habitat evaluation

    The value of HSI can be calculated for pre- and post-regulation conditions of the 12.5 m deep-water channel. The visualization of the model clearly indicates the changes in the study area before and after channel regulation. As shown in Fig.9, most regions have a high HSI value approaching 0.8 to 0.9, while shallow regions and left bank upstream have a relatively low HSI value approaching 0. There is little change in the Coilia nasus HSI value from the pre-regulation to post-regulation period in most areas, while results differ around spur dike and submerged breakwater. The suitability decreases in the regulation areas of both R1and R2, where velocity suitability and water level amplitude suitability decreases with bottom shoaling. There is a small area behind the spur dike where the HSI score increases, mainly due to the decrease in the flow velocity.

    (a)

    (b)Fig.9 HSIs of Coilia nasus from the coupled model in the study area. (a) Pre-regulation; (b) Post-regulation

    4.3 Corbicula fluminea habitat evaluation

    Corbicula fluminea’s results from the model evaluation are different from Coilia nasus. As shown in Fig.10, the HSI score of most regions approaches 0.9, and some shoal areas have a maximum value approaching 1.0. The mainly affected regions remain the regulation areas. There is an obvious increase of HSI score in the R1area.

    5Conclusion

    This paper builds a hydrodynamic and habitat suitability model to evaluate the habitat for the target species

    (a)

    (b)Fig.10 HSIs of Corbicula fluminea from the coupled model in the study area. (a) Pre-regulation; (b) Post-regulation

    following deep-water channel regulations in the Yangtze River. Both two models are verified by observed datasets. Suitability index curves for the habitat of Coilia nasus and Corbicula fluminea are summarized and applied in the HSI models. With the coupled eco-hydrodynamic model, the comparison analysis of the habitat changes from the pre-regulation to post-regulation period indicates an improvement in potential habitat availability behind the spur dike for the two species studied.

    The use of habitat suitability models to predict changes in river networks following disturbances or restoration efforts is a fast and effective method in river systems. The models allow researchers to forecast hydrodynamic and ecological impacts caused by different engineering activities in a river system, which can prove the accuracy of regulation plans and provide pertinent suggestions for ecosystem protection. Advancements in coupling of HSI models with the ADCIRC hydrodynamic model offer a novel prediction tool for the transverse distribution of habitats. This model can be applied to more similar engineering cases in the Yangtze River.

    References

    [1]Takayuki N, Yoshiki S, Kouki O, et al. Evaluation of suitable hydraulic conditions for spawning of ayu with horizontal 2D numerical simulation and PHABSIM[J].EcologicalModelling, 2008, 215(1): 133-143.

    [2]Pringle C M. Hydrologic connectivity and the management of biological reserves: a global perspective[J].EcologicalApplications, 2001, 11(4): 981-998.

    [3]Xiao D X. Introduction of 12.5 m deep-water channel construction project and its first phase of the Yangtze River below Nanjing city[J].Port&WaterwayEngineering, 2012, 11: 1-4. (in Chinese)

    [4]USFWS (US Fish and Wildlife Service). Habitat as a basis for environmental assessment[R]. Washington, DC: USFWS, 1980.

    [5]Morrison M L, Marcot B G, Mannan R W.Wildlife-habitatrelationships:conceptsandapplications[M]. Madison: University of Wisconsin Press, 1998.

    [6]Kliskey A D, Lofroth E C, Thompson W A, et al. Simulating and evaluating alternative resource-use strategies using GIS-based habitat suitability indices[J].Landscape&UrbanPlanning, 1999, 45(99): 163-175.

    [7]Yi Y J, Wang Z Y, Yang Z F. Two-dimensional habitat modeling of Chinese sturgeon spawning sites[J].EcologicalModelling, 2010(5): 864-875.

    [8]Tomsic C A, Granata T C, Murphy R P, et al. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal[J].EcologicalEngineering, 2007, 30(3): 215-230.

    [9]Li R N, Chen Q W, Chen D. Ecological hydrograph based on Schizothorax chongi habitat conservation in the dewatered river channel between Jinping cascaded dams[J].ScienceChinaTechnologicalSciences, 2011, 54(Sup): 54-63.

    [10]Chen X H. Research of hydrobiology in the Yangtze River in Jiangsu Province [D]. Nanjing: Fisheries College of Nanjing Agriculture University, 2007. (in Chinese)

    [11]Jiang T, Yang J, Liu H B, et al. A comparative study of the morphology of sagittal otolith in Coilia nasus, Coilia mystus and Coilia nasus taihuensis[J].MarineSciences, 2011, 35(3): 23-31. (in Chinese)

    [12]Yuan C M, Qin A L. Ecological habits and distribution of coilia along the chinese coast and its changes of output[J].MarineSciences, 1984, 8: 35-37. (in Chinese)

    [13]Huang R S. Coilia nasus biological characteristics and the present situation of resources and protection countermeasures[J].ReservoirFisheries, 2005, 25(2): 33-33. (in Chinese)

    [14]Zhang H C, Chen Y, Fan H F, et al. Climatic background of modern Cobicula fluminea and the stable isotopes of shells from the representative areas in continental China[J].MarineGeology&QuaternaryGeology, 2007, 32(1): 87-94. (in Chinese)

    [15]Liu M, Xiong B X. Ecological characteristics of corbicula fluminea and its effect on the heavy metals accumulation[J].JournalofAnhuiAgriculturalSciences, 2008, 36(1): 221-224. (in Chinese)

    [16]Luettich R A, Westerink J J. figuretion and numerical implementation of the 2D/3D ADCIRC finite element model version 44. XX [EB/OL]. (2004-08-12) [2015-10-27].http://www.unc.edu/ims/adcirc/publications/2004/2004_Luettich.pdf.

    [17]Xu S D, Huang W R. Integrated hydrodynamic modeling and frequency analysis for predicting 1% storm surge[J].JournalofCoastalResearch, 2008(52): 253-260.

    [18]Jin L R, Sun K P. Research advances in habitat suitability index model[J].ChineseJournalofEcology, 2008, 27(5): 841-846. (in Chinese)

    [19]Van Horne B. Density as a misleading indicator of habitat quality[J].WildlifeManage, 1983(4): 893-901.

    [20]Chen X, Tian S, Chen Y, et al. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommostrephes bartramii) in the Northwest Pacific Ocean[J].FisheryBulletin, 2010, 108(1): 1-14.

    [21]Yi Y J, Wang Z Y, Yao S M. Habitat suitability model for evaluating Chinese sturgeon spawning sites[J].JournalofTsinghuaUniversity(ScienceandTechnology), 2008, 48(3): 340-343. (in Chinese)

    [22]Y Y J, Wang Z Y, Lu Y J. Habitat suitability index model for Chinese Sturgeon in the Yangtze River[J].AdvancesinWaterScience, 2007, 18(4): 538-543. (in Chinese)

    [23]Tian S Q, Chen X J, Chen Y, et al. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean[J].FisheriesResearch, 2009, 95(2): 181-188.

    [24]Tomsic C, Granata T, Murphy R, et al. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal[J].EcologicalEngineering, 2007, 30(3): 215-230.

    doi:10.3969/j.issn.1003-7985.2015.04.022

    高清日韩中文字幕在线| 热99在线观看视频| 叶爱在线成人免费视频播放| 国产av在哪里看| 首页视频小说图片口味搜索| av欧美777| 中文字幕久久专区| av视频在线观看入口| 色综合亚洲欧美另类图片| 亚洲18禁久久av| 精品久久久久久,| 精品人妻一区二区三区麻豆 | 99热这里只有是精品50| 国产激情偷乱视频一区二区| 免费人成在线观看视频色| 亚洲无线观看免费| 欧美不卡视频在线免费观看| 12—13女人毛片做爰片一| 亚洲国产高清在线一区二区三| 嫩草影视91久久| av国产免费在线观看| 99热只有精品国产| 国产精品女同一区二区软件 | 高清毛片免费观看视频网站| 中文字幕精品亚洲无线码一区| 色综合欧美亚洲国产小说| 校园春色视频在线观看| 可以在线观看毛片的网站| 啦啦啦韩国在线观看视频| 亚洲国产欧美网| 亚洲av二区三区四区| 亚洲精品在线美女| 欧美在线黄色| 久久久精品欧美日韩精品| 欧美一区二区亚洲| 国产免费av片在线观看野外av| 久久久久久国产a免费观看| 国产精品女同一区二区软件 | 男女那种视频在线观看| 久久精品亚洲精品国产色婷小说| 午夜福利在线观看免费完整高清在 | 国语自产精品视频在线第100页| 在线观看66精品国产| 亚洲人成网站在线播放欧美日韩| 久久欧美精品欧美久久欧美| 亚洲一区二区三区色噜噜| 国产乱人伦免费视频| 欧美3d第一页| 亚洲人成伊人成综合网2020| 嫁个100分男人电影在线观看| 3wmmmm亚洲av在线观看| 手机成人av网站| 欧美大码av| 熟女人妻精品中文字幕| 国产伦人伦偷精品视频| 丰满乱子伦码专区| 深夜精品福利| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久亚洲av鲁大| 欧美精品啪啪一区二区三区| 成人18禁在线播放| 亚洲欧美精品综合久久99| 国产在视频线在精品| 亚洲国产日韩欧美精品在线观看 | 亚洲专区国产一区二区| 窝窝影院91人妻| 精品不卡国产一区二区三区| av在线蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 有码 亚洲区| 亚洲性夜色夜夜综合| 亚洲国产欧美人成| 日韩欧美精品免费久久 | av中文乱码字幕在线| 亚洲国产精品999在线| 精品国产美女av久久久久小说| 99热只有精品国产| 每晚都被弄得嗷嗷叫到高潮| 网址你懂的国产日韩在线| 色哟哟哟哟哟哟| 午夜免费成人在线视频| 老汉色av国产亚洲站长工具| 91久久精品国产一区二区成人 | 一卡2卡三卡四卡精品乱码亚洲| 日本三级黄在线观看| 欧美高清成人免费视频www| 婷婷精品国产亚洲av| 两个人的视频大全免费| 国产蜜桃级精品一区二区三区| 黄片小视频在线播放| av视频在线观看入口| 中文字幕熟女人妻在线| 国产淫片久久久久久久久 | 日韩欧美三级三区| 女生性感内裤真人,穿戴方法视频| 91在线精品国自产拍蜜月 | 日本撒尿小便嘘嘘汇集6| 99久久精品国产亚洲精品| svipshipincom国产片| 欧美日韩国产亚洲二区| 日本五十路高清| 九色成人免费人妻av| 啪啪无遮挡十八禁网站| 少妇的丰满在线观看| 欧美国产日韩亚洲一区| 18+在线观看网站| 国产视频一区二区在线看| 男人舔奶头视频| www.色视频.com| 男女之事视频高清在线观看| 一级黄片播放器| 国产精品一区二区免费欧美| 国产熟女xx| 欧美日本视频| 日本成人三级电影网站| 搡女人真爽免费视频火全软件 | 久久精品91无色码中文字幕| 日韩有码中文字幕| 天堂av国产一区二区熟女人妻| 欧美绝顶高潮抽搐喷水| ponron亚洲| 丁香欧美五月| 九色成人免费人妻av| 久久久久九九精品影院| 亚洲成人久久爱视频| 亚洲人成电影免费在线| 欧洲精品卡2卡3卡4卡5卡区| 级片在线观看| 国产成+人综合+亚洲专区| 国产高清视频在线播放一区| 欧美绝顶高潮抽搐喷水| 国产亚洲精品一区二区www| 午夜福利在线观看免费完整高清在 | 青草久久国产| 欧美中文综合在线视频| 伊人久久精品亚洲午夜| h日本视频在线播放| 中文亚洲av片在线观看爽| 亚洲在线自拍视频| 午夜福利成人在线免费观看| 在线观看舔阴道视频| 欧美日韩黄片免| 久久久久久久久大av| 香蕉丝袜av| 国内精品久久久久久久电影| 精品久久久久久久久久免费视频| 中文字幕高清在线视频| 在线十欧美十亚洲十日本专区| 国产精品久久久久久精品电影| 国产99白浆流出| 国产高清视频在线播放一区| av在线蜜桃| av天堂中文字幕网| 成人国产一区最新在线观看| 一区福利在线观看| 国产三级在线视频| 精品电影一区二区在线| 国产精品久久久久久精品电影| 深爱激情五月婷婷| 亚洲av熟女| 波多野结衣高清作品| 成人三级黄色视频| 欧美bdsm另类| 麻豆国产97在线/欧美| 观看美女的网站| 露出奶头的视频| 国产私拍福利视频在线观看| 亚洲av成人av| 国产私拍福利视频在线观看| 免费看a级黄色片| 国产亚洲精品久久久久久毛片| 在线天堂最新版资源| 999久久久精品免费观看国产| 欧美一区二区精品小视频在线| 国内精品美女久久久久久| 免费看a级黄色片| eeuss影院久久| 99久久精品热视频| 51午夜福利影视在线观看| 欧美黄色淫秽网站| 特级一级黄色大片| 人人妻人人澡欧美一区二区| 一个人免费在线观看的高清视频| 亚洲成av人片免费观看| svipshipincom国产片| 伊人久久精品亚洲午夜| 国产熟女xx| 一卡2卡三卡四卡精品乱码亚洲| 熟女人妻精品中文字幕| 99热6这里只有精品| 中出人妻视频一区二区| 亚洲av免费高清在线观看| 午夜精品在线福利| 99久久综合精品五月天人人| 美女被艹到高潮喷水动态| 国产高潮美女av| 老汉色∧v一级毛片| 中文字幕人成人乱码亚洲影| 日韩成人在线观看一区二区三区| av天堂中文字幕网| 老熟妇乱子伦视频在线观看| 欧美绝顶高潮抽搐喷水| 人人妻,人人澡人人爽秒播| 男女床上黄色一级片免费看| 性色avwww在线观看| 国产成人啪精品午夜网站| 老司机深夜福利视频在线观看| 精品不卡国产一区二区三区| 91av网一区二区| 男女之事视频高清在线观看| 国产美女午夜福利| 亚洲午夜理论影院| 成人av一区二区三区在线看| 色噜噜av男人的天堂激情| 制服丝袜大香蕉在线| 久久午夜亚洲精品久久| 国模一区二区三区四区视频| 好男人电影高清在线观看| 国产高清激情床上av| 免费av毛片视频| 搡老妇女老女人老熟妇| 在线看三级毛片| 一个人免费在线观看的高清视频| 天美传媒精品一区二区| 少妇的丰满在线观看| 免费av观看视频| 波野结衣二区三区在线 | 成人国产综合亚洲| 日本与韩国留学比较| 九九热线精品视视频播放| 成人午夜高清在线视频| 日韩欧美在线二视频| 国产精品99久久久久久久久| 久久这里只有精品中国| 久久性视频一级片| 国产亚洲精品综合一区在线观看| 嫩草影视91久久| 一进一出抽搐gif免费好疼| 亚洲国产精品999在线| 国产一区二区激情短视频| 久久久久九九精品影院| 欧美3d第一页| 又紧又爽又黄一区二区| 国产伦精品一区二区三区视频9 | 18禁黄网站禁片免费观看直播| av视频在线观看入口| 国产成人欧美在线观看| 老司机午夜福利在线观看视频| 成年免费大片在线观看| 国产精品99久久99久久久不卡| 欧美一区二区精品小视频在线| 亚洲18禁久久av| 18禁黄网站禁片午夜丰满| 国产在线精品亚洲第一网站| 麻豆成人av在线观看| 久久这里只有精品中国| 免费大片18禁| 精品午夜福利视频在线观看一区| 午夜日韩欧美国产| 中文亚洲av片在线观看爽| 成人特级黄色片久久久久久久| 日韩人妻高清精品专区| 国产成人系列免费观看| 亚洲av日韩精品久久久久久密| а√天堂www在线а√下载| 国产高清有码在线观看视频| 一个人观看的视频www高清免费观看| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 成人精品一区二区免费| 国产激情偷乱视频一区二区| 久久久久免费精品人妻一区二区| 国产久久久一区二区三区| 亚洲午夜理论影院| 日本一本二区三区精品| 国产精品嫩草影院av在线观看 | 免费观看的影片在线观看| 99热精品在线国产| 亚洲精品一区av在线观看| 亚洲乱码一区二区免费版| 色综合亚洲欧美另类图片| 韩国av一区二区三区四区| 国产精品久久久久久精品电影| 51国产日韩欧美| 国产成+人综合+亚洲专区| 少妇的逼好多水| 首页视频小说图片口味搜索| 婷婷精品国产亚洲av| 大型黄色视频在线免费观看| 最新中文字幕久久久久| 超碰av人人做人人爽久久 | 欧美xxxx黑人xx丫x性爽| 国产97色在线日韩免费| 真人做人爱边吃奶动态| 日本黄色视频三级网站网址| 久久精品人妻少妇| 国产伦精品一区二区三区视频9 | x7x7x7水蜜桃| 18+在线观看网站| 深夜精品福利| 色综合欧美亚洲国产小说| 日本成人三级电影网站| 啪啪无遮挡十八禁网站| 欧美高清成人免费视频www| 中文亚洲av片在线观看爽| 欧美一区二区国产精品久久精品| 特大巨黑吊av在线直播| 精品一区二区三区视频在线观看免费| а√天堂www在线а√下载| 久久久久精品国产欧美久久久| 亚洲精品在线美女| 亚洲狠狠婷婷综合久久图片| 欧美大码av| av中文乱码字幕在线| 啪啪无遮挡十八禁网站| 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看 | 国产精品嫩草影院av在线观看 | 国产精品自产拍在线观看55亚洲| 一进一出抽搐动态| 12—13女人毛片做爰片一| 亚洲aⅴ乱码一区二区在线播放| 国产成人啪精品午夜网站| 在线观看av片永久免费下载| 欧美xxxx黑人xx丫x性爽| 中文字幕久久专区| 男女做爰动态图高潮gif福利片| 在线观看日韩欧美| 亚洲国产精品合色在线| 叶爱在线成人免费视频播放| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看 | 国产精品98久久久久久宅男小说| 欧美日韩乱码在线| 国产成人a区在线观看| 男女午夜视频在线观看| 老司机午夜十八禁免费视频| 午夜福利在线观看免费完整高清在 | av天堂中文字幕网| 国产精品爽爽va在线观看网站| 黄色丝袜av网址大全| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器| 婷婷精品国产亚洲av| 一个人免费在线观看的高清视频| 91麻豆av在线| 村上凉子中文字幕在线| 欧美xxxx黑人xx丫x性爽| 丁香六月欧美| 九色成人免费人妻av| 日韩欧美在线二视频| 日本黄色视频三级网站网址| 一本久久中文字幕| 国产亚洲精品综合一区在线观看| 五月玫瑰六月丁香| 国产色爽女视频免费观看| 久久欧美精品欧美久久欧美| 中亚洲国语对白在线视频| 99精品在免费线老司机午夜| 国产一区在线观看成人免费| 99在线视频只有这里精品首页| 国产老妇女一区| 免费大片18禁| 天堂av国产一区二区熟女人妻| 国产三级黄色录像| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 桃色一区二区三区在线观看| 国产一级毛片七仙女欲春2| 国产黄色小视频在线观看| 国产熟女xx| 久久久久久久久大av| 国产精品亚洲av一区麻豆| 精品一区二区三区人妻视频| 久9热在线精品视频| 黄色成人免费大全| 少妇裸体淫交视频免费看高清| 国产成人a区在线观看| 色噜噜av男人的天堂激情| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美 国产精品| 最近最新免费中文字幕在线| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| 18+在线观看网站| 极品教师在线免费播放| 精品久久久久久久久久久久久| 午夜福利18| 日本 欧美在线| 一级毛片高清免费大全| 日韩 欧美 亚洲 中文字幕| 在线观看日韩欧美| 国内精品美女久久久久久| 一个人观看的视频www高清免费观看| 人人妻人人看人人澡| 露出奶头的视频| 国产高清videossex| 日韩人妻高清精品专区| 久久久久久国产a免费观看| 在线观看日韩欧美| 成年女人毛片免费观看观看9| 伊人久久精品亚洲午夜| 欧美午夜高清在线| 日本 欧美在线| 欧美极品一区二区三区四区| 小说图片视频综合网站| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| www日本在线高清视频| 亚洲美女视频黄频| 国产亚洲精品久久久com| 人妻丰满熟妇av一区二区三区| 精品一区二区三区视频在线观看免费| 亚洲av美国av| 亚洲成av人片免费观看| 国产亚洲欧美98| 亚洲一区二区三区不卡视频| 美女黄网站色视频| 麻豆国产av国片精品| 在线国产一区二区在线| 色在线成人网| 久99久视频精品免费| 老司机深夜福利视频在线观看| 午夜亚洲福利在线播放| 亚洲人成网站高清观看| 午夜激情欧美在线| 三级国产精品欧美在线观看| 中国美女看黄片| 中文字幕久久专区| 99久久精品热视频| 校园春色视频在线观看| 欧美一区二区精品小视频在线| 日本 欧美在线| 搡老熟女国产l中国老女人| 老汉色av国产亚洲站长工具| 午夜免费男女啪啪视频观看 | 亚洲av免费高清在线观看| 少妇的逼水好多| 日本免费a在线| 中文字幕久久专区| 草草在线视频免费看| 久久久色成人| 国产精品98久久久久久宅男小说| 亚洲无线在线观看| 丁香六月欧美| 亚洲熟妇熟女久久| 久久久国产成人精品二区| 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 无限看片的www在线观看| 叶爱在线成人免费视频播放| 国产av麻豆久久久久久久| 亚洲av美国av| 丰满人妻熟妇乱又伦精品不卡| 免费看a级黄色片| 午夜福利视频1000在线观看| 在线播放无遮挡| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 欧美日韩综合久久久久久 | 久久6这里有精品| 免费在线观看日本一区| 亚洲国产欧洲综合997久久,| 丰满人妻熟妇乱又伦精品不卡| 最新中文字幕久久久久| 99久久精品国产亚洲精品| 国产亚洲精品久久久久久毛片| 99久久无色码亚洲精品果冻| 又黄又粗又硬又大视频| 精品乱码久久久久久99久播| 久久人妻av系列| 国产真实伦视频高清在线观看 | 亚洲五月天丁香| 久久精品国产99精品国产亚洲性色| 一进一出抽搐gif免费好疼| 亚洲av成人av| 欧美日韩福利视频一区二区| 亚洲av中文字字幕乱码综合| 久久久久亚洲av毛片大全| 天堂√8在线中文| 桃红色精品国产亚洲av| 久久久精品大字幕| 国产成人系列免费观看| 久久精品91无色码中文字幕| 国产aⅴ精品一区二区三区波| 国语自产精品视频在线第100页| 一进一出好大好爽视频| 亚洲美女黄片视频| 国产精品亚洲一级av第二区| 国产一区二区激情短视频| 国产中年淑女户外野战色| 一级黄色大片毛片| 哪里可以看免费的av片| 久久久久九九精品影院| 尤物成人国产欧美一区二区三区| 国产真人三级小视频在线观看| 亚洲成av人片免费观看| 美女被艹到高潮喷水动态| 悠悠久久av| 欧美性感艳星| 首页视频小说图片口味搜索| 女同久久另类99精品国产91| 国产91精品成人一区二区三区| 午夜激情福利司机影院| 日韩欧美 国产精品| 免费在线观看成人毛片| 午夜福利高清视频| 国产一区二区激情短视频| 少妇的逼水好多| 欧美黑人欧美精品刺激| 亚洲人成网站高清观看| 90打野战视频偷拍视频| 看片在线看免费视频| 久久精品国产自在天天线| 国产精品一区二区免费欧美| 丰满人妻一区二区三区视频av | 波多野结衣高清作品| 午夜久久久久精精品| 日本精品一区二区三区蜜桃| 99热精品在线国产| 亚洲精品美女久久久久99蜜臀| 成人精品一区二区免费| 有码 亚洲区| 日韩欧美在线乱码| 露出奶头的视频| 亚洲国产欧美网| 九九热线精品视视频播放| 国产激情偷乱视频一区二区| 夜夜爽天天搞| 国产精品国产高清国产av| 成人特级av手机在线观看| 在线国产一区二区在线| 国产精品爽爽va在线观看网站| 国产精品99久久99久久久不卡| 18禁裸乳无遮挡免费网站照片| 网址你懂的国产日韩在线| 女警被强在线播放| 国产男靠女视频免费网站| 一卡2卡三卡四卡精品乱码亚洲| 最新中文字幕久久久久| 一级毛片高清免费大全| 女人十人毛片免费观看3o分钟| 亚洲中文字幕一区二区三区有码在线看| 国产视频内射| 丰满人妻一区二区三区视频av | 亚洲美女视频黄频| 色综合婷婷激情| 色播亚洲综合网| 亚洲成人久久性| 国产69精品久久久久777片| 欧美在线一区亚洲| 日韩免费av在线播放| 欧美成人免费av一区二区三区| 99热只有精品国产| 韩国av一区二区三区四区| 18美女黄网站色大片免费观看| 国产极品精品免费视频能看的| 国产成人欧美在线观看| 国产真人三级小视频在线观看| 成人欧美大片| 亚洲无线在线观看| 黄色日韩在线| 欧美成狂野欧美在线观看| 国产一级毛片七仙女欲春2| 亚洲精品456在线播放app | 香蕉久久夜色| 超碰av人人做人人爽久久 | 999久久久精品免费观看国产| 国产成人欧美在线观看| av国产免费在线观看| 成人欧美大片| 久久久国产精品麻豆| 中文字幕人妻熟人妻熟丝袜美 | 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 免费av毛片视频| 啦啦啦韩国在线观看视频| 九色成人免费人妻av| 又黄又爽又免费观看的视频| 天天躁日日操中文字幕| 婷婷亚洲欧美| 国产真实乱freesex| 午夜免费成人在线视频| 久久久精品大字幕| 国产一区二区三区在线臀色熟女| 欧美日韩精品网址| 午夜精品在线福利| 免费看a级黄色片| 99久久综合精品五月天人人| 91av网一区二区| 看片在线看免费视频| 亚洲性夜色夜夜综合| 国产极品精品免费视频能看的| bbb黄色大片| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 久久人人精品亚洲av| 最新在线观看一区二区三区| 男女下面进入的视频免费午夜| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区久久| 少妇的逼水好多| 黄片大片在线免费观看| 亚洲专区中文字幕在线| 一本精品99久久精品77| 日本精品一区二区三区蜜桃| 丁香六月欧美| 免费看十八禁软件| 亚洲国产高清在线一区二区三| 欧美日韩亚洲国产一区二区在线观看| 草草在线视频免费看| 国产午夜精品论理片| 精品久久久久久久末码|