• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified particle swarm optimization-based antenna tiltangle adjusting scheme for LTE coverage optimization

    2015-03-01 08:07:18PhanNhuQuanJiangHuilinBuiThiOanhLiPeiPanZhiwenLiuNan

    Phan NhuQuan  Jiang Huilin  Bui ThiOanh  Li Pei  Pan Zhiwen  Liu Nan

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2Faculty of Mechatronics-Electronics, Lachong University, Bien Hoa City 810000, Vietnam)

    ?

    Modified particle swarm optimization-based antenna tiltangle adjusting scheme for LTE coverage optimization

    Phan NhuQuan1,2Jiang Huilin1Bui ThiOanh1Li Pei1Pan Zhiwen1Liu Nan1

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2Faculty of Mechatronics-Electronics, Lachong University, Bien Hoa City 810000, Vietnam)

    Abstract:In order to solve the challenging coverage problem that the long term evolution (LTE) networks are facing, a coverage optimization scheme by adjusting the antenna tilt angle (ATA) of evolved Node B (eNB) is proposed based on the modified particle swarm optimization (MPSO) algorithm. The number of mobile stations (MSs) served by eNBs, which is obtained based on the reference signal received power (RSRP) measured from the MS, is used as the metric for coverage optimization, and the coverage problem is optimized by maximizing the number of served MSs. In the MPSO algorithm, a swarm of particles known as the set of ATAs is available; the fitness function is defined as the total number of the served MSs; and the evolution velocity corresponds to the ATAs adjustment scale for each iteration cycle. Simulation results show that compared with the fixed ATA, the number of served MSs by eNBs is significantly increased by 7.2%, the quality of the received signal is considerably improved by 20 dBm, and, particularly, the system throughput is also effectively increased by 55 Mbit/s.

    Key words:long term evolution (LTE) networks; antenna tilt angle; coverage optimization; modified particle swarm optimization algorithm

    Received 2015-03-12.

    Biographies:Phan NhuQuan (1980—), male, graduate; Pan Zhiwen (corresponding author), male, doctor, professor, pzw@seu.edu.cn.

    Foundation items:The National High Technology Research and Development Program of China (863 Program) (No.2014AA01A702), the National Science and Technology Major Project (No.2013ZX03001032-004), the National Natural Science Foundation of China (No.61221002, 61201170).

    Citation:Phan NhuQuan, Jiang Huilin, Bui ThiOanh, et al. Modified particle swarm optimization-based antenna tilt angle adjusting scheme for LTE coverage optimization[J].Journal of Southeast University (English Edition),2015,31(4):443-449.[doi:10.3969/j.issn.1003-7985.2015.04.003]

    The optimization of capacity and coverage of the long term evolution (LTE) system is a fascinating area and it has attracted the interest of researchers all over the world[1-9]. With the constant population of mobile stations (MSs) such as mobile phones, laptops, tablets, etc., the networks must respond to the demands of the individual MS such as voice calls, games, movie, music, web surfing, etc. The network operators are facing great challenges on how to satisfy user services by increasing the system capacity and ensuring evolved Node B (eNBs) coverage, and to serve more and more MSs.

    Recently, there has been little research on coverage optimization. In these works, coverage problems are mainly optimized through schemes, e.g., switching on/off the eNBs, adjusting the transmit power of eNBs, adjusting the antenna tilt angle (ATA) and optimizing the placement of antennas[10-15]. To overcome the blind coverage area, Gao et al.[10]proposed switching on/off the eNBs and adjusting the transmit power of the eNBs by multiple objects genetic algorithm based on the received signal code power parameter and the carrier to interference ratio. In Ref.[11], the call dropping ratio (CDR) is regarded as the evaluation criterion of the eNBs coverage. To decrease the CDR, they used a sparse sampling algorithm to adjust the ATAs. The coverage problems such as the coverage holes, loud neighbor overlap and cell overload of femtocell clusters is solved by using a modified particle swarm optimization (MPSO)-based heuristic power control scheme[12]. To maximize coverage, the branch and bound search algorithm is used to obtain the optimal placement of antennas within the coverage area[13]. Naseer ul Islam et al.[14]proposed a cooperative fuzzy Q-learning scheme by using the fuzzy rules to adjust the antenna tilt angle based on the antenna tilt angle and spectral efficiency state. In Ref.[15], the authors proposed to jointly change the mechanical antenna tilt and transmit power to aid maintaining coverage and reducing the system power consumption.

    The tilt angle of the eNB antennas plays a key role in determining eNB coverage and management of interference, but it has not been paid much attention to by the research community. Traditionally, most of ATA adjustments are done by hand, whereas, the eNBs are increasingly more modern and are automatically adjusted. This makes eNBs more adaptive to dynamic ATA, and it is better for coordinating eNB coverage, such as minimizing coverage holes caused by the failure at the neighboring eNBs, and better in managing the interference of users’ deployment[16].

    In this paper, an MPSO-based tilt angle adjusting algorithm for coverage optimization in the LTE network is proposed. We define the network coverage as the number of the served MSs of eNB, which is determined by eNBs’ ATA, and the coverage problem is solved by maximizing the number of MSs under the coverage of eNBs.

    First, how to estimate the number of MSs served by eNBs is presented. The coverage of the eNBs is determined by the reference signal received power (RSRP) measured from the MSs. The MSs with the maximum RSRP from all eNBs larger than the RSRP threshold are recognized as under coverage. Then, the coverage optimization problem is figureted as the optimal number of MSs under the coverage of eNBs. Since the adjustment of each ATA can affect the maximum RSRP of each MS, how to cooperatively adjust all ATAs to maximize the total number of MSs under coverage becomes a critical problem. After that, an ATA adjusting scheme based on the MPSO is proposed to maximize the number of served MSs covered by eNBs.

    1System Model and Problem figuretion

    The simplified system is shown in Fig.1, in which the strong and weak signal strengths are shown by solid and dashed lines, respectively.

    Fig.1 System model

    1.1 Antenna down tilt angle

    The ATA denoted as an elevation angle of the antennaθis described in Fig.2. When we change the ATA, the direction of the antenna’s main lobe will be changed. This is an important issue in determining the coverage area of eNB.

    Fig.2 The relationship between antenna main lobe and tilt angle

    1.2 Path-loss

    To simplify, the path-loss is[17]

    l=128.1+37.6log10d

    (1)

    wheredis the distance between MS and eNB antenna.

    1.3 Shadow fading model

    The effect of shadow fading is usually modelled on free space and shadow fading is logarithmically distributed[18-19]. Assume that the considered space has a map size ofx×yexpressed in square meters. The envelope of the autocorrelation shadow fading function is

    (2)

    1.4 The number of MSs served by eNB

    A 3GPP LTE multi-cell network as shown in Fig.1 withneNBeNBs,nantenantennas andnmsMSs is considered here. Since the system will be evaluated at each timet, for convenience, we omit the symboltin the following analysis. The reference signal received power (RSRP) on each subcarrier at timetfor MSjserved by eNBiand eNB antennakis

    (3)

    wherePiis the transmit power of eNBi;lj,iis the path loss at MSjfrom eNBi; (xj,yj) are the geographical position-coordinates of MSj;θis the eNB ATAkof eNBi; andφj,i=sin-1((yj-yeNBi)/r) is the azimuth angle between MSjand eNBi;sjis the position-related shadow fading of MSj;Aj,iis the antenna gain at MSjfrom eNBiin dBi. The MSs served by eNB antennas are determined as follows: If -60°≤φ<60°, the eNB antenna 1 is serving. If 60°≤φ<180°, the eNB antenna 2 is serving. If -180°≤φ<-60°, the eNB antenna 3 is serving.

    The received signal to interference plus noise ratio (SINR) of MSjserved by eNBiand eNB antennakat timetis

    (4)

    wherecnrepresents all the neighboring interfering cells andδis the noise power.

    The system throughputTis

    (5)

    whereBjis the bandwidth allocated to MSj.

    eNBiand eNB antennakwill serve MSjwith the maximum of RSRP which is greater than the RSRP threshold.

    (6)

    where RSRPthris the threshold used to judge which eNB and which eNB antenna are serving the MS.

    The number of MSs being served by eNBiand eNB antennakis then determined by

    (7)

    From Eq.(7), we can see that the number of MSs served by eNB is determined by the antenna tilt angles when the transmit power of eNBs and the horizontal angles are fixed and the position of MSs is changed. Therefore, the served MS number can be maximized by adjusting the antenna tilt angle.

    The total number of MSs served by the eNBs is figureted as

    (8)

    whereθ={θ1,θ2,…,θanten} is the ATAs set of the eNBs andθk(k∈[1,nanten]) is the ATAk.f(P,x,y,φ,θ) is used as the fitness function in the following proposed algorithm.

    Then, the optimization problem can be figureted as

    (9)

    The objective is maximizing the total number of MSs served by the eNBs through finding the optimal ATAs setθ.

    2MPSO-Based ATA Adjusting Algorithm

    The optimal problem in Eq.(9) is a non-convex one, which is not easy to solve through computational efficient algorithms. It is fortunate that, taking the manifest non-linear and multimodal features of the solution into account, and taking into account that the search space can be constricted very quickly, the MPSO algorithm can be used to solve the ATA adjusting problem. As far as we know, there are not any efficient solutions to solve this problem, so we propose an ATA adjusting scheme based on the MPSO algorithm.

    In the MPSO, there exists a swarm of particles, and each of them represents a potential solution to the optimization problem and corresponds to a fitness value determined by the fitness function of the optimization problem. All the particles update according to the evolution velocity calculated by the cooperation among the particles themselves[20].

    For the proposed MPSO-based adjusting ATA algorithm aiming to solve the aforementioned coverage optimization problem, the solution is the ATAs set. A swarm of particles exists. Each particle represents a potential solution to the coverage optimization problem and corresponds to a fitness value. All the particles are updated according to the velocities calculated by their own experience and the global experience of the whole swarm.

    ATAs are adjusted based on the total number of MSs served by the eNBs. First, many ATA sets are initialized randomly, each of which corresponds to a fitness value according to the fitness function (8). Secondly, all the sets of ATAs are updated in each iteration cycle according to the past experience of the best utility of each ATA set and the global best utility of all the ATA sets. The global best ATA can be obtained by iteratively updating these initial ATA sets when achieving a better fitness value. Finally, the global best solution can be obtained by the multiple restart processes.

    For the optimization problem in (9), the fitness function is the total number of served MSs, and the evolution velocity corresponds to the ATAs adjustment scale for each iteration.

    The algorithm consists of the following steps:

    1) Given the number of the antennasnantenand the positions of the eNBs and MSs, set the number of particlesnp, the maximum number of the iteration timestmax, the maximum number of the restart timessmax, the inertia weightωand the acceleration coefficientsc1andc2.

    2) Set the current restart times=0 for the restart processes.

    3) Set the current iteration timet=0 for the iterations of the particle swarm.

    4) Initialize the set ofnpATA sets,

    {θ1(t),θ2(t),…,θnp(t)}

    {V1(t),V2(t),…,Vnp(t)}

    5) Calculate the fitness valuefn(t) of each setθn(t) according to the fitness function (8).

    (10)

    which is the best ATA set corresponding to the maximum number of the served MSs obtained so far by the setθn(t); the global best ATA set denoted byθg(t) is

    (11)

    which is corresponding to the best ATA obtained so far for all sets of ATA.

    7) Update the ATA adjustment scale for a typical setVnaccording to

    c2η[θg(t)-θn(t)]

    (12)

    whereω∈[ωmin,ωmax] withωmin=0.4 andωmax=1 is the inertia weight which keeps the update of the ATA adjustment scale and balances the local and global optimizing;c1andc2are two positive constants called the acceleration coefficients; andξ,η∈[0,1]. Since the parametersc1,c2,ξandηwill determine the sense of the variation of the velocity, according to the experimental studies,c1andc2are taken 1.49,ξandηare random numbers in [0,1][21-22]. The second part of Eq.(12) is the cognition part, and the third part is the social part.

    8) Update the ATA setθnas

    θn(t+1)=θn(t)+Vn(t+1)

    (13)

    9) If the maximum number of iterationstmaxis not satisfied, sett=t+1 and go to Step 5); otherwise, go to Step 10).

    10) If the maximum number of the restart timessmaxis not satisfied, set the restart times=s+1 and go to Step 3) to restart the algorithm; otherwise, stop the algorithm and set the ATAs of the eNBs with the global bestθg(t).

    3Simulation Results

    The system with 19 eNBs under cell layout in three sectors is considered. The eNBs are in the center of the hexagonal and 1 000 MSs randomly move at a speed in the range of 0 to 120 km/h in eight directions (east, west, south, north, north-east, south-east, north-west and south-west). The shadow fading is considered. We assume that the azimuth angle is kept fixed, but the antenna tilt angle can be adjusted, and the height of eNBs and MSs are the same for all eNBs and MSs. The antenna pattern is in accordance with 3GPP standard[17]. The system parameters are listed in Tab.1.

    Tab.1 Setting of the system parameters

    The simulation system is shown in Fig.3. The eNBs are shown by green triangles placed at the center of the hexagons, and the MSs (MS and user are interchangeable) are shown by red dots. Fig.4 shows the comparison of the served MSs number by the 1st, 2nd and 3rd antennas of eNBs with the fixed tilts of 0°, 6° and 16° and with the tilts adjusted by the MPSO algorithm. The sum of the served MSs number with the fixed tilt of 0° is 1 061 over the sum of the generated MSs number, with the fixed tilt of 6° is 805; with the fixed tilt of 16° is 424 and with the tilts adjusted by the MPSO algorithm is 877. Hence, we can see that, with the fixed tilt of 0°, the excessive coverage occurs; with the fixed tilt of 16°, the insufficient coverage occurs; with the fixed tilts of 6°, the coverage of eNBs can be acceptable; and the proposed algorithm achieves the best coverage compared with the fixed tilts. Obviously, compared with the fixed tilt of 6°, the proposed algorithm significantly improves the number of the served MSs by 7.2%. From the results of Fig.4, we select the fixed tilt of 6° to compare with the proposed scheme in the following simulation.

    Fig.3 The simulation system

    Fig.4 Comparison of served MSs number and antennas of eNBs. (a) 0°; (b) 6°; (c) 16°; (d) With tilts adjusted by MPSO

    The cumulative distribution function (CDF) of the MSs’ RSRP comparison between the fixed tilt of 6° and the tilts adjusted by the MPSO algorithm is shown in Fig.5. We can observe that the proposed MPSO scheme improves the quality of received signal better than that of the fixed tilt of 6° by 20 dBm. Fig.6 illustrates that the MSs’ SINR of the proposed algorithm is significantly better than that of the fixed tilts of 6°. Users’ throughput and system throughput are illustrated in Fig.8. We can see that the system throughput is considerably improved by 55 Mbit/s compared with that of the fixed tilts of 6°.

    Fig.5 CDF of users’ RSRP

    Fig.6 User’s SINR. (a) With fixed tilt of 6°; (b) With tilts adjusted by MPSO; (c) CDF

    Fig.7 shows that the algorithm only needs a few iteration times to obtain the optimal value of the system throughput, and its convergence is fast. The computational complexity of the solution is polynomial time complexity.

    Fig.7 The convergence of solution

    From Figs.4 to 8, we can see that the proposed MPSO-based ATA adjusting algorithm can significantly increase the number of MSs served by eNBs and also improve both the MSs’ SINR and system throughput. It demonstrates that, the proposed algorithm is a promising solution for the optimization of both the eNB coverage area and the system capacity in LTE networks.

    Fig.8 Throughput. (a) The users’ throughput; (b) System throughput

    4Conclusion

    In this paper, an MPSO-based coverage optimization scheme is proposed for adjusting the tilt angle of the antennas of eNBs to solve the coverage problem in LTE networks. We define the network coverage as the number of served MSs of eNB. A swarm of particles known as the set of ATAs is available; the fitness function is defined as the total number of the served MSs, and the evolution velocity corresponds to the ATAs adjustment scale for each iteration. Simulation results show that compared with the fixed ATA, the number of served MSs by eNBs is significantly increased by 7.2%, the quality of received signal is considerably improved by 20 dBm, and, particularly, the system throughput is also effectively increased by 55 Mbit/s benefiting from the proposed algorithm. However, without considering the load of eNBs, some eNBs are heavy load and some are light load. We will take the load of eNBs into account in future work.

    References

    [1]Jiang Y, Yu P, Li W, et al. Automated coverage optimization scheme based on downtilt adjustment in wireless access networks[C]//InternationalWirelessCommunicationsandMobileComputing(IWCMC). Limassol, Cyprus, 2012: 945-948.

    [2]Naseer ul Islam M, Mitschele-Thiel A. Reinforcement learning strategies for self-organized coverage and capacity optimization [C]//IEEEWirelessCommunicationsandNetworkingConference(WCNC). Shanghai, China, 2012: 2818-2823.

    [3]Engels A, Reyer M, Xu X, et al. Autonomous self-optimization of coverage and capacity in LTE cellular networks [J].IEEETransactionsonVehicularTechnology, 2013, 62(5): 1989-2004.

    [4]Berger S, Fehske A, Zanier P, et al. Online antenna tilt-based capacity and coverage optimization [J].IEEEWirelessCommunicationsLetters, 2014, 3(4): 437-440.

    [5]Rouzbeh R, Siegfried K, Holger C. A fuzzy reinforcement learning approach for self-optimization of coverage in LTE networks [J].BellLabsTechnicalJournal, 2010, 15(3): 153-175.

    [6]Luketic I, Simunic D, Blajic T. Optimization of coverage and capacity of self-organizing network in LTE [C]//Proceedingsofthe34thInternationalConvention. Opatija, the Republic of Croatia, 2011: 612-617.

    [7]Razavi R, Klein S, Claussen H. Self-optimization of capacity and coverage in LTE networks using a fuzzy reinforcement learning approach[C]//IEEEInternationalSymposiumonPersonalIndoorandMobileRadioCommunications(PIMRC). Istanbul, Turkey, 2010: 1865-1870.

    [8]Karvounas D, Vlacheas P, Georgakopoulos A, et al. An opportunistic approach for coverage and capacity optimization in self-organizing networks [C]//FutureNetworkandMobileSummit. Lisboa, Portugal, 2013: 1-10.

    [9]Combes R, Altman Z, Altman E. Self-organization in wireless networks: a flow-level perspective [C]//ProceedingsofIEEEINFOCOM. Orlando, FL,USA, 2012: 2946-2950.

    [10]Gao M, Huang L, Cai H. Intelligent coverage optimization with multi objective genetic algorithm in cellular system [C]//InternationalConferenceonComputerScience&Education(ICCSE). Colombo, Democratic Socialist Republic of Sri Lanka, 2013: 859-863.

    [11]Thampi A, Kaleshi D, Randall P, et al. A sparse sampling algorithm for self-optimization of coverage in LTE networks [C]//InternationalSymposiumonWirelessCommunicationSystems(ISWCS). Paris, France, 2012: 909-913.

    [12]Huang L, Zhou Y, Hu J, et al. Coverage optimization for femtocell clusters using modified particle swarm optimization [C]//IEEEInternationalConferenceonCommunication(ICC). Ottawa, ON, USA, 2012: 611-615.

    [13]Hafiz H, Aulakh H, Raahemifar K. Antenna placement optimization for cellular networks [C]//26thAnnualIEEECanadianConferenceonElectricalandComputerEngineering(CCECE). Regina, SK, USA, 2013: 1-6.

    [14]Naseer ul Islam M, Mitschele-Thiel A. Cooperative fuzzy q-learning for self-organized coverage and capacity optimization [C]//IEEEInternationalSymposiumonPersonalIndoorandMobileRadioCommunications(PIMRC). Sydney, Australia, 2012: 1406-1411.

    [15]Gao Y, Li Y, Zhou S, et al. System level performance of energy efficient dynamic mechanical antenna tilt angle switching in LTE-advanced systems [C]//IEEEInternationalWirelessSymposium(IWS). Beijing, China, 2013: 1-4.

    [16]Partov B, Leith D J, Razavi R. Utility fair optimization of antenna tilt angles in LTE networks [J].IEEE/ACMTransactionsonNetworking, 2014, 23(1): 175-185.

    [17]3GPP. TR36.814 Evolved universal terrestrial radio access (E-UTRA); Further advancements for E-UTRA physical layer aspects [S]. San Antonio, USA: 3GPP, 2010.

    [18]Gudmundson M. Correlation model for shadow fading in mobile radio systems [J].ElectronicsLetters, 1991, 27(23): 2145-2146.

    [19]Giancristoraro D. Correlation model for shadow fading in mobile radio channels [J].ElectronicsLetters, 1996, 32(11): 958-959.

    [20]Shi Y, Eberthart R. A modified particle swarm optimizer[C]//IEEEInternationalConferenceonEvolutionaryComputationProceedings. Anchorage, AK, USA, 1998: 69-73.

    [21]Liu Y T, Fu M Y, Gao H B. Multi-threshold infrared image segmentation based on the modified particle swarm optimization algorithm[C]//2007InternationalConferenceonMachineLearningandCybernetics. Hong Kong, China, 2007: 383-388.

    [22]Lalwani S, Kumar R, Gupta N. A study on inertia weight schemes with modified particle swarm optimization algorithm for multiple sequence alignment[C]//2013SixthInternationalConferenceonContemporaryComputing(IC3). Noida, India, 2013: 283-288.

    doi:10.3969/j.issn.1003-7985.2015.04.003

    久久久精品区二区三区| 免费看十八禁软件| 久久久精品94久久精品| 亚洲精品av麻豆狂野| 精品福利观看| 国产av一区二区精品久久| 午夜福利在线免费观看网站| 亚洲国产av影院在线观看| 国产精品一区二区在线不卡| 曰老女人黄片| 午夜福利一区二区在线看| 男女免费视频国产| 91麻豆av在线| 一本大道久久a久久精品| 三上悠亚av全集在线观看| 国产精品国产av在线观看| 亚洲欧美一区二区三区黑人| 老司机福利观看| 热re99久久国产66热| 国产一级毛片在线| 黄色视频不卡| 久久久国产成人免费| 欧美精品av麻豆av| 久久人人爽人人片av| 免费少妇av软件| 五月开心婷婷网| 国产免费现黄频在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 最黄视频免费看| 法律面前人人平等表现在哪些方面 | 国产亚洲av高清不卡| 精品一区二区三卡| a级毛片在线看网站| 成人三级做爰电影| 97精品久久久久久久久久精品| 精品人妻1区二区| 女性生殖器流出的白浆| 久久久精品国产亚洲av高清涩受| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av成人精品| 丝瓜视频免费看黄片| 老汉色av国产亚洲站长工具| 国产国语露脸激情在线看| 啦啦啦中文免费视频观看日本| www日本在线高清视频| 人人妻,人人澡人人爽秒播| 国产在线免费精品| 日韩一卡2卡3卡4卡2021年| 久久国产亚洲av麻豆专区| 每晚都被弄得嗷嗷叫到高潮| av有码第一页| 国产精品亚洲av一区麻豆| 咕卡用的链子| 美女中出高潮动态图| 少妇裸体淫交视频免费看高清 | 成人国语在线视频| 亚洲午夜精品一区,二区,三区| 午夜福利视频在线观看免费| 满18在线观看网站| 国产激情久久老熟女| 五月天丁香电影| tube8黄色片| 国产精品自产拍在线观看55亚洲 | 亚洲精品美女久久av网站| 黄片大片在线免费观看| 国精品久久久久久国模美| 国产亚洲av高清不卡| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 免费av中文字幕在线| 一级a爱视频在线免费观看| 欧美黑人精品巨大| 久久精品亚洲av国产电影网| 亚洲欧洲精品一区二区精品久久久| 女人爽到高潮嗷嗷叫在线视频| 99热全是精品| a级片在线免费高清观看视频| 国产一区二区三区在线臀色熟女 | 精品福利永久在线观看| 香蕉国产在线看| 中文欧美无线码| 制服诱惑二区| 夜夜夜夜夜久久久久| 久久久久国产一级毛片高清牌| 别揉我奶头~嗯~啊~动态视频 | 精品国产超薄肉色丝袜足j| 人人妻,人人澡人人爽秒播| 亚洲精品久久成人aⅴ小说| 国产欧美日韩精品亚洲av| 日韩欧美免费精品| 亚洲精品自拍成人| 国产欧美日韩一区二区精品| av片东京热男人的天堂| 法律面前人人平等表现在哪些方面 | a级毛片黄视频| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| 黑人欧美特级aaaaaa片| 成年av动漫网址| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 亚洲精品国产av成人精品| 天天影视国产精品| av超薄肉色丝袜交足视频| 欧美少妇被猛烈插入视频| 亚洲熟女毛片儿| 高清视频免费观看一区二区| 国产区一区二久久| 少妇 在线观看| 亚洲欧美一区二区三区久久| 精品人妻1区二区| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级| 韩国精品一区二区三区| 亚洲黑人精品在线| 看免费av毛片| 新久久久久国产一级毛片| 免费观看av网站的网址| 亚洲国产中文字幕在线视频| 美女视频免费永久观看网站| 91av网站免费观看| 搡老乐熟女国产| 老汉色∧v一级毛片| 五月开心婷婷网| 成人国产av品久久久| 亚洲中文字幕日韩| 国产一区二区三区在线臀色熟女 | 美女午夜性视频免费| 母亲3免费完整高清在线观看| 国产精品免费大片| 午夜精品国产一区二区电影| 香蕉丝袜av| 久久久国产一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 女人精品久久久久毛片| 老司机在亚洲福利影院| 19禁男女啪啪无遮挡网站| 国产成人免费观看mmmm| 久久人人爽人人片av| 十八禁网站网址无遮挡| 高清av免费在线| 精品少妇一区二区三区视频日本电影| 在线天堂中文资源库| 操美女的视频在线观看| www日本在线高清视频| 国产一卡二卡三卡精品| av片东京热男人的天堂| 丰满饥渴人妻一区二区三| 人人妻人人爽人人添夜夜欢视频| 一区二区av电影网| 国产精品久久久久成人av| h视频一区二区三区| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 国产主播在线观看一区二区| 99久久国产精品久久久| 少妇 在线观看| 亚洲精品粉嫩美女一区| 国产亚洲欧美精品永久| 好男人电影高清在线观看| 男女免费视频国产| 免费一级毛片在线播放高清视频 | 国产免费现黄频在线看| 欧美精品av麻豆av| 丝袜喷水一区| 国产一区二区三区av在线| 丝袜美足系列| h视频一区二区三区| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 午夜福利乱码中文字幕| 午夜老司机福利片| 欧美精品亚洲一区二区| 国产一区二区三区在线臀色熟女 | 人妻一区二区av| 18禁黄网站禁片午夜丰满| 无限看片的www在线观看| 欧美午夜高清在线| 日韩中文字幕视频在线看片| 纯流量卡能插随身wifi吗| 国产伦人伦偷精品视频| 国产av国产精品国产| 亚洲第一av免费看| 别揉我奶头~嗯~啊~动态视频 | 这个男人来自地球电影免费观看| 国产成人精品久久二区二区免费| 考比视频在线观看| 两人在一起打扑克的视频| a 毛片基地| 亚洲国产日韩一区二区| www.精华液| 国产一级毛片在线| 亚洲激情五月婷婷啪啪| 国产亚洲精品一区二区www | 日韩 欧美 亚洲 中文字幕| 久久精品亚洲av国产电影网| 亚洲一区中文字幕在线| 成人亚洲精品一区在线观看| 国产精品一区二区在线不卡| 国产精品久久久av美女十八| 操出白浆在线播放| 秋霞在线观看毛片| 高清黄色对白视频在线免费看| 欧美大码av| 午夜免费成人在线视频| 亚洲精品日韩在线中文字幕| 我要看黄色一级片免费的| 国产91精品成人一区二区三区 | 少妇猛男粗大的猛烈进出视频| av在线老鸭窝| 国产极品粉嫩免费观看在线| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕一二三四区 | 一边摸一边做爽爽视频免费| 国产精品av久久久久免费| 国产高清videossex| 伊人久久大香线蕉亚洲五| 人成视频在线观看免费观看| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三 | 亚洲精品第二区| 国产在线免费精品| 久久人人爽av亚洲精品天堂| 男女无遮挡免费网站观看| 精品国产乱码久久久久久小说| 欧美性长视频在线观看| 90打野战视频偷拍视频| 亚洲av电影在线观看一区二区三区| 亚洲av成人不卡在线观看播放网 | 国产成人欧美| 久久免费观看电影| netflix在线观看网站| 国产伦理片在线播放av一区| 午夜激情久久久久久久| 极品少妇高潮喷水抽搐| 视频区图区小说| 日韩 亚洲 欧美在线| 亚洲av日韩精品久久久久久密| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品古装| 天天添夜夜摸| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 国产区一区二久久| av线在线观看网站| 麻豆国产av国片精品| 女性被躁到高潮视频| 久久久水蜜桃国产精品网| 大片电影免费在线观看免费| 无遮挡黄片免费观看| 制服诱惑二区| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲五月婷婷丁香| 国产精品免费视频内射| 永久免费av网站大全| 91精品伊人久久大香线蕉| 国产一卡二卡三卡精品| 精品久久蜜臀av无| 精品人妻1区二区| 欧美成狂野欧美在线观看| 岛国在线观看网站| 久久人妻福利社区极品人妻图片| 久久午夜综合久久蜜桃| 在线观看免费视频网站a站| 日本撒尿小便嘘嘘汇集6| 动漫黄色视频在线观看| 亚洲黑人精品在线| 在线 av 中文字幕| 99国产综合亚洲精品| 黄色怎么调成土黄色| 久热这里只有精品99| av片东京热男人的天堂| 丝瓜视频免费看黄片| 国产色视频综合| 丝袜脚勾引网站| 成在线人永久免费视频| 色播在线永久视频| 久久久国产精品麻豆| 久久影院123| 国产淫语在线视频| 狂野欧美激情性xxxx| 在线亚洲精品国产二区图片欧美| 欧美亚洲 丝袜 人妻 在线| 欧美 亚洲 国产 日韩一| 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 午夜福利一区二区在线看| 亚洲精品乱久久久久久| 精品亚洲乱码少妇综合久久| 99热国产这里只有精品6| 人妻人人澡人人爽人人| 80岁老熟妇乱子伦牲交| 亚洲国产欧美在线一区| 成人av一区二区三区在线看 | 高清欧美精品videossex| 岛国毛片在线播放| xxxhd国产人妻xxx| 精品人妻熟女毛片av久久网站| 老司机福利观看| av在线app专区| 亚洲天堂av无毛| 秋霞在线观看毛片| 这个男人来自地球电影免费观看| 亚洲国产精品成人久久小说| 免费高清在线观看日韩| av一本久久久久| 成年人午夜在线观看视频| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 男女床上黄色一级片免费看| 久久精品成人免费网站| 午夜免费鲁丝| 成人av一区二区三区在线看 | 欧美亚洲 丝袜 人妻 在线| 久久午夜综合久久蜜桃| 亚洲专区中文字幕在线| 51午夜福利影视在线观看| 丰满迷人的少妇在线观看| 久久久久久久国产电影| 中文字幕人妻丝袜制服| av一本久久久久| 自线自在国产av| 男女免费视频国产| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| √禁漫天堂资源中文www| 悠悠久久av| 少妇裸体淫交视频免费看高清 | av免费在线观看网站| 国产免费福利视频在线观看| 高清欧美精品videossex| 久久国产精品大桥未久av| 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 9191精品国产免费久久| 国产有黄有色有爽视频| 不卡av一区二区三区| 少妇裸体淫交视频免费看高清 | 人人妻人人爽人人添夜夜欢视频| 欧美精品av麻豆av| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 91麻豆精品激情在线观看国产 | 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 日本黄色日本黄色录像| 丁香六月欧美| 午夜福利免费观看在线| 大片免费播放器 马上看| 国产精品.久久久| 国产av国产精品国产| 国产欧美日韩精品亚洲av| 我的亚洲天堂| 亚洲av美国av| 亚洲欧美日韩高清在线视频 | 欧美日韩成人在线一区二区| 热re99久久精品国产66热6| 日韩大码丰满熟妇| 国产亚洲一区二区精品| 国产欧美日韩一区二区精品| 亚洲专区中文字幕在线| 色婷婷av一区二区三区视频| 欧美av亚洲av综合av国产av| 大片电影免费在线观看免费| 国产av一区二区精品久久| 免费av中文字幕在线| 久热这里只有精品99| 夫妻午夜视频| 亚洲国产精品999| 中国国产av一级| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看 | 少妇的丰满在线观看| 国产亚洲精品第一综合不卡| 亚洲第一欧美日韩一区二区三区 | 国产主播在线观看一区二区| 亚洲欧洲精品一区二区精品久久久| 国产精品香港三级国产av潘金莲| 日韩中文字幕视频在线看片| 亚洲精品久久成人aⅴ小说| 午夜成年电影在线免费观看| 久久亚洲国产成人精品v| 中国国产av一级| 美女高潮喷水抽搐中文字幕| 啦啦啦中文免费视频观看日本| 亚洲男人天堂网一区| 久久久久久久久免费视频了| 国产一区二区激情短视频 | 性色av乱码一区二区三区2| 高清欧美精品videossex| 天堂中文最新版在线下载| 老司机亚洲免费影院| 在线看a的网站| 国产老妇伦熟女老妇高清| 亚洲黑人精品在线| 99热全是精品| 中亚洲国语对白在线视频| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区三 | 十八禁网站免费在线| 一进一出抽搐动态| 国产亚洲av高清不卡| 久久人妻福利社区极品人妻图片| 一进一出抽搐动态| 在线观看www视频免费| 99热网站在线观看| 亚洲五月色婷婷综合| 精品久久久久久久毛片微露脸 | 又黄又粗又硬又大视频| 亚洲第一青青草原| 亚洲免费av在线视频| 亚洲国产欧美日韩在线播放| 亚洲av日韩在线播放| 黑人猛操日本美女一级片| 国产精品久久久久久精品古装| 91成年电影在线观看| 欧美日韩亚洲国产一区二区在线观看 | 好男人电影高清在线观看| 男女边摸边吃奶| 91精品伊人久久大香线蕉| 国产淫语在线视频| 日韩制服骚丝袜av| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产综合久久久| 黄色视频不卡| 久久热在线av| 精品一品国产午夜福利视频| 亚洲国产av影院在线观看| 欧美日韩亚洲高清精品| 亚洲精品自拍成人| 女性被躁到高潮视频| 国产av精品麻豆| 窝窝影院91人妻| 欧美激情 高清一区二区三区| 精品欧美一区二区三区在线| 精品亚洲乱码少妇综合久久| 欧美成狂野欧美在线观看| 久久人人爽人人片av| 永久免费av网站大全| 欧美精品亚洲一区二区| 波多野结衣一区麻豆| 丝瓜视频免费看黄片| 狂野欧美激情性xxxx| 久热这里只有精品99| 精品一区二区三区av网在线观看 | 亚洲av美国av| 亚洲色图综合在线观看| 日韩视频一区二区在线观看| 国产精品久久久久久精品电影小说| 久久久久久久久久久久大奶| 欧美亚洲日本最大视频资源| 夜夜夜夜夜久久久久| 精品视频人人做人人爽| 大片电影免费在线观看免费| 男女无遮挡免费网站观看| 爱豆传媒免费全集在线观看| 97在线人人人人妻| 99香蕉大伊视频| 午夜两性在线视频| 亚洲国产欧美一区二区综合| 无限看片的www在线观看| 香蕉丝袜av| 一本综合久久免费| videosex国产| 精品少妇久久久久久888优播| 久久久国产欧美日韩av| 欧美成狂野欧美在线观看| 黄网站色视频无遮挡免费观看| 久久人妻熟女aⅴ| 国产成人精品久久二区二区免费| 两个人免费观看高清视频| 在线av久久热| 男女午夜视频在线观看| 一进一出抽搐动态| 日韩中文字幕欧美一区二区| 国产福利在线免费观看视频| 老司机深夜福利视频在线观看 | 狂野欧美激情性xxxx| 不卡一级毛片| 一区二区三区精品91| 一级a爱视频在线免费观看| 日本a在线网址| 人妻人人澡人人爽人人| 亚洲九九香蕉| 午夜91福利影院| 国产成人精品在线电影| 大片免费播放器 马上看| 女性生殖器流出的白浆| 国精品久久久久久国模美| 日韩,欧美,国产一区二区三区| 国产高清videossex| 久久久欧美国产精品| 国产人伦9x9x在线观看| 蜜桃在线观看..| 中文字幕最新亚洲高清| 亚洲精品一二三| 欧美大码av| 免费在线观看完整版高清| 丰满迷人的少妇在线观看| 免费在线观看完整版高清| 国产一区二区 视频在线| 人妻一区二区av| 天堂8中文在线网| 日本精品一区二区三区蜜桃| 色播在线永久视频| 一个人免费在线观看的高清视频 | 老熟妇仑乱视频hdxx| 99香蕉大伊视频| 少妇粗大呻吟视频| 麻豆av在线久日| 久热爱精品视频在线9| 亚洲精品久久久久久婷婷小说| 欧美日韩精品网址| 亚洲精华国产精华精| 国产老妇伦熟女老妇高清| 亚洲精品中文字幕一二三四区 | 欧美国产精品va在线观看不卡| 免费高清在线观看日韩| 丰满少妇做爰视频| 天天添夜夜摸| av电影中文网址| 香蕉丝袜av| 国产老妇伦熟女老妇高清| 99国产精品一区二区蜜桃av | 俄罗斯特黄特色一大片| 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃| www日本在线高清视频| 亚洲国产精品一区二区三区在线| 精品国产国语对白av| 欧美激情高清一区二区三区| 亚洲中文日韩欧美视频| 性高湖久久久久久久久免费观看| 免费在线观看日本一区| www.999成人在线观看| 窝窝影院91人妻| 老司机影院毛片| 在线观看舔阴道视频| 国内毛片毛片毛片毛片毛片| 欧美 亚洲 国产 日韩一| 黄频高清免费视频| 亚洲自偷自拍图片 自拍| 纵有疾风起免费观看全集完整版| 女性被躁到高潮视频| 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 亚洲国产欧美一区二区综合| 亚洲五月色婷婷综合| 香蕉国产在线看| 自线自在国产av| 桃花免费在线播放| 青春草视频在线免费观看| 正在播放国产对白刺激| 国产精品香港三级国产av潘金莲| 18禁裸乳无遮挡动漫免费视频| 精品亚洲乱码少妇综合久久| 成人国语在线视频| 日韩电影二区| 国产高清videossex| 一二三四社区在线视频社区8| 天堂8中文在线网| 黄色视频不卡| 看免费av毛片| 少妇裸体淫交视频免费看高清 | 岛国毛片在线播放| 久久国产亚洲av麻豆专区| 日韩视频一区二区在线观看| 午夜福利影视在线免费观看| 91av网站免费观看| 下体分泌物呈黄色| 视频在线观看一区二区三区| 国产精品久久久久久精品古装| 国产av又大| 乱人伦中国视频| 欧美一级毛片孕妇| 他把我摸到了高潮在线观看 | 国产人伦9x9x在线观看| 欧美日本中文国产一区发布| 91精品伊人久久大香线蕉| 日韩欧美免费精品| 国产精品1区2区在线观看. | 在线十欧美十亚洲十日本专区| 狠狠狠狠99中文字幕| 黑人巨大精品欧美一区二区mp4| a在线观看视频网站| 亚洲专区中文字幕在线| 成年女人毛片免费观看观看9 | 在线av久久热| 考比视频在线观看| 国产99久久九九免费精品| 91av网站免费观看| 一区二区三区激情视频| 少妇人妻久久综合中文| 亚洲欧美色中文字幕在线| 欧美大码av| 男女免费视频国产| av线在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 51午夜福利影视在线观看| 好男人电影高清在线观看| 成人18禁高潮啪啪吃奶动态图| 香蕉丝袜av| 18禁观看日本| 成人影院久久| 在线看a的网站| 国产深夜福利视频在线观看| 久久热在线av| 亚洲av欧美aⅴ国产| 国产野战对白在线观看| 一级毛片女人18水好多| 视频在线观看一区二区三区|