• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultimate load bearing capacity evaluation of concrete beamssubjected to freeze-thaw cycles

    2015-03-01 08:07:29QinXiaochuanMengShaopingTuYongmingCaoDafu

    Qin Xiaochuan  Meng Shaoping  Tu Yongming  Cao Dafu

    (1School of Civil Engineering, Southeast University, Nanjing 210096, China)(2College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China)

    ?

    Ultimate load bearing capacity evaluation of concrete beamssubjected to freeze-thaw cycles

    Qin Xiaochuan1Meng Shaoping1Tu Yongming1Cao Dafu2

    (1School of Civil Engineering, Southeast University, Nanjing 210096, China)(2College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China)

    Abstract:A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (FTCs). First, the freeze-thaw damage on concrete material is analyzed and the residual compressive strength is chosen to indicate the freeze-thaw damage. Then, the equivalent block method is employed to simplify the compressive stress-strain curve of the freeze-thaw damaged concrete and the mathematical expression for the ultimate bending moment is obtained. Comparisons of the predicted results with the test data indicate that the ultimate bending moment of concrete beams affected by FTC attack can be predicted by this proposed method. However, the bond-slip behavior and the randomness of freeze-thaw damage will affect the accuracy of the predicted results, especially when the residual compressive strength is less than 50%.

    Key words:concrete beam; freeze-thaw cycles; ultimate bending moment; structural analysis

    Received 2015-02-09.

    Biographies:Qin Xiaochuan (1985—), male, graduate; Tu Yongming (corresponding author), male, doctor, associate professor, tuyongming@seu.edu.cn.

    Foundation items:The National Natural Science Foundation of China (No.50978224, 51378104), the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    Citation:Qin Xiaochuan, Meng Shaoping, Tu Yongming, et al. Ultimate load bearing capacity evaluation of concrete beams subjected to freeze-thaw cycles[J].Journal of Southeast University (English Edition),2015,31(4):522-528.[doi:10.3969/j.issn.1003-7985.2015.04.016]

    The freeze-thaw cycle (FTC) attack is one of the most severe factors that lead to the durability deterioration of existing reinforced concrete structures in cold regions[1-2]. As FTCs are repeated, the concrete material gradually loses its strength and stiffness with the growth of the internal cracks caused by the volume expansion of freezing water stored in the pore system of concrete[3-4]. Several reports have been focused on the performance of concrete material under FTCs[5-12]. However, little attention was paid to reinforced concrete members and prestressed concrete members[13-15]. For concrete structures, concrete material deterioration will cause load-bearing capacity degradation, which eventually makes the whole structure incapable of service. Thus, there is a growing need for methods to evaluate the freeze-thaw damaged concrete structures. A method for predicting the ultimate load bearing capacity of freeze-thaw damaged concrete structures is proposed, testified and discussed in this paper.

    1Foundations of the Prediction Method

    1.1 Indicators of freeze-thaw damage

    In the assessment of the freeze-thaw damage on concrete, various indicators, such as the relative dynamic modulus of elasticity (RDME), compressive strength and etc., must be measured after a specified number of FTCs.

    The RDME is the most popular indicator of freeze-thaw damage in many test standards, such as ASTM C666/C666M-03[16], GB/T 50082—2009[17], etc. The test of RDME is developed from the analysis of a homogeneous rod under free flexural vibration. Thus, it is assumed that the specimen is homogeneous and elastic. However, this assumption is not quite true for concrete material, especially for freeze-thaw damaged concrete material. For undamaged concrete material, as shown in Fig.1(a), the assumption is reasonable because the whole specimen is tightly bound by cementitious materials and the volume ratio of the micro-cracks to the specimen is very low, which means that vibration can be transmitted through the specimen easily. For freeze-thaw damaged concrete material, as shown in Fig.1(b), the situation is different. As FTCs go on, the original micro-cracks will grow larger and new cracks will form. Hence, the specimen will be separated into a few micro-units and cannot be treated as a homogeneous material any more.

    Another feasible indicator of freeze-thaw damage is the compressive strength of the freeze-thaw damaged concrete cube. In the compression test, it is appropriate to assume that the undamaged concrete material is homogeneous because the micro-cracks tend to close under compression. When performing the compression test on the freeze-thaw damaged concrete cube, it is still reasonable to believe that the specimen is homogeneous, because some of the cracks induced by FTCs (i.e. horizontal cracks) will first be compacted by the compressive force from the test machine before the concrete cubic is ruptured, which can be regarded as a process of “crack closure”(see Fig.2)[18]. In the compressive stress-strain curves of the freeze-thaw damaged concrete, the initial parts of the ascending branches are not so steep as the following parts of these ascending branches, revealing a “crack closure”.

    Fig.2 Stress-strain relationship under compression

    Comparing the two indicators mentioned above, the compressive strength is better than the RDME theoretically. In addition, the RDME tends to recover itself if it is not measured timely, especially in high-strength concrete. However, the compressive strength varies relatively little as time goes on[19]. Last but not least, the compressive strength is a more effective indicator, which directly affects the behaviors of the freeze-thaw damaged concrete structures.

    1.2 Uniaxial compression behavior after FTCs

    There are lots of internal micro-cracks, mainly existing in the paste and paste-aggregate interfaces when concrete hardens even if there is not any load or environmental effect. When submerged into water, these cracks will suck water into the concrete pore system. As the temperature drops below the freezing point, water will turn into ice accompanied by a 9% volume increase, which causes tensile stress inside the concrete. If the tensile stress exceeds the tensile strength of concrete material, new internal cracks will initiate and the old ones will open wider. As FTCs are repeated, more and more water will be absorbed into the concrete during thawing, causing larger expansion and more internal cracks during the next freezing process. The load carrying area will decrease with the formation and growth of internal cracks, which leads to a decrease in the compressive strength. Since there are less micro-units to carry the load, each unit will reach its elastic limit more quickly. Hence, the compressive behavior of concrete becomes softer. The peak compressive strength and the Young’s modulus decrease, while the peak compressive strain and the ultimate compressive strain increase (see Fig.2)[18]. The damage level in Fig.2[18]is re-rated in terms of residual compressive strength.

    2Theoretical Prediction Method

    2.1 General considerations

    Based on Refs.[15,19], the theoretical prediction is carried out by the following assumptions:

    1) Plane sections before bending remain plane after bending. This assumption is proved to be true in Ref.[15].

    2) The tensile strength of the concrete may be neglected. Due to freeze-thaw damage and the low tensile strength of the undamaged concrete, the freeze-thaw damaged concrete can barely carry tension.

    3) The simplified stress-strain curve of the freeze-thaw damaged concrete is shown in Fig.3 and the curve is determined by

    (1)

    (2)

    (3)

    (4)

    (5)

    whereεcis the compressive strain in the concrete;σcis the compressive stress corresponding toεc;fcis the

    Fig.3 Compressive stress-strain curve of concrete

    4) The stress-strain curve for steel is perfect elastoplastic, and the ultimate strain is 0.01. Commonly, FTCs have little effect on steel, which substantiates this assumption.

    2.2 Ultimate load bearing capacity

    Then, based on the classic figuree of material mechanics with minor adjustments, the ultimate load bearing capacity of the freeze-thaw damaged beam can be calculated as

    (7)

    (8)

    3Verification Tests

    3.1 Materials

    Two concrete mix designs (named type A and type B) are used. The components and mix designs for the concrete materials are described in Tab.1 and Tab.2.

    Tab.1 Materials used for the concrete mix

    Tab.2 Concrete mix designs and basic properties

    Hot-rolled ribbed steel bars (HRB335) of either 10 or 8 mm diameter were used as the longitudinal reinforcement. The stirrup was a cold-drawn wire with a diameter of 4 mm. The prestressed reinforcement was a 5 mm low-relaxation steel wire with a nominal ultimate strength of 1 570 MPa. The physical and mechanical properties of these reinforcements are shown in Tab.3.

    3.2 Specimens

    For each type of concrete, four kinds of specimens were prepared:

    1) Twelve cubic specimens (100 mm×100 mm×100 mm), three as a group, were used to test the residual compressive strength after a specified number of FTCs.

    Tab.3 Physical and mechanical properties of the reinforcements

    2) Three prismatic specimens (400 mm×100 mm×100 mm) were used to test RDME during FTCs.

    3) Twelve prestressed concrete beams with straight prestressed wires, three as a group, were used to test the bending response after specified number of FTCs (see Fig.4(a)).

    4) Twelve prestressed concrete beams with curved prestressed wires, three as a group, were also used to test the bending response after specified number of FTCs (see Fig.4(b)).

    Fig.4 Prestressed concrete beam (unit: mm). (a) With straight prestressed wires; (b) With curved prestressed wires

    3.3 Program

    The freeze-thaw test followed the Procedure A in ASTM C666/C666M-03[16]. In this procedure of rapid freeze-thaw in water, the temperature of the specimen was decreased from 5 to -16 ℃ and then increased from -16 to 5 ℃ over a period of 2.8 h, during which the cooling time took 2.0 h and heating took 0.8 h; i.e. 28.6 % of the time was used for thawing. Moreover, the time taken to decrease the core temperature of the specimen from 3 to -16 ℃ was about 1.7 h, and to increase it from -16 to 3 ℃ was 0.75 h. The period of transition between the freezing and thawing phases of the cycle was 5 min. All specimens were tested after 0, 75, 100, 125 FTCs, respectively.

    4Results and Discussion

    4.1 Compressive strength and RDME

    The test results of the RDME and the residual compressive strength are shown in Fig.5. The compressive strength of type A and type B concrete decrease in a similar way. However, the RDME of type A does not decrease obviously before 100 FTCs, while the RDME of type B remains only 3% after 125 FTCs. For type A concrete, the compressive strength drops faster than the RDME. On the contrary, for type B concrete, the RDME drops faster than the compressive strength. This reinforces that the compressive strength may be a better indicator of freeze-thaw damage.

    Fig.5 Test results of concrete material damaged by FTCs

    4.2 Ultimate bending moment

    The test results of this experiment as well as those of the experiments performed by others[21-22]are listed in Tab.4. The predicted results calculated from Eqs.(3) to (8) are shown in Tab.4.

    From Tab.4, it is clear that FTCs reduce the compressive strength of concrete material, which lead to a reduction in the load bearing capacity, and this trend is sharper when the concrete damage aggravates. The layout of prestressed wire affects the load bearing capacity most when the concrete is slightly damaged; however, as damage goes on, the effect of concrete type becomes more and more dominant. Moreover, the experimental results suggest that the prestressed concrete beam with higher strength concrete and curved prestressed wire performs better under FTCs.

    4.3 Comparison and discussion

    The reliability of the proposed method for predicting the load bearing capacity of freeze-thaw damaged beams is shown in Fig.6. Results show that the failure load is better estimated while the concrete strength remains more than 50%. More than half of the predicted results are on the safe side (Mu,num/Mu,exp≤1), and most of the prediction errors remain less than 10%. In other words, if the margin of error is ±10%, the predicted results are reliable except for damaged beam HD2.

    The overestimation of HD2 is 46%, which is larger than the FEM result in Ref.[14]. This is partly because of the bond-slip behavior which might exist in concrete

    Tab.4 Summary of beam test results

    beams with damage of more than 50% by FTCs. Moreover, it is reported that the freeze-thaw induced cracks of HD2 were mostly parallel to the longitudinal axis of beams, which have a decisive influence on the fracture of concrete in compression[21]. These may account for the disagreement between the theoretical and experimental results of HD2.

    The load bearing capacity of freeze-thaw damaged beams can be evaluated following the method presented in this paper. The compressive stress-strain behavior of concrete blocks is the key to the load bearing capacity prediction. For most reinforced and prestressed concrete beams, the compressive behavior of concrete can be easily obtained through drilled concrete cores from the main structure or pre-casted blocks which experienced the same environmental condition as the main structure. Thereafter,

    Fig.6 Comparison of results from experiments and theoretical predictions

    the ultimate load bearing capacity can be calculated by Eqs. (7) and (8), which is familiar to most civil engineers. Though the prediction method is reliable for most of the concrete beams when the concrete strength loss due to FTCs is less than 50%, it is significant that bond-slip behavior will influence the accuracy of the prediction when the compressive strength loss is more than 50%. The size-effect of freeze-thaw damage was not researched thoroughly, but Ref.[23] showed that the frost-damage might significantly differ at various distances from the exposed surface. Thus, when evaluating concrete structures with larger sections, frost-damage distribution is an important factor.

    5Conclusions

    1) The compressive strength of concrete is proved to be a better indicator of freeze-thaw damage on concrete material than RDME.

    2) Based on the characteristics of the compressive stress-strain curve of freeze-thaw damaged concrete, a theoretical method to predict the ultimate bending moment is proposed.

    3) Comparisons of the predicted results with the experimental data show that the load bearing capacity of freeze-thaw damaged beams can be predicted by the proposed method.

    4) Two factors, the bond-slip behavior and the frost-damage distribution, affect the prediction of the failure load, especially when the residual compressive strength is less than 50%.

    References

    [1]Pigeon M, Pleau R.Durabilityofconcreteincoldclimates[M]. Taylor & Francis, 1995.

    [2]Fagerlund G. Modeling the service life of concrete exposed to frost[C]//InternationalConferenceonIonandMassTransportinCement-BasedMaterials. Toronto, Canada, 1999: 195-204.

    [3]Cho T. Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method[J].Construction&BuildingMaterials, 2007, 21(12): 2031-2040.

    [4]Ueda T, Wang L, Hasan M, et al. Mesoscale simulation of influence of frost damage on mechanical properties of concrete[J].JournalofMaterialsinCivilEngineering, 2009, 21(6): 244-252.

    [5]Duan A, Jin W L, Qian J R. Effect of freeze-thaw cycles on the stress-strain curves of unconfined and confined concrete[J].MaterialsandStructures, 2011, 44(7): 1309-1324.

    [6]Hasan M, Ueda T, Sato Y. Stress-strain relationship of frost-damaged concrete subjected to fatigue loading[J].JournalofMaterialsinCivilEngineering, 2008, 20(1): 37-45.

    [7]Li W T, Sun W, Jiang J Y. Damage of concrete experiencing flexural fatigue load and closed freeze/thaw cycles simultaneously[J].Construction&BuildingMaterials, 2011, 25(5): 2604-2610.

    [8]Shang H S, Song Y P. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles[J].Cement&ConcreteResearch, 2006, 36(10): 1857-1864.

    [9]Shang H S, Song Y P, Qin L K. Experimental study on the property of concrete after freeze-thaw cycles[J].ChinaConcreteandCementProducts, 2005, 32(2): 9-11. (in Chinese)

    [10]Shang H S, Song Y P, Qin L K. Experimental study on strength and deformation of plain concrete under triaxial compression after freeze-thaw cycles[J].Building&Environment, 2008, 43(7): 1197-1204.

    [11]Shang H S, Yin Q X, Song Y P, et al. Experimental study on the influence of freezing and thawing cycles on deformation features of common concrete[J].YangtzeRiver, 2006, 39(4): 60-63. (in Chinese)

    [12]Sun W, Zhang Y M, Yan H D, et al. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J].Cement&ConcreteResearch, 1999, 29(9): 1519-1523.

    [13]Diao B, Sun Y, Cheng S H, et al. Effects of mixed corrosion, freeze-thaw cycles, and persistent loads on behavior of reinforced concrete beams[J].JournalofColdRegionsEngineering, 2011, 25(1): 37-52.

    [14]Hanjari K Z, Kettil P, Lundgren K. Modelling the structural behaviour of frost-damaged reinforced concrete structures[J].StructureandInfrastructureEngineering, 2013, 9(5): 416-431.

    [15]Cao D F, Qin X C, Yuan S F. Experimental study on mechanical behaviors of prestressed concrete beams subjected to freeze-thaw cycles[J].ChinaCivilEngineeringJournal, 2013, 46(8): 38-44. (in Chinese)

    [16]ASTM. ASTM C666/C666M-03 Standard test method for resistance of concrete to rapid freezing and thawing[S]. ASTM, 2008.

    [17]Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T 50082—2009 Standard for test methods of long-term performance and durability of ordinary concrete[S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)

    [18]Cao D F, Fu L Z, Yang Z W, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycles[J].JournalofBuildingMaterials, 2013, 16(1): 17-23, 32. (in Chinese)

    [19]Jacobsen S, Sellevold J. Self healing of high strength concrete after deterioration by freeze/thaw[J].Cement&ConcreteResearch, 1996, 26(1): 55-62.

    [20]Guo Z H.Thestrengthandtheconstitutiverelationofconcrete:theoryandapplication[M]. Beijing:China Architecture & Building Press, 2004. (in Chinese)

    [21]Hassanzadeh M, Fagerlund G. Residual strength of the frost-damaged reinforced concrete beams[C]//EuropeanConferenceonComputationalMechanics. Lisbon, Portugal, 2006: 366-366.

    [22]Guo R Y. Experimental research on reinforced concrete bending members under freeze-thaw cycles[D]. Yangzhou: School of Civil Engineering, Yangzhou University, 2011. (in Chinese)

    [23]Petersen L, Lohaus L, Polak M A. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements[J].ACIMaterialsJournal, 2007, 104(4): 369-378.

    doi:10.3969/j.issn.1003-7985.2015.04.016

    丝袜在线中文字幕| 欧美精品一区二区大全| 亚洲熟女精品中文字幕| 亚洲欧洲精品一区二区精品久久久 | 久久午夜综合久久蜜桃| a 毛片基地| 亚洲国产成人一精品久久久| 宅男免费午夜| 亚洲成色77777| 男女免费视频国产| 亚洲欧洲日产国产| 黄色毛片三级朝国网站| 久久久精品区二区三区| 亚洲,欧美精品.| 中文字幕人妻丝袜制服| 亚洲国产av影院在线观看| 日韩成人av中文字幕在线观看| 亚洲四区av| 国产亚洲一区二区精品| 宅男免费午夜| 一区在线观看完整版| 成人18禁高潮啪啪吃奶动态图| 最近手机中文字幕大全| 亚洲国产成人一精品久久久| 欧美日本中文国产一区发布| 久久性视频一级片| 男女边吃奶边做爰视频| 国产精品嫩草影院av在线观看| 嫩草影视91久久| 伦理电影大哥的女人| 亚洲精品,欧美精品| 国产精品免费大片| 亚洲精品第二区| 精品国产一区二区三区四区第35| 伦理电影大哥的女人| 观看av在线不卡| 搡老乐熟女国产| 成年人午夜在线观看视频| 国产亚洲av片在线观看秒播厂| 亚洲成av片中文字幕在线观看| 国产精品久久久久久人妻精品电影 | 五月天丁香电影| 人人澡人人妻人| 一级黄片播放器| 一区二区日韩欧美中文字幕| 汤姆久久久久久久影院中文字幕| 国产视频首页在线观看| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 十八禁人妻一区二区| 精品一区在线观看国产| 性色av一级| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 99久久精品国产亚洲精品| 精品卡一卡二卡四卡免费| 九九爱精品视频在线观看| 在线精品无人区一区二区三| 最新的欧美精品一区二区| 亚洲伊人久久精品综合| 夫妻午夜视频| 国产成人啪精品午夜网站| 国产亚洲午夜精品一区二区久久| 人人澡人人妻人| 亚洲国产精品成人久久小说| 欧美日韩亚洲高清精品| 久久毛片免费看一区二区三区| 黄色一级大片看看| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久人妻精品电影 | videosex国产| 香蕉丝袜av| 亚洲av中文av极速乱| av福利片在线| 亚洲综合色网址| 一二三四中文在线观看免费高清| 亚洲精品国产av成人精品| 最近的中文字幕免费完整| 纯流量卡能插随身wifi吗| 亚洲国产看品久久| videosex国产| 免费人妻精品一区二区三区视频| 亚洲欧美成人综合另类久久久| 亚洲国产中文字幕在线视频| 午夜日韩欧美国产| 丝袜在线中文字幕| 免费少妇av软件| 大话2 男鬼变身卡| 一级毛片电影观看| 国产亚洲一区二区精品| 美女高潮到喷水免费观看| 国产国语露脸激情在线看| 99久久综合免费| 久久久国产欧美日韩av| 日韩av在线免费看完整版不卡| 国产亚洲午夜精品一区二区久久| 建设人人有责人人尽责人人享有的| 免费看不卡的av| 国产精品成人在线| 99九九在线精品视频| 男女午夜视频在线观看| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品久久成人aⅴ小说| 老鸭窝网址在线观看| 久久ye,这里只有精品| 性色av一级| 国产成人精品福利久久| 国产精品人妻久久久影院| 老司机深夜福利视频在线观看 | 亚洲av综合色区一区| 在线天堂中文资源库| 一区二区av电影网| 国产精品久久久久成人av| 欧美97在线视频| 久久99一区二区三区| 免费av中文字幕在线| 秋霞在线观看毛片| 女人久久www免费人成看片| 亚洲国产av影院在线观看| 国产精品久久久久成人av| 午夜免费观看性视频| 欧美日韩成人在线一区二区| 99久久99久久久精品蜜桃| 国产精品麻豆人妻色哟哟久久| 欧美日韩亚洲综合一区二区三区_| 99久久精品国产亚洲精品| 国产老妇伦熟女老妇高清| 男人添女人高潮全过程视频| 成人黄色视频免费在线看| 精品少妇内射三级| 另类亚洲欧美激情| 精品一区二区免费观看| 99热全是精品| 国产欧美亚洲国产| 少妇的丰满在线观看| 国产精品一区二区精品视频观看| 国产午夜精品一二区理论片| 如日韩欧美国产精品一区二区三区| 观看美女的网站| 黑人巨大精品欧美一区二区蜜桃| 久久精品人人爽人人爽视色| 在线观看三级黄色| 少妇 在线观看| 欧美人与善性xxx| 麻豆av在线久日| xxxhd国产人妻xxx| tube8黄色片| 1024视频免费在线观看| 午夜日韩欧美国产| 国产又色又爽无遮挡免| 男人操女人黄网站| a级毛片黄视频| 亚洲男人天堂网一区| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区久久| 亚洲国产精品999| 精品国产一区二区久久| 秋霞在线观看毛片| 午夜福利免费观看在线| 成人影院久久| 丁香六月天网| 成人手机av| 99久久99久久久精品蜜桃| 免费黄网站久久成人精品| 热99久久久久精品小说推荐| 日本av免费视频播放| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 亚洲精品美女久久av网站| 日日撸夜夜添| 欧美激情极品国产一区二区三区| 亚洲欧美成人综合另类久久久| 欧美人与性动交α欧美软件| 久久精品国产亚洲av涩爱| 亚洲欧洲国产日韩| 777久久人妻少妇嫩草av网站| 午夜福利一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡av一区二区三区| 亚洲视频免费观看视频| 日日撸夜夜添| 在线观看www视频免费| 人人妻人人澡人人爽人人夜夜| 各种免费的搞黄视频| 韩国av在线不卡| 欧美激情极品国产一区二区三区| 操出白浆在线播放| 免费黄色在线免费观看| 国产成人精品福利久久| 国产高清国产精品国产三级| 国产乱人偷精品视频| 亚洲av日韩在线播放| 国产精品一区二区在线不卡| 精品亚洲成a人片在线观看| 男女下面插进去视频免费观看| 亚洲国产中文字幕在线视频| 伊人久久国产一区二区| 香蕉国产在线看| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 国产一区二区在线观看av| 久热爱精品视频在线9| 久久久国产精品麻豆| 国产激情久久老熟女| 老司机靠b影院| 欧美激情高清一区二区三区 | 老汉色av国产亚洲站长工具| 久久久国产一区二区| 亚洲av综合色区一区| 久久人妻熟女aⅴ| 午夜免费鲁丝| 丝袜喷水一区| 亚洲av国产av综合av卡| 高清欧美精品videossex| kizo精华| 十分钟在线观看高清视频www| 丝袜脚勾引网站| 成年人免费黄色播放视频| 成人三级做爰电影| 日日啪夜夜爽| 欧美人与性动交α欧美精品济南到| 婷婷色综合www| 欧美人与善性xxx| 国产97色在线日韩免费| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 成年人午夜在线观看视频| 国产一区二区激情短视频 | 国产欧美日韩综合在线一区二区| 97人妻天天添夜夜摸| 人人妻人人澡人人爽人人夜夜| 夫妻午夜视频| 国产精品麻豆人妻色哟哟久久| 欧美亚洲 丝袜 人妻 在线| 天天躁日日躁夜夜躁夜夜| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 国产精品一二三区在线看| 夫妻性生交免费视频一级片| 天堂8中文在线网| 免费少妇av软件| 欧美日韩一级在线毛片| 日韩 亚洲 欧美在线| 亚洲人成77777在线视频| av一本久久久久| 一个人免费看片子| 亚洲伊人久久精品综合| 成年av动漫网址| 美女大奶头黄色视频| 国产成人a∨麻豆精品| 午夜福利乱码中文字幕| e午夜精品久久久久久久| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 99久久综合免费| 久久av网站| av又黄又爽大尺度在线免费看| 蜜桃国产av成人99| 汤姆久久久久久久影院中文字幕| 五月天丁香电影| 午夜福利免费观看在线| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 久久久久视频综合| 亚洲少妇的诱惑av| 美女主播在线视频| 久久久精品区二区三区| 最新的欧美精品一区二区| 欧美 亚洲 国产 日韩一| 国产在线免费精品| 日本av手机在线免费观看| 午夜影院在线不卡| 日日撸夜夜添| 亚洲精品国产区一区二| 中文天堂在线官网| 美国免费a级毛片| 国产成人精品福利久久| 久久青草综合色| 另类亚洲欧美激情| 多毛熟女@视频| 少妇精品久久久久久久| 日日撸夜夜添| 亚洲专区中文字幕在线 | 热re99久久精品国产66热6| 最近最新中文字幕大全免费视频 | 自线自在国产av| 欧美亚洲 丝袜 人妻 在线| 女性被躁到高潮视频| 国产高清不卡午夜福利| 国产日韩一区二区三区精品不卡| 日本91视频免费播放| 观看av在线不卡| 国产亚洲av高清不卡| 高清黄色对白视频在线免费看| 啦啦啦在线免费观看视频4| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美色中文字幕在线| 一区二区av电影网| 亚洲av成人不卡在线观看播放网 | 久久99一区二区三区| 午夜91福利影院| 日本黄色日本黄色录像| 国产成人av激情在线播放| 两个人免费观看高清视频| 狂野欧美激情性xxxx| www.自偷自拍.com| 99热国产这里只有精品6| 超碰97精品在线观看| 成人毛片60女人毛片免费| 热re99久久国产66热| 十八禁网站网址无遮挡| 日韩成人av中文字幕在线观看| 成年动漫av网址| 亚洲成国产人片在线观看| 亚洲av在线观看美女高潮| 观看av在线不卡| 久久久久久免费高清国产稀缺| 最近最新中文字幕大全免费视频 | 91成人精品电影| 日本wwww免费看| 丰满饥渴人妻一区二区三| 久久久久久久久久久久大奶| 久久久久精品性色| 亚洲精品aⅴ在线观看| 99久久综合免费| 亚洲中文av在线| 欧美日韩视频高清一区二区三区二| 日韩一区二区视频免费看| 99热网站在线观看| 久久精品国产a三级三级三级| 欧美日韩综合久久久久久| 黄色怎么调成土黄色| 蜜桃在线观看..| 国产亚洲午夜精品一区二区久久| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 韩国精品一区二区三区| 国产精品秋霞免费鲁丝片| 久久久久久久大尺度免费视频| 亚洲av国产av综合av卡| 国产精品一二三区在线看| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人久久小说| 男女免费视频国产| 9热在线视频观看99| 男女下面插进去视频免费观看| 人妻人人澡人人爽人人| 天堂中文最新版在线下载| 丰满少妇做爰视频| 90打野战视频偷拍视频| 精品国产国语对白av| www.av在线官网国产| 欧美国产精品一级二级三级| 蜜桃在线观看..| 国产视频首页在线观看| 国产精品国产av在线观看| www.精华液| 搡老岳熟女国产| 一本色道久久久久久精品综合| 18禁观看日本| 亚洲国产av新网站| 高清在线视频一区二区三区| 最近最新中文字幕免费大全7| 三上悠亚av全集在线观看| 亚洲色图 男人天堂 中文字幕| 久久久久网色| 精品免费久久久久久久清纯 | 国产一级毛片在线| 亚洲av国产av综合av卡| 免费看av在线观看网站| 最新的欧美精品一区二区| 一级黄片播放器| 国产极品天堂在线| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 一级a爱视频在线免费观看| 麻豆av在线久日| 国产亚洲av高清不卡| 亚洲精品久久久久久婷婷小说| 丝袜脚勾引网站| 亚洲国产欧美一区二区综合| 国产精品国产三级国产专区5o| 亚洲国产欧美一区二区综合| 亚洲三区欧美一区| 国产 一区精品| 韩国高清视频一区二区三区| 只有这里有精品99| 一区二区三区激情视频| 中文字幕人妻熟女乱码| 日韩制服丝袜自拍偷拍| e午夜精品久久久久久久| 免费黄频网站在线观看国产| 18禁裸乳无遮挡动漫免费视频| 男女午夜视频在线观看| 啦啦啦在线观看免费高清www| 在线观看人妻少妇| 亚洲综合色网址| 一区二区日韩欧美中文字幕| 亚洲情色 制服丝袜| 人人妻人人爽人人添夜夜欢视频| 欧美少妇被猛烈插入视频| 两个人免费观看高清视频| av天堂久久9| 熟女av电影| 久久午夜综合久久蜜桃| 在线天堂中文资源库| 嫩草影院入口| 亚洲第一区二区三区不卡| a级毛片黄视频| 日韩av在线免费看完整版不卡| 中文乱码字字幕精品一区二区三区| 男女之事视频高清在线观看 | 下体分泌物呈黄色| 久久99精品国语久久久| 亚洲精品中文字幕在线视频| 午夜老司机福利片| 无遮挡黄片免费观看| xxx大片免费视频| 亚洲国产看品久久| 亚洲av电影在线观看一区二区三区| 久久亚洲国产成人精品v| 成人漫画全彩无遮挡| 1024香蕉在线观看| 免费观看性生交大片5| 日本黄色日本黄色录像| 一级毛片我不卡| 美女脱内裤让男人舔精品视频| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩综合久久久久久| 精品久久久精品久久久| av网站免费在线观看视频| 一二三四在线观看免费中文在| 色精品久久人妻99蜜桃| 久久精品久久久久久久性| 日韩大码丰满熟妇| 欧美日韩亚洲高清精品| 最新在线观看一区二区三区 | 亚洲视频免费观看视频| 国精品久久久久久国模美| 大陆偷拍与自拍| 老司机亚洲免费影院| 天天躁夜夜躁狠狠久久av| 亚洲精品成人av观看孕妇| 日本色播在线视频| 亚洲图色成人| 十分钟在线观看高清视频www| 欧美av亚洲av综合av国产av | 亚洲男人天堂网一区| 国产1区2区3区精品| 美女脱内裤让男人舔精品视频| 最近手机中文字幕大全| 交换朋友夫妻互换小说| 亚洲成人一二三区av| 国产麻豆69| 国产色婷婷99| 黄片播放在线免费| 国产男女超爽视频在线观看| 9热在线视频观看99| 91国产中文字幕| 韩国精品一区二区三区| 一区二区三区乱码不卡18| 国产有黄有色有爽视频| 少妇人妻精品综合一区二区| 国产精品一国产av| 亚洲国产精品国产精品| 一级毛片 在线播放| 日韩电影二区| 国产成人av激情在线播放| 波野结衣二区三区在线| a级毛片黄视频| 成人手机av| 精品亚洲乱码少妇综合久久| 夫妻午夜视频| 精品酒店卫生间| 9191精品国产免费久久| av网站免费在线观看视频| 婷婷色av中文字幕| 日本wwww免费看| 国产精品麻豆人妻色哟哟久久| 日本猛色少妇xxxxx猛交久久| 一区二区日韩欧美中文字幕| 亚洲色图综合在线观看| 成年美女黄网站色视频大全免费| 久热爱精品视频在线9| 最黄视频免费看| 亚洲欧美色中文字幕在线| 久久久久人妻精品一区果冻| 性高湖久久久久久久久免费观看| 高清欧美精品videossex| 又大又爽又粗| www.自偷自拍.com| 国产亚洲午夜精品一区二区久久| 男女床上黄色一级片免费看| av电影中文网址| 亚洲精品日韩在线中文字幕| 超碰97精品在线观看| 午夜老司机福利片| 精品人妻在线不人妻| 啦啦啦中文免费视频观看日本| 国产男女超爽视频在线观看| 久久久久国产精品人妻一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲av成人不卡在线观看播放网 | 精品久久久久久电影网| 成年动漫av网址| 免费观看性生交大片5| 99精国产麻豆久久婷婷| 99热全是精品| 国产极品粉嫩免费观看在线| 成年动漫av网址| 国产av国产精品国产| 亚洲欧美精品自产自拍| 国产精品一二三区在线看| 成人国产麻豆网| 亚洲国产毛片av蜜桃av| 欧美日韩视频高清一区二区三区二| 90打野战视频偷拍视频| 久久久久国产精品人妻一区二区| 69精品国产乱码久久久| 日韩 欧美 亚洲 中文字幕| 久久久久久久久免费视频了| 国产有黄有色有爽视频| 在线观看www视频免费| 国产97色在线日韩免费| 欧美激情 高清一区二区三区| 日日爽夜夜爽网站| 欧美精品人与动牲交sv欧美| 天天躁夜夜躁狠狠躁躁| 黄网站色视频无遮挡免费观看| 99热国产这里只有精品6| 久久精品熟女亚洲av麻豆精品| 人人澡人人妻人| 黄频高清免费视频| 一区二区三区激情视频| 狂野欧美激情性xxxx| 亚洲成av片中文字幕在线观看| 国产免费一区二区三区四区乱码| 一级片免费观看大全| 自线自在国产av| svipshipincom国产片| 国产一区二区激情短视频 | 啦啦啦视频在线资源免费观看| 国产熟女欧美一区二区| 久热爱精品视频在线9| 精品一区二区三区四区五区乱码 | 啦啦啦 在线观看视频| 亚洲国产精品成人久久小说| 一区在线观看完整版| 日韩 欧美 亚洲 中文字幕| 啦啦啦在线免费观看视频4| 国产精品久久久久久人妻精品电影 | 午夜福利网站1000一区二区三区| 亚洲精品国产区一区二| 成人三级做爰电影| 日韩熟女老妇一区二区性免费视频| 亚洲一区中文字幕在线| 99热国产这里只有精品6| 久久久精品免费免费高清| 色播在线永久视频| 最新的欧美精品一区二区| www.自偷自拍.com| 国产精品一区二区在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 最近的中文字幕免费完整| 满18在线观看网站| 少妇 在线观看| 久久性视频一级片| 国产成人欧美| 在线观看免费午夜福利视频| av线在线观看网站| 青草久久国产| 激情视频va一区二区三区| 亚洲熟女精品中文字幕| 成年av动漫网址| 成人国产麻豆网| 日韩制服丝袜自拍偷拍| 七月丁香在线播放| 波多野结衣av一区二区av| 欧美国产精品一级二级三级| 国产毛片在线视频| 热re99久久国产66热| 国产伦人伦偷精品视频| 久热爱精品视频在线9| 免费观看a级毛片全部| 狠狠精品人妻久久久久久综合| 国产国语露脸激情在线看| 国产一区有黄有色的免费视频| 2018国产大陆天天弄谢| 欧美激情 高清一区二区三区| 人人妻人人添人人爽欧美一区卜| 欧美日本中文国产一区发布| 午夜福利影视在线免费观看| 亚洲av欧美aⅴ国产| 日韩中文字幕欧美一区二区 | 免费在线观看黄色视频的| 国产精品麻豆人妻色哟哟久久| 日本猛色少妇xxxxx猛交久久| 久久天堂一区二区三区四区| 日日爽夜夜爽网站| 免费女性裸体啪啪无遮挡网站| 亚洲欧美中文字幕日韩二区| 婷婷色综合大香蕉| 精品人妻在线不人妻| 亚洲综合精品二区| 中文欧美无线码| 日本欧美视频一区| 亚洲成人手机| 制服诱惑二区| h视频一区二区三区| 午夜福利影视在线免费观看| av福利片在线| 欧美老熟妇乱子伦牲交| a级毛片黄视频|