• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading

    2015-03-01 09:23:39ZhengYuqiaoSuChunCaoBaixueShiYangmei

    Zheng Yuqiao  Su Chun  Cao Baixue  Shi Yangmei

    (1Key Laboratory of Digital Manufacturing Technology and Application of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China)(2School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    ?

    Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading

    Zheng Yuqiao1Su Chun2Cao Baixue2Shi Yangmei2

    (1Key Laboratory of Digital Manufacturing Technology and Application of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China)(2School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    Abstract:Aimed at the remanufacturing system, the effect of the uncertainty of returns’ quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station becoming a bottleneck is also given. By calculating the effective output, the effective operation time (EOT) and the ratio of EOT of each station, the system’s current bottleneck of effective output time is determined. By calculating the probability coefficient of variation and index of bottleneck shifting, the quantitative performance of bottleneck shifting is obtained. Discrete event simulation and the experiment design method are adopted to simulate the system, in which the proportion of quality grading, repair rates and process routes are considered. The case study shows that the uncertainty of returns’ quality greatly increases the probability of bottleneck shifting, and with the increase of the discrete degree of the returns’ repair rate, the bottleneck shifting phenomenon is more obvious. Furthermore, bottleneck shifting is closely related to the process route of the dominating returns’ quality grade.

    Key words:bottleneck shifting; remanufacturing; returns; quality grading; uncertainty

    Received 2015-04-27.

    Biographies:Zheng Yuqiao(1977—), female, doctor, associate professor; Su Chun (corresponding author), male, doctor, professor, suchun@seu.edu.cn.

    Foundation items:The Program for Special Talent in Six Fields of Jiangsu Province(No.2013ZBZZ-046), the Program of Lanzhou Technology Development (No.2014-1-175).

    Citation:Zheng Yuqiao, Su Chun, Cao Baixue, et al. Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading[J].Journal of Southeast University (English Edition),2015,31(4):516-521.[doi:10.3969/j.issn.1003-7985.2015.04.015]

    Remanufacturing is regarded as an effective approach for circular economy. Through a number of industrial operations, the worn-out components or end-of-life products (hereafter referred to as “returns”) are restored to useful life[1]. Various uncertainties exist in the remanufacturing system, including quantity and quality of returns, which lead to large difference in the remanufacturing process route and operation time, and pose a great challenge for the design, production planning and operation of such systems[2].

    In Ref.[3], the production planning problem was studied by considering the difference in returns’ quality. Zikopoulos et al.[4]investigated the effect of returns’ quality on the profitability of the remanufacturing system. Aras et al.[5]demonstrated that the random characteristics of returns are significant challenges faced by the remanufacturing system. Behret et al.[6]studied the effect of quality uncertainties on the total cost of remanufacturing. The experimental results show that classification of returns can reduce cost effectively. Jin et al.[7]graded the returns based on their quality, and modeled the remanufacturing system with the Markov decision process. The above studies show that quality grading is an effective method for dealing with quality uncertainties of returns.

    Bottlenecks are one of the key problems in production planning and scheduling[8]. Influenced by various internal and external stochastic factors, the location of the bottleneck in the remanufacturing system will change dynamically. In addition, the improvement of current bottleneck will also cause the shifting of bottleneck. The phenomenon described above is called bottleneck shifting or dynamic bottleneck[9]. In recent years, the identification and improvement for the dynamic bottleneck has received much attention. Moss et al.[10]used the linear regression model and simulation method to solve bottleneck shifting problems. Liu et al.[11]adopted indicators of bottleneck degree and bottleneck index to describe the properties of dynamic bottlenecks. Li et al.[12]regarded the blocking and starving time as a time series, and the bottleneck shifting was predicted by using an auto-regressive and moving average (ARMA) model. A bottleneck identification approach based on orthogonal experiments was proposed by Zhai et al[13]. Lawrence et al.[14]used the analytic approach to study the bottleneck shifting problem. In Ref.[15], a bottleneck machine identification algorithm was proposed with the objective to minimize total tardiness.

    Existing research mainly aimed at predicting bottleneck workstations, and the study on dynamic bottlenecks and overall system performance is quite limited. Up to now, few studies have been found to concentrate upon the uncertainties of returns’ quality acting on bottleneck shifting in the remanufacturing system. In this article, selecting the remanufacturing system as the research object and based on the analysis of uncertainties in core quality, a novel definition of bottleneck station is proposed by considering quality grading proportion, repair rate and process rate uncertainty. On that basis, the probability analytic figure of bottleneck stations are derived. It can be used to describe the effect of quality uncertainties on bottleneck shifting. A case study is provided to illustrate the efficiency of the approach.

    1Definition of Bottleneck Shifting

    1.1 Bottleneck shifting indicator

    Lawrence et al.[14]developed a simple Jackson production network model, and each node in the network was regarded as aM/M/1 queuing system. Under steady state conditions, the probability that there aremreturns at the station is equivalent to the probability that the queue length of theM/M/1 queuing system ism, and the node with the longest length synchronically is defined as the bottleneck of the system.

    Based on the mathematical description of queuing system performance, the queue length of each node is larger than other nodes with probabilityPjunder steady state conditions. Thus,P=(P1,P2, …,Pj) is used to describe the probability that each node becomes a bottleneck. Obviously, when the system contains only one bottleneck station, the corresponding probabilityPjfor the bottleneck station is 1, and the probability of the other stations is 0.

    Defineβas the indicator of bottleneck shifting, which is used to measure the bottleneck shifting property.βis defined as

    (1)

    The value range ofβis [0, 1].β=0 represents that there is only one static bottleneck in the system;β=1 implies that each node has an identical probability to become a bottleneck, which will lead to the largest bottleneck shifting probability for the system.

    1.2 Definition of bottleneck station

    The sum of throughout time of all station equals the total throughout time of all the batches, therefore, we have[9]

    (2)

    The ratio of effective operation time (μEOT) is used to denote the contribution of EOT at each station on its total operation time, which is expressed as

    (3)

    whereμEOT,jis the ratio of effective operation time at stationj.

    The ratio of throughout time (μTPT) is used to denote the contribution of total operation time at each station on the total system throughout time,

    (4)

    whereμTPT,jis the ratio of throughout time at stationj.

    It is clear that the bottleneck station has the following characteristics that the throughout time is long while the effective operation time is comparably short. On this basis, the definition of the effective throughout processing time ratio is given as

    (5)

    By calculating the ETPT of each station during the same time period, we can obtain the ranking order of the effective throughout time of each station, among which the station with the maximum ETPT value is regarded as the bottleneck of effective throughout time (BNETPT):

    (6)

    During the given observation time period,Tjdenotes the duration that stationjis a bottleneck station, thus the value of total observation time is defined as the probability that stationjis a bottleneck station during the given observation period.P=(P1,P2, …,PJ) denotes the probability of the station bottleneck:

    (7)

    2Remanufacturing System Model Considering Quality Grading

    It is assumed that returns enter the remanufacturing system according to the independent Poisson process with rateλ, and the first station is the disassembly and testing station. At this station, some of the returns with lower quality cannot meet the remanufacturing requirement, and they will be scrapped directly with the proportion ofp0. The rest returns are classified into four quality grades based on the quality, i.e.i=1, 2, 3, 4. Returns withi=1 denote those with the highest quality grade, while the returns withi=4 denote the lowest quality grade. Suppose that the probability of returns in gradeiispi, obviouslyp0+p1+p2+p3+p4=1. Fig.1 shows the remanufacturing system model with the consideration of quality grading.

    After passing the disassembly and testing station, returns will enter remanufacturing stations sequentially. Assume that there are six remanufacturing stations, i.e.,Wj,j=1, 2, …, 6. In addition, if a return cannot meet the remanufacturing requirements due to quality defects at any remanufacturing station, it will be scrapped.rij(i=1, 2, 3, 4;j=1, 2, …, 6) represents the remanufacturing rate of returns in gradeiand at stationj. Finished remanufactured parts will be assembled with new parts.

    It is supposed that there is only one machine at each remanufacturing station, andCjis the capacity of the buffer before each station. Due to the range in quality of returns, the processing time of each station is different so that the processing routes are also of great difference. In this case, fori=1, the processing route of the returns isW1→W5→W6; fori=2, the processing route isW1→W3→W5→W6; fori=3, the processing route isW1→W2→W4→W6; while fori=4, the processing route isW1→W2→W4→W5→W6. It is supposed that the processing time of each station is exponentially distributed with meansμj, and returns follow the first-in-first-out (FIFO) rule.

    3Case Study

    In this section, numerical examples are illustrated to obtain insight into the effect of uncertainties about the returns’ quality on bottleneck shifting. We will focus on the factors including quality grade proportionp, repair raterand uncertainties of processing route.

    3.1 Design of experiments

    By choosing some typical groups of parameters, the simulation model is established and run in order to obtain the properties of bottleneck shifting. The parameters are as follows:λ=0.1,μ1=1.00,μ2=0.25,μ3=0.20,μ4=0.10,μ5=0.50,μ6=0.40,Cj=20.

    The parameters in the simulation model, includingp,rand their dispersion degrees, are listed in Tab.1. The variation coefficient for repair rate of Groups A, B, C, D are 0.491, 0.430, 0.074 and 0, respectively. The standard deviation of auality grade proportion (Groups 1 to 9) are 0, 0.129, 0.129, 0.173, 0.173, 0.3, 0.3, 0.3 and 0.3, respectively. It should be noted that the higher the dispersion degree ofr, the greater the difference among quality grades will be; while the smaller the dispersion degree ofp, the higher the hybridization rate of returns in different quality grades will be. Meanwhile, the coefficient variation of repair rates in each group decreases progressively.

    Groups A, B and Groups C, D belong to two categories, i.e. higher and lower coefficient variation of repair rates. In Group A, returns are classified into two categories based on quality, i.e. higher and lower repair rates. Group B denotes the group where the repair rate of returns is descending, which is the same as Group C. In Group C, repair rates are at a high level and the difference of quality grade is small. The repair rate of Group D is 1, it means that there are no processing defects. Typical groups of quality grade proportionspare selected. Quality grade proportions in Groups 1 to 3 are constant, decreasing and increasing, respectively; in Group 4 the returns with a high quality grade are dominating, while Group 5 is in contrast; in Groups 6 to 9, a certain quality grade of returns will dominate the group.

    The simulation model is established with ProModel ? software with the aim to obtain the bottleneck shifting property of the system under different parameters. The design of experiments and the results are shown in Tab.1.

    Tab.1 Experimental results of bottleneck shifting

    3.2 Analysis of experimental results

    3.2.1The impact of repair rater

    From Fig.2(a), we know that for returns of different quality grade proportions, the value ofβdepends mainly on the dispersion degree ofr. The higher the dispersion degree ofr, the higher the value ofβwill be, and vice versa. Thus, bottleneck shifting will be more obvious when the difference of repair rates in each grade is great. The repair rates of Groups C and D are both at a high level, and their dispersion degrees are 0.074 and 0, respectively. It is found that whenβis 0 or close to 0, there is a relatively fixed static bottleneck. For Group D, the repair rate is always 1, and the results show that each station in the system has similar probability to become a bottleneck station due to serious uncertainties of repair rate.

    From Fig.2(b), compared with other groups, Groups 2 and 4 have similar tendency, and theirβvalues remain high even when the repair rate is at a high level (C, D). By observing the quality grade proportion in both groups, process routes and the probabilities of each station becoming a bottleneck, it is found that returns at a high quality grade (i=1, 2) dominate the results, occupying 70% and 80% respectively. These two kinds of returns have similar routes, thus the process routes with the dominating grade will dominate the location of bottleneck stations, as shown in Tab.2.

    (a)

    (b)Fig.2 Relationship between dispersion degree of repair rate and bottleneck shifting. (a) Groups 1, 3, 5, 6, 8 and 9; (b) Groups 2, 4 and 7

    For different repair rate levels and dispersion degrees,βin Group 7 is 0 or approaching 0. The reason is that the returns with medium or high quality grade (i=2) are in the majority, thus the bottleneck location depends mainly on the process route of this grade.

    3.2.2The impact of quality grade proportionp

    In engineering practice, there are great differences in returns’ quality. Groups A and B are the situations where repair rates have a large degree of dispersion. As shown in Fig.3, for Groups 1 to 7, with the increase of the dispersion degree ofp, the value ofβwill decrease gradually. The results show that the higher the hybridization degree of returns, the more obvious the bottleneck shifting will be. The reason is that with the increase of the returns’ hybridization degree, the difference in each station’s utilization rate decreases, and the probability for each station to become bottleneck also increases, and thus leads to the decrease ofβ.

    Fig.3 demonstrates that the results of Groups 8 and 9 seem to be exceptions to the rules above. Groups 6 to 9 represent the situation where one grade of returns dominates and the other grades have the same dispersion degree in quality grades. The results show that when the majority of returns are those with medium or low quality grade (i.e.i=3 ori=4), the value ofβwill be at a high level. From Tab.3, when a certain grade of returns is in prominent place, the location of the bottleneck station will be closely related to the process route of the dominant grade returns. For instance, wheni=1,W5andW6are the bottleneck stations; whilei=2,W3is the bottleneck station. In Groups 8 and 9, the bottleneck station

    Tab.2 Relationship of returns’ quality and bottleneck shifting

    Fig.3 Relationship of p with bottleneck shifting

    shifts betweenW2,W4or amongW1,W2andW4, respectively, which will lead to a high level ofβ. When the returns are dominated by a low quality grade, they will flow through more stations and have more complicated process routes. This will increase the probability of each station becoming a bottleneck and result in the more serious phenomenon of bottleneck shifting.

    4Conclusion

    In this paper, the bottleneck is defined for a remanufacturing system by using an effective throughout time ratio, and the figure of bottleneck shifting is also given. A simulation approach considering grading quality is proposed. The impact of quality grade proportion, repair rate and uncertainties of process routes on the bottleneck shifting properties are studied by the means of simulation and design of experiments. The results demonstrate that the repair ratesrof returns have obvious influence on bottleneck stations. The higher the dispersion degree ofr, that is the greater the difference of the returns’ quality, the more obvious the bottleneck shifting will be. Furthermore, influenced by interaction of quality grade proportions, bottleneck shifting is also closely related to the process routes of dominant grade returns.

    Tab.3 Relationship of processing route and bottleneck shifting

    References

    [1]?stlin J, Sundin E, Bj?rkman M. Product life-cycle implications for remanufacturing strategies[J].JournalofCleanerProduction, 2009, 17(11):999-1009.

    [2]Souza G C, Ketzenberg M E, Guide V D R Jr. Capacitated remanufacturing with service level constraints[J].ProductionandOperationsManagement, 2002, 11(2):231-248.

    [3]Ferguson M, Guide V D R Jr, Eylem K, et al. The value of quality grading in remanufacturing [J].ProductionandOperationsManagement, 2009, 18(3):300-314.

    [4]Zikopoulos C, Tagaras G. Impact of uncertainty in the quality of returns on the profitability of a single-period refurbishing operation[J].EuropeanJournalofOperationalResearch, 2007, 182(1):205-225.

    [5]Aras N, Boyaci T, Verter V. The effect of categorizing returned products in remanufacturing[J].IIETransactions, 2004, 36(4):319-331.

    [6]Behret H, Korugan A. Performance analysis of a hybrid system under quality impact of returns[J].ComputersandIndustrialEngineering, 2009, 56(2):507-520.

    [7]Jin X N, Ni J, Koren Y. Optimal control of reassembly with variable quality returns in a product remanufacturing system[J].CIRPAnnals—ManufacturingTechnology, 2011, 60(1):25-28.

    [8]Watson K J, Blackstone J H, Gardine Stanley C. The evolution of a management philosophy: the theory of constraints[J].JournalofOperationsManagement, 2007, 25(2):387-402.

    [9]Scholz-Reiter B, Windt K, Liu H X. Modelling dynamic bottlenecks in production networks [J].InternationalJournalofComputerIntegratedManufacturing, 2011, 24(5):391-404.

    [10]Moss H K, Yu W B. Toward the estimation of bottleneck shiftiness in a manufacturing operation[J].ProductionandInventoryManagementJournal, 1999, 40(2):53-58.

    [11]Liu M Z, Tang J, Ge M G, et al. Dynamic prediction method of production logistics bottleneck based on bottleneck index[J].ChineseJournalofMechanicalEngineering, 2009, 22(5):710-716.

    [12]Li L, Chang Q, Xiao G X, et al. Throughput bottleneck prediction of manufacturing systems using time series analysis[J].JournalofManufacturingScienceandEngineering, 2011, 133(2):1-8.

    [13]Zhai Y N, Sun S D, Wang J Q, et al. Bottleneck detection method based on orthogonal experiment for job shop[J].ComputerIntegratedManufacturingSystem, 2010, 16(9):1945-1952. (in Chinese)

    [14]Lawrence S R, Buss A H. Shifting production bottlenecks: Causes, cures, and conundrums[J].ProductionandOperationsmanAgement, 1994, 3(1):21-37.

    [15]Zhang R, Wu C. Bottleneck machine identification method based on constraint transformation for job shop scheduling with genetic algorithm[J].InformationSciences, 2012, 188(1):236-252.

    doi:10.3969/j.issn.1003-7985.2015.04.015

    搡老岳熟女国产| 精品不卡国产一区二区三区| 亚洲午夜理论影院| 亚洲国产日韩欧美精品在线观看 | 在线国产一区二区在线| 观看免费一级毛片| 九色国产91popny在线| 精品一区二区三区av网在线观看| 国产又黄又爽又无遮挡在线| 最新美女视频免费是黄的| 国产在线精品亚洲第一网站| 正在播放国产对白刺激| 欧美另类亚洲清纯唯美| 成年女人毛片免费观看观看9| 免费在线观看黄色视频的| 久久午夜亚洲精品久久| 国产色视频综合| 桃红色精品国产亚洲av| 欧美乱妇无乱码| tocl精华| 午夜福利视频1000在线观看| 日本 欧美在线| 大型av网站在线播放| 久久亚洲真实| 久久天躁狠狠躁夜夜2o2o| 色精品久久人妻99蜜桃| 午夜免费激情av| 亚洲成人免费电影在线观看| 亚洲国产中文字幕在线视频| 日韩欧美在线二视频| 国产人伦9x9x在线观看| 黑人欧美特级aaaaaa片| 欧美国产日韩亚洲一区| 国产aⅴ精品一区二区三区波| 午夜成年电影在线免费观看| 国产人伦9x9x在线观看| 国产成人av激情在线播放| 黄色毛片三级朝国网站| 在线观看舔阴道视频| 一本大道久久a久久精品| 国产精品国产高清国产av| 激情在线观看视频在线高清| 国语自产精品视频在线第100页| 国产乱人伦免费视频| 在线观看免费视频日本深夜| 夜夜看夜夜爽夜夜摸| 99久久久亚洲精品蜜臀av| 2021天堂中文幕一二区在线观 | 真人一进一出gif抽搐免费| 18禁黄网站禁片午夜丰满| 美女 人体艺术 gogo| 一级作爱视频免费观看| 两人在一起打扑克的视频| 91麻豆av在线| 亚洲第一电影网av| 亚洲在线自拍视频| 看黄色毛片网站| 可以在线观看毛片的网站| 热re99久久国产66热| 搞女人的毛片| 国产精品98久久久久久宅男小说| 午夜两性在线视频| 老熟妇仑乱视频hdxx| 午夜福利18| 国产精品久久久久久精品电影 | 丰满人妻熟妇乱又伦精品不卡| 久久青草综合色| 久久精品亚洲精品国产色婷小说| 国产精品1区2区在线观看.| 女同久久另类99精品国产91| 12—13女人毛片做爰片一| 美女免费视频网站| 国产精品二区激情视频| 久久久国产精品麻豆| 最近最新中文字幕大全免费视频| 1024视频免费在线观看| 最近在线观看免费完整版| 成人国语在线视频| 日韩欧美国产在线观看| 久久青草综合色| 国产免费男女视频| 精品福利观看| 少妇粗大呻吟视频| 久久久久亚洲av毛片大全| 亚洲真实伦在线观看| 国产真人三级小视频在线观看| 少妇被粗大的猛进出69影院| 免费高清视频大片| 免费人成视频x8x8入口观看| 黄频高清免费视频| 两性夫妻黄色片| www国产在线视频色| 精品国产乱子伦一区二区三区| 亚洲国产日韩欧美精品在线观看 | 好男人电影高清在线观看| 在线观看一区二区三区| 久久久水蜜桃国产精品网| 国产亚洲精品久久久久5区| 欧美人与性动交α欧美精品济南到| 久久久久国产一级毛片高清牌| 看片在线看免费视频| 777久久人妻少妇嫩草av网站| 精品久久久久久,| 亚洲精品色激情综合| 大型av网站在线播放| 很黄的视频免费| 欧美一级a爱片免费观看看 | 熟女电影av网| 最好的美女福利视频网| 日本 av在线| 国产黄a三级三级三级人| 两个人视频免费观看高清| 一级作爱视频免费观看| 久久久久国产一级毛片高清牌| 亚洲欧美日韩高清在线视频| 搞女人的毛片| 国产精品影院久久| 国产精品,欧美在线| 欧美激情高清一区二区三区| 国产成人影院久久av| 欧美色欧美亚洲另类二区| 日本三级黄在线观看| 亚洲午夜理论影院| 精品国产超薄肉色丝袜足j| 在线视频色国产色| 国产av一区二区精品久久| 精品一区二区三区av网在线观看| 在线十欧美十亚洲十日本专区| 久久婷婷成人综合色麻豆| 一a级毛片在线观看| 国产精品一区二区三区四区久久 | 国产精品久久电影中文字幕| 日日摸夜夜添夜夜添小说| 欧美不卡视频在线免费观看 | 日韩成人在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| cao死你这个sao货| 久久久久九九精品影院| 精品久久蜜臀av无| 一级毛片精品| 国产精品98久久久久久宅男小说| 男人舔奶头视频| АⅤ资源中文在线天堂| 母亲3免费完整高清在线观看| 无人区码免费观看不卡| 一本精品99久久精品77| 老司机在亚洲福利影院| 国产三级在线视频| 变态另类丝袜制服| 久久久精品欧美日韩精品| 91成年电影在线观看| 最近最新中文字幕大全免费视频| 午夜亚洲福利在线播放| 国产极品粉嫩免费观看在线| 亚洲天堂国产精品一区在线| www日本在线高清视频| 精品一区二区三区视频在线观看免费| 日韩精品免费视频一区二区三区| 国产精品精品国产色婷婷| tocl精华| 一本精品99久久精品77| 手机成人av网站| 自线自在国产av| 一区二区日韩欧美中文字幕| 亚洲中文av在线| 久久天躁狠狠躁夜夜2o2o| 亚洲第一欧美日韩一区二区三区| 国产99久久九九免费精品| 久久香蕉精品热| 亚洲自拍偷在线| 国产三级黄色录像| 国产精华一区二区三区| 亚洲欧美精品综合久久99| 日日夜夜操网爽| 妹子高潮喷水视频| 色综合亚洲欧美另类图片| av视频在线观看入口| 桃色一区二区三区在线观看| 免费在线观看日本一区| 国产精品免费视频内射| 最好的美女福利视频网| 欧美激情极品国产一区二区三区| 禁无遮挡网站| 国内久久婷婷六月综合欲色啪| 天天一区二区日本电影三级| 97碰自拍视频| 日本精品一区二区三区蜜桃| 最近最新免费中文字幕在线| 久久久国产成人精品二区| 黑人操中国人逼视频| 国产高清视频在线播放一区| 国产成年人精品一区二区| 男人的好看免费观看在线视频 | 美女扒开内裤让男人捅视频| 中文字幕精品免费在线观看视频| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密| 久久香蕉激情| 精品久久久久久久久久免费视频| 亚洲av五月六月丁香网| 国产不卡一卡二| 母亲3免费完整高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 美女国产高潮福利片在线看| 在线观看一区二区三区| 一个人观看的视频www高清免费观看 | 18禁美女被吸乳视频| 十分钟在线观看高清视频www| 搡老熟女国产l中国老女人| 男人舔奶头视频| 成人亚洲精品一区在线观看| 女警被强在线播放| 国产激情欧美一区二区| 免费在线观看影片大全网站| 亚洲成av人片免费观看| 国产高清videossex| 久热爱精品视频在线9| 国产精品香港三级国产av潘金莲| 男女之事视频高清在线观看| 久久草成人影院| 亚洲自偷自拍图片 自拍| 99国产极品粉嫩在线观看| 亚洲av成人av| 欧美成狂野欧美在线观看| 精品国产乱子伦一区二区三区| 999久久久精品免费观看国产| 亚洲第一青青草原| 青草久久国产| 国产私拍福利视频在线观看| 国产伦人伦偷精品视频| 亚洲成a人片在线一区二区| 韩国av一区二区三区四区| 精品人妻1区二区| 久久久精品欧美日韩精品| 国产成人一区二区三区免费视频网站| 日日爽夜夜爽网站| 少妇粗大呻吟视频| 黄色视频不卡| 亚洲人成电影免费在线| 99精品在免费线老司机午夜| 国产成人欧美| 长腿黑丝高跟| 国产极品粉嫩免费观看在线| 麻豆一二三区av精品| 久久欧美精品欧美久久欧美| or卡值多少钱| 亚洲欧美激情综合另类| 人人妻人人看人人澡| 久久欧美精品欧美久久欧美| 国产一区二区激情短视频| 麻豆成人午夜福利视频| 久久青草综合色| 自线自在国产av| 久久精品影院6| cao死你这个sao货| 婷婷丁香在线五月| 国产精品亚洲美女久久久| 男女午夜视频在线观看| 制服丝袜大香蕉在线| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 无遮挡黄片免费观看| 亚洲狠狠婷婷综合久久图片| e午夜精品久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人不卡在线观看播放网| or卡值多少钱| 午夜老司机福利片| 色播在线永久视频| 丁香欧美五月| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 国产成+人综合+亚洲专区| 美女免费视频网站| 欧美zozozo另类| 久久久国产成人精品二区| 婷婷亚洲欧美| 国产精品久久久久久精品电影 | 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 久久亚洲真实| 成人三级做爰电影| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| www.www免费av| 精品国内亚洲2022精品成人| 亚洲av成人不卡在线观看播放网| 制服丝袜大香蕉在线| 亚洲av电影不卡..在线观看| 在线观看www视频免费| 在线天堂中文资源库| 久久久精品国产亚洲av高清涩受| 美国免费a级毛片| 啦啦啦免费观看视频1| 丝袜人妻中文字幕| 国产又黄又爽又无遮挡在线| 亚洲中文字幕一区二区三区有码在线看 | 成人国语在线视频| 女性被躁到高潮视频| 亚洲精品久久成人aⅴ小说| 日韩高清综合在线| 国产激情欧美一区二区| 人人妻,人人澡人人爽秒播| 亚洲狠狠婷婷综合久久图片| 十分钟在线观看高清视频www| 欧美性长视频在线观看| 亚洲第一av免费看| 亚洲精品中文字幕一二三四区| 色综合欧美亚洲国产小说| 久久香蕉精品热| 十八禁网站免费在线| 午夜老司机福利片| 不卡av一区二区三区| av在线播放免费不卡| 久久久久九九精品影院| 亚洲 欧美一区二区三区| 日本五十路高清| 亚洲国产精品成人综合色| 国产精品永久免费网站| 国产一级毛片七仙女欲春2 | 久久国产亚洲av麻豆专区| 少妇粗大呻吟视频| 免费看美女性在线毛片视频| 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 99在线人妻在线中文字幕| 日本一区二区免费在线视频| 日本熟妇午夜| 久久婷婷人人爽人人干人人爱| 男人操女人黄网站| 9191精品国产免费久久| 在线视频色国产色| 男女之事视频高清在线观看| 欧美国产日韩亚洲一区| 亚洲五月色婷婷综合| 国产黄a三级三级三级人| 亚洲欧美激情综合另类| 白带黄色成豆腐渣| 亚洲久久久国产精品| 一级作爱视频免费观看| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院| 日韩高清综合在线| 国产精品野战在线观看| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av高清一级| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| 国产一区二区三区在线臀色熟女| 国产成人啪精品午夜网站| 国产亚洲精品久久久久久毛片| 亚洲av日韩精品久久久久久密| 午夜成年电影在线免费观看| 久久婷婷成人综合色麻豆| 中文字幕另类日韩欧美亚洲嫩草| 国产高清videossex| ponron亚洲| 国产精品精品国产色婷婷| www.精华液| 国产成人欧美| 搡老妇女老女人老熟妇| 国产aⅴ精品一区二区三区波| 每晚都被弄得嗷嗷叫到高潮| 91av网站免费观看| 亚洲一区二区三区不卡视频| 婷婷精品国产亚洲av在线| 一级片免费观看大全| 成人一区二区视频在线观看| 亚洲国产毛片av蜜桃av| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 在线观看午夜福利视频| 亚洲av中文字字幕乱码综合 | 在线看三级毛片| 老司机在亚洲福利影院| 国产精品,欧美在线| 女警被强在线播放| 不卡av一区二区三区| 男女床上黄色一级片免费看| 亚洲欧美激情综合另类| 国产黄片美女视频| 岛国视频午夜一区免费看| 国产精品美女特级片免费视频播放器 | 亚洲精品在线观看二区| 亚洲国产欧美一区二区综合| 国产在线精品亚洲第一网站| 国产精品久久久久久亚洲av鲁大| 欧美成人一区二区免费高清观看 | 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 久久青草综合色| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频 | 天天添夜夜摸| √禁漫天堂资源中文www| 999精品在线视频| 成人午夜高清在线视频 | 99热只有精品国产| 97超级碰碰碰精品色视频在线观看| 国产精品1区2区在线观看.| av有码第一页| 精品日产1卡2卡| 999久久久精品免费观看国产| 免费女性裸体啪啪无遮挡网站| 久久人妻av系列| 91成人精品电影| 俺也久久电影网| 久久久久免费精品人妻一区二区 | 高清毛片免费观看视频网站| 亚洲国产欧美网| 久久狼人影院| 久久这里只有精品19| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 制服人妻中文乱码| 国产野战对白在线观看| 久久精品成人免费网站| 91九色精品人成在线观看| 99精品欧美一区二区三区四区| 最新在线观看一区二区三区| 在线观看www视频免费| 大型av网站在线播放| 丁香六月欧美| 国产精品久久久av美女十八| 久久性视频一级片| 亚洲一区中文字幕在线| 国产三级黄色录像| 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 日本 欧美在线| 一本综合久久免费| 亚洲av成人av| 国内久久婷婷六月综合欲色啪| 日韩免费av在线播放| 叶爱在线成人免费视频播放| 九色国产91popny在线| 国产成人系列免费观看| 久9热在线精品视频| 欧美精品亚洲一区二区| 亚洲性夜色夜夜综合| 人人澡人人妻人| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 看免费av毛片| 久久久久久九九精品二区国产 | 1024视频免费在线观看| av电影中文网址| 啦啦啦 在线观看视频| 国产精品久久电影中文字幕| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 欧美日韩精品网址| 国产精品精品国产色婷婷| 日韩大尺度精品在线看网址| 日本 av在线| 三级毛片av免费| 亚洲五月色婷婷综合| 欧美日韩亚洲综合一区二区三区_| 国产在线精品亚洲第一网站| 国产又爽黄色视频| 精品一区二区三区四区五区乱码| 精品国产超薄肉色丝袜足j| 性色av乱码一区二区三区2| 成人精品一区二区免费| 18禁国产床啪视频网站| 国产亚洲欧美精品永久| 韩国精品一区二区三区| 麻豆国产av国片精品| 亚洲av五月六月丁香网| a级毛片a级免费在线| 久久青草综合色| 久热这里只有精品99| xxxwww97欧美| 一进一出抽搐gif免费好疼| 俺也久久电影网| 精品福利观看| 亚洲九九香蕉| 国产激情欧美一区二区| 国产精品,欧美在线| 国产久久久一区二区三区| 国产不卡一卡二| 欧美中文日本在线观看视频| 国产一级毛片七仙女欲春2 | 老司机深夜福利视频在线观看| 亚洲精品国产精品久久久不卡| 午夜成年电影在线免费观看| www日本黄色视频网| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 一级片免费观看大全| 亚洲一区中文字幕在线| 久久人妻福利社区极品人妻图片| 亚洲欧美日韩高清在线视频| 精品乱码久久久久久99久播| 欧美中文综合在线视频| 美女大奶头视频| www国产在线视频色| av天堂在线播放| 桃红色精品国产亚洲av| 日本成人三级电影网站| 欧美在线一区亚洲| 亚洲专区字幕在线| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 亚洲精品国产精品久久久不卡| 一夜夜www| 精品久久久久久久人妻蜜臀av| 亚洲成av片中文字幕在线观看| 久久午夜综合久久蜜桃| 国产一卡二卡三卡精品| 精品午夜福利视频在线观看一区| 波多野结衣av一区二区av| 欧美日韩一级在线毛片| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 侵犯人妻中文字幕一二三四区| 两个人视频免费观看高清| 老司机深夜福利视频在线观看| 俄罗斯特黄特色一大片| 久久 成人 亚洲| 成人免费观看视频高清| 亚洲 欧美一区二区三区| 美女高潮喷水抽搐中文字幕| 精品国产乱子伦一区二区三区| 88av欧美| xxx96com| 哪里可以看免费的av片| 两个人看的免费小视频| 欧美黑人精品巨大| 美女扒开内裤让男人捅视频| av欧美777| 精品日产1卡2卡| 久久狼人影院| 成年免费大片在线观看| 国产精品综合久久久久久久免费| 91国产中文字幕| 亚洲一区二区三区色噜噜| 亚洲五月婷婷丁香| 精品一区二区三区视频在线观看免费| 日韩大码丰满熟妇| 国产精品亚洲一级av第二区| 成人手机av| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 日韩精品中文字幕看吧| 性色av乱码一区二区三区2| 中文字幕精品免费在线观看视频| 亚洲欧美一区二区三区黑人| 久久久久免费精品人妻一区二区 | 欧美色欧美亚洲另类二区| 免费看a级黄色片| 亚洲免费av在线视频| 国产精品久久久av美女十八| 特大巨黑吊av在线直播 | 欧美中文日本在线观看视频| 国产在线观看jvid| 性欧美人与动物交配| www日本黄色视频网| 狂野欧美激情性xxxx| 好男人电影高清在线观看| 一本久久中文字幕| 欧美国产精品va在线观看不卡| 91麻豆精品激情在线观看国产| 在线观看免费午夜福利视频| 天天一区二区日本电影三级| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 亚洲专区字幕在线| 久久婷婷人人爽人人干人人爱| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| or卡值多少钱| 91在线观看av| 俄罗斯特黄特色一大片| 激情在线观看视频在线高清| 中国美女看黄片| 国产一区二区三区视频了| 中文字幕人妻熟女乱码| 亚洲精品在线观看二区| www国产在线视频色| 男女下面进入的视频免费午夜 | 日本成人三级电影网站| 国产亚洲av嫩草精品影院| 久久婷婷成人综合色麻豆| 一进一出抽搐动态| 国产精品久久久av美女十八| 99久久综合精品五月天人人| 久热这里只有精品99| 久久国产精品人妻蜜桃| 日韩三级视频一区二区三区| 香蕉久久夜色| 欧美成人性av电影在线观看| 精品不卡国产一区二区三区| 麻豆成人午夜福利视频| 日韩精品青青久久久久久| 亚洲第一欧美日韩一区二区三区| 两个人免费观看高清视频| 中文字幕久久专区| 一个人免费在线观看的高清视频| 一本大道久久a久久精品| 亚洲五月天丁香| 欧美三级亚洲精品| 久99久视频精品免费| 一级a爱片免费观看的视频| 美女扒开内裤让男人捅视频| 在线免费观看的www视频| 日本一本二区三区精品| 欧美激情极品国产一区二区三区| 国产成+人综合+亚洲专区| av视频在线观看入口| 熟女电影av网| 国产真实乱freesex| 午夜影院日韩av| 级片在线观看|