• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading

    2015-03-01 09:23:39ZhengYuqiaoSuChunCaoBaixueShiYangmei

    Zheng Yuqiao  Su Chun  Cao Baixue  Shi Yangmei

    (1Key Laboratory of Digital Manufacturing Technology and Application of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China)(2School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    ?

    Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading

    Zheng Yuqiao1Su Chun2Cao Baixue2Shi Yangmei2

    (1Key Laboratory of Digital Manufacturing Technology and Application of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China)(2School of Mechanical Engineering, Southeast University, Nanjing 211189, China)

    Abstract:Aimed at the remanufacturing system, the effect of the uncertainty of returns’ quality on bottleneck shifting is investigated. A novel definition of bottleneck station is presented and the probability of a station becoming a bottleneck is also given. By calculating the effective output, the effective operation time (EOT) and the ratio of EOT of each station, the system’s current bottleneck of effective output time is determined. By calculating the probability coefficient of variation and index of bottleneck shifting, the quantitative performance of bottleneck shifting is obtained. Discrete event simulation and the experiment design method are adopted to simulate the system, in which the proportion of quality grading, repair rates and process routes are considered. The case study shows that the uncertainty of returns’ quality greatly increases the probability of bottleneck shifting, and with the increase of the discrete degree of the returns’ repair rate, the bottleneck shifting phenomenon is more obvious. Furthermore, bottleneck shifting is closely related to the process route of the dominating returns’ quality grade.

    Key words:bottleneck shifting; remanufacturing; returns; quality grading; uncertainty

    Received 2015-04-27.

    Biographies:Zheng Yuqiao(1977—), female, doctor, associate professor; Su Chun (corresponding author), male, doctor, professor, suchun@seu.edu.cn.

    Foundation items:The Program for Special Talent in Six Fields of Jiangsu Province(No.2013ZBZZ-046), the Program of Lanzhou Technology Development (No.2014-1-175).

    Citation:Zheng Yuqiao, Su Chun, Cao Baixue, et al. Performance of bottleneck shifting for remanufacturing system considering returns’ quality grading[J].Journal of Southeast University (English Edition),2015,31(4):516-521.[doi:10.3969/j.issn.1003-7985.2015.04.015]

    Remanufacturing is regarded as an effective approach for circular economy. Through a number of industrial operations, the worn-out components or end-of-life products (hereafter referred to as “returns”) are restored to useful life[1]. Various uncertainties exist in the remanufacturing system, including quantity and quality of returns, which lead to large difference in the remanufacturing process route and operation time, and pose a great challenge for the design, production planning and operation of such systems[2].

    In Ref.[3], the production planning problem was studied by considering the difference in returns’ quality. Zikopoulos et al.[4]investigated the effect of returns’ quality on the profitability of the remanufacturing system. Aras et al.[5]demonstrated that the random characteristics of returns are significant challenges faced by the remanufacturing system. Behret et al.[6]studied the effect of quality uncertainties on the total cost of remanufacturing. The experimental results show that classification of returns can reduce cost effectively. Jin et al.[7]graded the returns based on their quality, and modeled the remanufacturing system with the Markov decision process. The above studies show that quality grading is an effective method for dealing with quality uncertainties of returns.

    Bottlenecks are one of the key problems in production planning and scheduling[8]. Influenced by various internal and external stochastic factors, the location of the bottleneck in the remanufacturing system will change dynamically. In addition, the improvement of current bottleneck will also cause the shifting of bottleneck. The phenomenon described above is called bottleneck shifting or dynamic bottleneck[9]. In recent years, the identification and improvement for the dynamic bottleneck has received much attention. Moss et al.[10]used the linear regression model and simulation method to solve bottleneck shifting problems. Liu et al.[11]adopted indicators of bottleneck degree and bottleneck index to describe the properties of dynamic bottlenecks. Li et al.[12]regarded the blocking and starving time as a time series, and the bottleneck shifting was predicted by using an auto-regressive and moving average (ARMA) model. A bottleneck identification approach based on orthogonal experiments was proposed by Zhai et al[13]. Lawrence et al.[14]used the analytic approach to study the bottleneck shifting problem. In Ref.[15], a bottleneck machine identification algorithm was proposed with the objective to minimize total tardiness.

    Existing research mainly aimed at predicting bottleneck workstations, and the study on dynamic bottlenecks and overall system performance is quite limited. Up to now, few studies have been found to concentrate upon the uncertainties of returns’ quality acting on bottleneck shifting in the remanufacturing system. In this article, selecting the remanufacturing system as the research object and based on the analysis of uncertainties in core quality, a novel definition of bottleneck station is proposed by considering quality grading proportion, repair rate and process rate uncertainty. On that basis, the probability analytic figure of bottleneck stations are derived. It can be used to describe the effect of quality uncertainties on bottleneck shifting. A case study is provided to illustrate the efficiency of the approach.

    1Definition of Bottleneck Shifting

    1.1 Bottleneck shifting indicator

    Lawrence et al.[14]developed a simple Jackson production network model, and each node in the network was regarded as aM/M/1 queuing system. Under steady state conditions, the probability that there aremreturns at the station is equivalent to the probability that the queue length of theM/M/1 queuing system ism, and the node with the longest length synchronically is defined as the bottleneck of the system.

    Based on the mathematical description of queuing system performance, the queue length of each node is larger than other nodes with probabilityPjunder steady state conditions. Thus,P=(P1,P2, …,Pj) is used to describe the probability that each node becomes a bottleneck. Obviously, when the system contains only one bottleneck station, the corresponding probabilityPjfor the bottleneck station is 1, and the probability of the other stations is 0.

    Defineβas the indicator of bottleneck shifting, which is used to measure the bottleneck shifting property.βis defined as

    (1)

    The value range ofβis [0, 1].β=0 represents that there is only one static bottleneck in the system;β=1 implies that each node has an identical probability to become a bottleneck, which will lead to the largest bottleneck shifting probability for the system.

    1.2 Definition of bottleneck station

    The sum of throughout time of all station equals the total throughout time of all the batches, therefore, we have[9]

    (2)

    The ratio of effective operation time (μEOT) is used to denote the contribution of EOT at each station on its total operation time, which is expressed as

    (3)

    whereμEOT,jis the ratio of effective operation time at stationj.

    The ratio of throughout time (μTPT) is used to denote the contribution of total operation time at each station on the total system throughout time,

    (4)

    whereμTPT,jis the ratio of throughout time at stationj.

    It is clear that the bottleneck station has the following characteristics that the throughout time is long while the effective operation time is comparably short. On this basis, the definition of the effective throughout processing time ratio is given as

    (5)

    By calculating the ETPT of each station during the same time period, we can obtain the ranking order of the effective throughout time of each station, among which the station with the maximum ETPT value is regarded as the bottleneck of effective throughout time (BNETPT):

    (6)

    During the given observation time period,Tjdenotes the duration that stationjis a bottleneck station, thus the value of total observation time is defined as the probability that stationjis a bottleneck station during the given observation period.P=(P1,P2, …,PJ) denotes the probability of the station bottleneck:

    (7)

    2Remanufacturing System Model Considering Quality Grading

    It is assumed that returns enter the remanufacturing system according to the independent Poisson process with rateλ, and the first station is the disassembly and testing station. At this station, some of the returns with lower quality cannot meet the remanufacturing requirement, and they will be scrapped directly with the proportion ofp0. The rest returns are classified into four quality grades based on the quality, i.e.i=1, 2, 3, 4. Returns withi=1 denote those with the highest quality grade, while the returns withi=4 denote the lowest quality grade. Suppose that the probability of returns in gradeiispi, obviouslyp0+p1+p2+p3+p4=1. Fig.1 shows the remanufacturing system model with the consideration of quality grading.

    After passing the disassembly and testing station, returns will enter remanufacturing stations sequentially. Assume that there are six remanufacturing stations, i.e.,Wj,j=1, 2, …, 6. In addition, if a return cannot meet the remanufacturing requirements due to quality defects at any remanufacturing station, it will be scrapped.rij(i=1, 2, 3, 4;j=1, 2, …, 6) represents the remanufacturing rate of returns in gradeiand at stationj. Finished remanufactured parts will be assembled with new parts.

    It is supposed that there is only one machine at each remanufacturing station, andCjis the capacity of the buffer before each station. Due to the range in quality of returns, the processing time of each station is different so that the processing routes are also of great difference. In this case, fori=1, the processing route of the returns isW1→W5→W6; fori=2, the processing route isW1→W3→W5→W6; fori=3, the processing route isW1→W2→W4→W6; while fori=4, the processing route isW1→W2→W4→W5→W6. It is supposed that the processing time of each station is exponentially distributed with meansμj, and returns follow the first-in-first-out (FIFO) rule.

    3Case Study

    In this section, numerical examples are illustrated to obtain insight into the effect of uncertainties about the returns’ quality on bottleneck shifting. We will focus on the factors including quality grade proportionp, repair raterand uncertainties of processing route.

    3.1 Design of experiments

    By choosing some typical groups of parameters, the simulation model is established and run in order to obtain the properties of bottleneck shifting. The parameters are as follows:λ=0.1,μ1=1.00,μ2=0.25,μ3=0.20,μ4=0.10,μ5=0.50,μ6=0.40,Cj=20.

    The parameters in the simulation model, includingp,rand their dispersion degrees, are listed in Tab.1. The variation coefficient for repair rate of Groups A, B, C, D are 0.491, 0.430, 0.074 and 0, respectively. The standard deviation of auality grade proportion (Groups 1 to 9) are 0, 0.129, 0.129, 0.173, 0.173, 0.3, 0.3, 0.3 and 0.3, respectively. It should be noted that the higher the dispersion degree ofr, the greater the difference among quality grades will be; while the smaller the dispersion degree ofp, the higher the hybridization rate of returns in different quality grades will be. Meanwhile, the coefficient variation of repair rates in each group decreases progressively.

    Groups A, B and Groups C, D belong to two categories, i.e. higher and lower coefficient variation of repair rates. In Group A, returns are classified into two categories based on quality, i.e. higher and lower repair rates. Group B denotes the group where the repair rate of returns is descending, which is the same as Group C. In Group C, repair rates are at a high level and the difference of quality grade is small. The repair rate of Group D is 1, it means that there are no processing defects. Typical groups of quality grade proportionspare selected. Quality grade proportions in Groups 1 to 3 are constant, decreasing and increasing, respectively; in Group 4 the returns with a high quality grade are dominating, while Group 5 is in contrast; in Groups 6 to 9, a certain quality grade of returns will dominate the group.

    The simulation model is established with ProModel ? software with the aim to obtain the bottleneck shifting property of the system under different parameters. The design of experiments and the results are shown in Tab.1.

    Tab.1 Experimental results of bottleneck shifting

    3.2 Analysis of experimental results

    3.2.1The impact of repair rater

    From Fig.2(a), we know that for returns of different quality grade proportions, the value ofβdepends mainly on the dispersion degree ofr. The higher the dispersion degree ofr, the higher the value ofβwill be, and vice versa. Thus, bottleneck shifting will be more obvious when the difference of repair rates in each grade is great. The repair rates of Groups C and D are both at a high level, and their dispersion degrees are 0.074 and 0, respectively. It is found that whenβis 0 or close to 0, there is a relatively fixed static bottleneck. For Group D, the repair rate is always 1, and the results show that each station in the system has similar probability to become a bottleneck station due to serious uncertainties of repair rate.

    From Fig.2(b), compared with other groups, Groups 2 and 4 have similar tendency, and theirβvalues remain high even when the repair rate is at a high level (C, D). By observing the quality grade proportion in both groups, process routes and the probabilities of each station becoming a bottleneck, it is found that returns at a high quality grade (i=1, 2) dominate the results, occupying 70% and 80% respectively. These two kinds of returns have similar routes, thus the process routes with the dominating grade will dominate the location of bottleneck stations, as shown in Tab.2.

    (a)

    (b)Fig.2 Relationship between dispersion degree of repair rate and bottleneck shifting. (a) Groups 1, 3, 5, 6, 8 and 9; (b) Groups 2, 4 and 7

    For different repair rate levels and dispersion degrees,βin Group 7 is 0 or approaching 0. The reason is that the returns with medium or high quality grade (i=2) are in the majority, thus the bottleneck location depends mainly on the process route of this grade.

    3.2.2The impact of quality grade proportionp

    In engineering practice, there are great differences in returns’ quality. Groups A and B are the situations where repair rates have a large degree of dispersion. As shown in Fig.3, for Groups 1 to 7, with the increase of the dispersion degree ofp, the value ofβwill decrease gradually. The results show that the higher the hybridization degree of returns, the more obvious the bottleneck shifting will be. The reason is that with the increase of the returns’ hybridization degree, the difference in each station’s utilization rate decreases, and the probability for each station to become bottleneck also increases, and thus leads to the decrease ofβ.

    Fig.3 demonstrates that the results of Groups 8 and 9 seem to be exceptions to the rules above. Groups 6 to 9 represent the situation where one grade of returns dominates and the other grades have the same dispersion degree in quality grades. The results show that when the majority of returns are those with medium or low quality grade (i.e.i=3 ori=4), the value ofβwill be at a high level. From Tab.3, when a certain grade of returns is in prominent place, the location of the bottleneck station will be closely related to the process route of the dominant grade returns. For instance, wheni=1,W5andW6are the bottleneck stations; whilei=2,W3is the bottleneck station. In Groups 8 and 9, the bottleneck station

    Tab.2 Relationship of returns’ quality and bottleneck shifting

    Fig.3 Relationship of p with bottleneck shifting

    shifts betweenW2,W4or amongW1,W2andW4, respectively, which will lead to a high level ofβ. When the returns are dominated by a low quality grade, they will flow through more stations and have more complicated process routes. This will increase the probability of each station becoming a bottleneck and result in the more serious phenomenon of bottleneck shifting.

    4Conclusion

    In this paper, the bottleneck is defined for a remanufacturing system by using an effective throughout time ratio, and the figure of bottleneck shifting is also given. A simulation approach considering grading quality is proposed. The impact of quality grade proportion, repair rate and uncertainties of process routes on the bottleneck shifting properties are studied by the means of simulation and design of experiments. The results demonstrate that the repair ratesrof returns have obvious influence on bottleneck stations. The higher the dispersion degree ofr, that is the greater the difference of the returns’ quality, the more obvious the bottleneck shifting will be. Furthermore, influenced by interaction of quality grade proportions, bottleneck shifting is also closely related to the process routes of dominant grade returns.

    Tab.3 Relationship of processing route and bottleneck shifting

    References

    [1]?stlin J, Sundin E, Bj?rkman M. Product life-cycle implications for remanufacturing strategies[J].JournalofCleanerProduction, 2009, 17(11):999-1009.

    [2]Souza G C, Ketzenberg M E, Guide V D R Jr. Capacitated remanufacturing with service level constraints[J].ProductionandOperationsManagement, 2002, 11(2):231-248.

    [3]Ferguson M, Guide V D R Jr, Eylem K, et al. The value of quality grading in remanufacturing [J].ProductionandOperationsManagement, 2009, 18(3):300-314.

    [4]Zikopoulos C, Tagaras G. Impact of uncertainty in the quality of returns on the profitability of a single-period refurbishing operation[J].EuropeanJournalofOperationalResearch, 2007, 182(1):205-225.

    [5]Aras N, Boyaci T, Verter V. The effect of categorizing returned products in remanufacturing[J].IIETransactions, 2004, 36(4):319-331.

    [6]Behret H, Korugan A. Performance analysis of a hybrid system under quality impact of returns[J].ComputersandIndustrialEngineering, 2009, 56(2):507-520.

    [7]Jin X N, Ni J, Koren Y. Optimal control of reassembly with variable quality returns in a product remanufacturing system[J].CIRPAnnals—ManufacturingTechnology, 2011, 60(1):25-28.

    [8]Watson K J, Blackstone J H, Gardine Stanley C. The evolution of a management philosophy: the theory of constraints[J].JournalofOperationsManagement, 2007, 25(2):387-402.

    [9]Scholz-Reiter B, Windt K, Liu H X. Modelling dynamic bottlenecks in production networks [J].InternationalJournalofComputerIntegratedManufacturing, 2011, 24(5):391-404.

    [10]Moss H K, Yu W B. Toward the estimation of bottleneck shiftiness in a manufacturing operation[J].ProductionandInventoryManagementJournal, 1999, 40(2):53-58.

    [11]Liu M Z, Tang J, Ge M G, et al. Dynamic prediction method of production logistics bottleneck based on bottleneck index[J].ChineseJournalofMechanicalEngineering, 2009, 22(5):710-716.

    [12]Li L, Chang Q, Xiao G X, et al. Throughput bottleneck prediction of manufacturing systems using time series analysis[J].JournalofManufacturingScienceandEngineering, 2011, 133(2):1-8.

    [13]Zhai Y N, Sun S D, Wang J Q, et al. Bottleneck detection method based on orthogonal experiment for job shop[J].ComputerIntegratedManufacturingSystem, 2010, 16(9):1945-1952. (in Chinese)

    [14]Lawrence S R, Buss A H. Shifting production bottlenecks: Causes, cures, and conundrums[J].ProductionandOperationsmanAgement, 1994, 3(1):21-37.

    [15]Zhang R, Wu C. Bottleneck machine identification method based on constraint transformation for job shop scheduling with genetic algorithm[J].InformationSciences, 2012, 188(1):236-252.

    doi:10.3969/j.issn.1003-7985.2015.04.015

    午夜久久久在线观看| 亚洲人成电影观看| 亚洲成国产人片在线观看| 九色国产91popny在线| 咕卡用的链子| 日韩精品青青久久久久久| 宅男免费午夜| 在线观看午夜福利视频| 多毛熟女@视频| 无限看片的www在线观看| 激情视频va一区二区三区| 在线观看一区二区三区| 满18在线观看网站| 成人三级做爰电影| 久久国产亚洲av麻豆专区| 国产精品99久久99久久久不卡| 村上凉子中文字幕在线| 大陆偷拍与自拍| 波多野结衣一区麻豆| 婷婷丁香在线五月| 午夜福利影视在线免费观看| 最好的美女福利视频网| 精品人妻在线不人妻| 亚洲熟妇熟女久久| 成人免费观看视频高清| 久久人妻福利社区极品人妻图片| 久久久久久久精品吃奶| 99riav亚洲国产免费| 国产成人一区二区三区免费视频网站| √禁漫天堂资源中文www| 欧美最黄视频在线播放免费| 亚洲av成人一区二区三| 欧美激情久久久久久爽电影 | 欧美激情高清一区二区三区| 一级,二级,三级黄色视频| 久99久视频精品免费| www国产在线视频色| 亚洲欧美精品综合久久99| 久久草成人影院| 国产单亲对白刺激| 可以在线观看的亚洲视频| 99精品久久久久人妻精品| 99在线视频只有这里精品首页| 丝袜人妻中文字幕| 91大片在线观看| 曰老女人黄片| 精品人妻在线不人妻| 满18在线观看网站| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图av天堂| 午夜免费成人在线视频| 午夜精品国产一区二区电影| 国产亚洲精品av在线| 亚洲欧美激情综合另类| 国内毛片毛片毛片毛片毛片| 欧美激情 高清一区二区三区| 两个人免费观看高清视频| 亚洲第一青青草原| 久久精品影院6| 午夜福利视频1000在线观看 | 在线免费观看的www视频| 国产精品久久视频播放| 欧美成人免费av一区二区三区| 男男h啪啪无遮挡| 亚洲成人久久性| 日韩欧美三级三区| 视频在线观看一区二区三区| 欧美国产日韩亚洲一区| 日本黄色视频三级网站网址| 91精品三级在线观看| 香蕉国产在线看| 九色国产91popny在线| 女同久久另类99精品国产91| 国产一卡二卡三卡精品| 精品欧美国产一区二区三| 最新美女视频免费是黄的| 九色亚洲精品在线播放| 久久精品国产清高在天天线| 1024视频免费在线观看| 人人澡人人妻人| 久久香蕉精品热| 国产精品久久久久久精品电影 | 国产精品久久电影中文字幕| 精品少妇一区二区三区视频日本电影| 人人妻人人爽人人添夜夜欢视频| 国产极品粉嫩免费观看在线| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 欧美在线一区亚洲| 最新美女视频免费是黄的| 美女高潮喷水抽搐中文字幕| 乱人伦中国视频| 波多野结衣av一区二区av| 美女大奶头视频| 亚洲成av片中文字幕在线观看| 亚洲第一青青草原| 久久久久久久午夜电影| 日韩欧美免费精品| 性色av乱码一区二区三区2| 嫁个100分男人电影在线观看| 99久久国产精品久久久| 欧美黄色淫秽网站| 美女扒开内裤让男人捅视频| 免费观看精品视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 变态另类成人亚洲欧美熟女 | 在线观看免费午夜福利视频| av电影中文网址| 国产三级在线视频| 满18在线观看网站| 国产精品一区二区免费欧美| 久久精品91蜜桃| 美女高潮喷水抽搐中文字幕| 久久香蕉激情| 一本综合久久免费| 久久精品国产清高在天天线| 国产色视频综合| 免费在线观看日本一区| 天天躁夜夜躁狠狠躁躁| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 国产成人av教育| 色综合婷婷激情| av中文乱码字幕在线| 日韩欧美免费精品| 久久久久精品国产欧美久久久| 亚洲熟女毛片儿| 深夜精品福利| 免费不卡黄色视频| 欧美 亚洲 国产 日韩一| 免费少妇av软件| 亚洲黑人精品在线| 50天的宝宝边吃奶边哭怎么回事| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久久5区| 成年女人毛片免费观看观看9| 久久精品亚洲熟妇少妇任你| 午夜福利,免费看| 国产熟女午夜一区二区三区| 国产精品亚洲美女久久久| 一a级毛片在线观看| a级毛片在线看网站| 国产人伦9x9x在线观看| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 国产成人啪精品午夜网站| 亚洲专区国产一区二区| 久久久久久大精品| svipshipincom国产片| 亚洲三区欧美一区| 欧美日韩亚洲综合一区二区三区_| 久久久久国产一级毛片高清牌| 一边摸一边抽搐一进一出视频| 婷婷六月久久综合丁香| 波多野结衣一区麻豆| 在线国产一区二区在线| av欧美777| 日韩大码丰满熟妇| 咕卡用的链子| 亚洲第一青青草原| 国产精品亚洲av一区麻豆| 激情在线观看视频在线高清| 国产私拍福利视频在线观看| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| 精品人妻在线不人妻| 香蕉国产在线看| 国产成人精品久久二区二区免费| 久热这里只有精品99| 大香蕉久久成人网| 一本综合久久免费| 亚洲成av片中文字幕在线观看| 久久这里只有精品19| 欧美精品啪啪一区二区三区| 在线免费观看的www视频| 欧美日韩福利视频一区二区| 曰老女人黄片| 成人亚洲精品一区在线观看| 日本在线视频免费播放| 婷婷精品国产亚洲av在线| 日日干狠狠操夜夜爽| 日本在线视频免费播放| 一进一出抽搐gif免费好疼| 免费看美女性在线毛片视频| 久久久久久久久免费视频了| 亚洲国产精品999在线| 国产精品久久视频播放| 91九色精品人成在线观看| avwww免费| 在线观看免费日韩欧美大片| 亚洲在线自拍视频| 精品少妇一区二区三区视频日本电影| 国产欧美日韩一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 久久欧美精品欧美久久欧美| 精品人妻在线不人妻| av有码第一页| 亚洲人成77777在线视频| 亚洲精品久久国产高清桃花| 亚洲成a人片在线一区二区| 国产成人av激情在线播放| 又黄又粗又硬又大视频| 天堂动漫精品| 狂野欧美激情性xxxx| 亚洲欧美精品综合一区二区三区| 国产精品爽爽va在线观看网站 | 熟女少妇亚洲综合色aaa.| 亚洲 欧美 日韩 在线 免费| 51午夜福利影视在线观看| 制服人妻中文乱码| 国产成人系列免费观看| 国产麻豆成人av免费视频| 国产精品乱码一区二三区的特点 | 精品国内亚洲2022精品成人| 妹子高潮喷水视频| 老司机深夜福利视频在线观看| 欧美乱妇无乱码| 国产av一区二区精品久久| 日本一区二区免费在线视频| 女性被躁到高潮视频| 深夜精品福利| 欧美中文综合在线视频| 久久欧美精品欧美久久欧美| avwww免费| 中国美女看黄片| www.www免费av| 午夜久久久在线观看| 亚洲自偷自拍图片 自拍| 久久久久久人人人人人| 黄片小视频在线播放| 国产成人精品久久二区二区91| 桃色一区二区三区在线观看| 亚洲国产欧美网| 午夜a级毛片| 国产色视频综合| 又黄又粗又硬又大视频| 欧美激情极品国产一区二区三区| 国产精品久久电影中文字幕| 欧美日本亚洲视频在线播放| 国产熟女午夜一区二区三区| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 免费在线观看日本一区| 1024香蕉在线观看| 99久久综合精品五月天人人| 欧美性长视频在线观看| 美女午夜性视频免费| 亚洲aⅴ乱码一区二区在线播放 | 黄色 视频免费看| 亚洲片人在线观看| av在线天堂中文字幕| 国产av又大| 国产精品电影一区二区三区| 精品人妻在线不人妻| 久久这里只有精品19| 国产亚洲精品久久久久久毛片| 日韩视频一区二区在线观看| 欧美一级a爱片免费观看看 | 天天躁夜夜躁狠狠躁躁| 欧美成人一区二区免费高清观看 | 日日干狠狠操夜夜爽| 国产精品电影一区二区三区| 国产精品,欧美在线| 成人国语在线视频| 久久人人97超碰香蕉20202| 啪啪无遮挡十八禁网站| 又黄又粗又硬又大视频| 变态另类丝袜制服| 日本vs欧美在线观看视频| 香蕉久久夜色| 国产亚洲欧美在线一区二区| 淫妇啪啪啪对白视频| 男人舔女人下体高潮全视频| 久久草成人影院| 日韩免费av在线播放| 最近最新免费中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 久久久水蜜桃国产精品网| 日本三级黄在线观看| 国产三级在线视频| 久久这里只有精品19| 久久精品91蜜桃| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久久人妻蜜臀av | 婷婷丁香在线五月| 久久久国产欧美日韩av| 热99re8久久精品国产| 成人特级黄色片久久久久久久| 最近最新中文字幕大全免费视频| 成人永久免费在线观看视频| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添小说| 欧美老熟妇乱子伦牲交| 色尼玛亚洲综合影院| 久久久国产欧美日韩av| 日本撒尿小便嘘嘘汇集6| 国产成人欧美| 亚洲五月婷婷丁香| 久久国产精品影院| 叶爱在线成人免费视频播放| 中文字幕色久视频| 91九色精品人成在线观看| av中文乱码字幕在线| 亚洲av电影在线进入| 免费在线观看亚洲国产| 欧美乱码精品一区二区三区| 在线观看一区二区三区| 久9热在线精品视频| 免费在线观看视频国产中文字幕亚洲| 涩涩av久久男人的天堂| 久久久精品欧美日韩精品| 熟女少妇亚洲综合色aaa.| 少妇粗大呻吟视频| av在线天堂中文字幕| 少妇的丰满在线观看| 免费无遮挡裸体视频| 亚洲精品美女久久av网站| 午夜老司机福利片| 国产乱人伦免费视频| 在线天堂中文资源库| e午夜精品久久久久久久| 激情在线观看视频在线高清| 美女高潮喷水抽搐中文字幕| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| 纯流量卡能插随身wifi吗| 亚洲熟妇熟女久久| 99在线视频只有这里精品首页| 午夜成年电影在线免费观看| 97人妻天天添夜夜摸| 99国产精品免费福利视频| 日本在线视频免费播放| 久久精品国产亚洲av香蕉五月| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| 99在线视频只有这里精品首页| 亚洲熟女毛片儿| 狂野欧美激情性xxxx| 色播在线永久视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美在线一区亚洲| 多毛熟女@视频| 老汉色∧v一级毛片| or卡值多少钱| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲一级av第二区| 国产一区二区三区综合在线观看| 国产区一区二久久| 欧美精品啪啪一区二区三区| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 黄片小视频在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲一区中文字幕在线| 国产高清激情床上av| 在线观看免费日韩欧美大片| 怎么达到女性高潮| 久久人人97超碰香蕉20202| 99国产综合亚洲精品| 人妻久久中文字幕网| 乱人伦中国视频| 18美女黄网站色大片免费观看| 看黄色毛片网站| 亚洲精品美女久久av网站| 淫妇啪啪啪对白视频| 亚洲男人天堂网一区| 两个人看的免费小视频| 岛国视频午夜一区免费看| 久久午夜综合久久蜜桃| 国产精品免费一区二区三区在线| 欧美久久黑人一区二区| АⅤ资源中文在线天堂| 国产精品野战在线观看| 露出奶头的视频| 国产1区2区3区精品| 国产午夜精品久久久久久| 午夜免费鲁丝| 国产黄a三级三级三级人| 国产成人av激情在线播放| 99精品欧美一区二区三区四区| 黄色丝袜av网址大全| 免费av毛片视频| 成人18禁在线播放| 在线免费观看的www视频| 色尼玛亚洲综合影院| 亚洲美女黄片视频| 在线观看免费日韩欧美大片| 国产成+人综合+亚洲专区| 亚洲国产看品久久| 成人手机av| 国产成+人综合+亚洲专区| 久久中文看片网| 国内精品久久久久久久电影| 久久国产精品影院| 欧美日韩乱码在线| 色婷婷久久久亚洲欧美| 亚洲精华国产精华精| 97人妻天天添夜夜摸| 色精品久久人妻99蜜桃| 精品国产亚洲在线| av福利片在线| 亚洲精品一区av在线观看| 日本撒尿小便嘘嘘汇集6| 欧美日本亚洲视频在线播放| 99久久综合精品五月天人人| 久久婷婷人人爽人人干人人爱 | 久久精品国产清高在天天线| 夜夜躁狠狠躁天天躁| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 女性生殖器流出的白浆| 韩国av一区二区三区四区| 丝袜美腿诱惑在线| 在线十欧美十亚洲十日本专区| 日日干狠狠操夜夜爽| 曰老女人黄片| 男人的好看免费观看在线视频 | 欧美不卡视频在线免费观看 | 中文字幕另类日韩欧美亚洲嫩草| 天天一区二区日本电影三级 | 久久久久久免费高清国产稀缺| 真人一进一出gif抽搐免费| 丝袜在线中文字幕| 国产成人av教育| 人人妻人人澡欧美一区二区 | 午夜免费观看网址| 脱女人内裤的视频| 亚洲av电影在线进入| 久久精品亚洲精品国产色婷小说| www.熟女人妻精品国产| 国产免费av片在线观看野外av| 亚洲欧美精品综合久久99| 精品一品国产午夜福利视频| 精品第一国产精品| 久久久久久久午夜电影| 国产免费男女视频| 色精品久久人妻99蜜桃| 亚洲精品中文字幕在线视频| 很黄的视频免费| 波多野结衣av一区二区av| 校园春色视频在线观看| 亚洲,欧美精品.| 欧美最黄视频在线播放免费| 国产av精品麻豆| 天天一区二区日本电影三级 | 午夜视频精品福利| 国产区一区二久久| 国产高清激情床上av| 国产日韩一区二区三区精品不卡| 亚洲精品国产精品久久久不卡| 精品卡一卡二卡四卡免费| 嫩草影院精品99| 波多野结衣巨乳人妻| 啦啦啦 在线观看视频| 亚洲国产中文字幕在线视频| 国产av在哪里看| 青草久久国产| 777久久人妻少妇嫩草av网站| 精品国产乱码久久久久久男人| 99国产精品99久久久久| 十八禁网站免费在线| 成人18禁高潮啪啪吃奶动态图| 一区二区日韩欧美中文字幕| www国产在线视频色| 亚洲 国产 在线| 久久久国产成人免费| 一区二区三区激情视频| 亚洲七黄色美女视频| 咕卡用的链子| 亚洲av日韩精品久久久久久密| 亚洲在线自拍视频| 国产蜜桃级精品一区二区三区| 99久久综合精品五月天人人| 村上凉子中文字幕在线| 久久久久久亚洲精品国产蜜桃av| av欧美777| 精品一区二区三区av网在线观看| 久久久精品欧美日韩精品| 久久久久国产精品人妻aⅴ院| 18美女黄网站色大片免费观看| 麻豆久久精品国产亚洲av| 99久久精品国产亚洲精品| 男女下面进入的视频免费午夜 | 国产99久久九九免费精品| 女生性感内裤真人,穿戴方法视频| 国产在线精品亚洲第一网站| 欧美在线黄色| 久久亚洲真实| √禁漫天堂资源中文www| 精品一品国产午夜福利视频| 亚洲欧美精品综合久久99| 99久久久亚洲精品蜜臀av| 午夜精品久久久久久毛片777| 色哟哟哟哟哟哟| 成人手机av| 女同久久另类99精品国产91| cao死你这个sao货| 免费在线观看视频国产中文字幕亚洲| 久久久精品欧美日韩精品| 日日夜夜操网爽| √禁漫天堂资源中文www| 亚洲美女黄片视频| 精品无人区乱码1区二区| www.自偷自拍.com| 精品熟女少妇八av免费久了| 亚洲成人久久性| 久久久国产成人免费| 成人国产综合亚洲| 亚洲欧美一区二区三区黑人| 咕卡用的链子| or卡值多少钱| 99国产精品99久久久久| 国产一区二区在线av高清观看| 一级毛片女人18水好多| 色综合站精品国产| 亚洲午夜理论影院| 国产精品精品国产色婷婷| 久久精品国产综合久久久| 亚洲人成77777在线视频| 成人永久免费在线观看视频| 最近最新中文字幕大全免费视频| 欧美性长视频在线观看| 欧美成人性av电影在线观看| 老熟妇乱子伦视频在线观看| a级毛片在线看网站| 欧美激情久久久久久爽电影 | 真人做人爱边吃奶动态| 欧美老熟妇乱子伦牲交| 久久热在线av| 99热只有精品国产| 午夜免费鲁丝| 变态另类丝袜制服| 日韩大尺度精品在线看网址 | 亚洲第一电影网av| 国产高清激情床上av| 精品久久蜜臀av无| av中文乱码字幕在线| 欧美丝袜亚洲另类 | av电影中文网址| 久久人妻熟女aⅴ| 一边摸一边抽搐一进一出视频| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| 国产一卡二卡三卡精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产av在哪里看| 亚洲欧美激情综合另类| 精品久久久久久,| 亚洲avbb在线观看| 1024香蕉在线观看| 中文字幕久久专区| 国产欧美日韩精品亚洲av| 亚洲天堂国产精品一区在线| 深夜精品福利| 精品第一国产精品| 国产精品一区二区三区四区久久 | 制服诱惑二区| 身体一侧抽搐| 99精品久久久久人妻精品| 少妇粗大呻吟视频| 久久这里只有精品19| 乱人伦中国视频| 国产区一区二久久| 中文字幕人成人乱码亚洲影| 免费久久久久久久精品成人欧美视频| 中文字幕人成人乱码亚洲影| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美日韩无卡精品| 精品久久蜜臀av无| 在线观看免费视频网站a站| 成熟少妇高潮喷水视频| 午夜免费成人在线视频| 国产97色在线日韩免费| 国产真人三级小视频在线观看| 亚洲男人的天堂狠狠| 久久中文看片网| 中文字幕久久专区| 欧美日韩中文字幕国产精品一区二区三区 | 成人亚洲精品av一区二区| 宅男免费午夜| 脱女人内裤的视频| 久久久久久国产a免费观看| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 成人欧美大片| 大陆偷拍与自拍| 久久精品亚洲熟妇少妇任你| 一边摸一边抽搐一进一小说| 国产一级毛片七仙女欲春2 | 女人精品久久久久毛片| 在线观看一区二区三区| 最新美女视频免费是黄的| 亚洲av美国av| 黑人欧美特级aaaaaa片| 女生性感内裤真人,穿戴方法视频| 咕卡用的链子| 亚洲黑人精品在线| 夜夜看夜夜爽夜夜摸| 可以在线观看的亚洲视频| 亚洲少妇的诱惑av| 老司机福利观看| 他把我摸到了高潮在线观看| 一级毛片女人18水好多| 国产一区二区三区在线臀色熟女| av电影中文网址| 母亲3免费完整高清在线观看| 亚洲国产高清在线一区二区三 | 精品国产乱码久久久久久男人| 成人国产综合亚洲| 91国产中文字幕| 亚洲精品在线观看二区|