• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber

    2015-03-01 08:07:27JingHongyangTangMengruHanYongdianXuLianyongLiMin

    Jing Hongyang  Tang Mengru  Han Yongdian  Xu Lianyong  Li Min

    (School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China)(Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072, China)

    ?

    Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber

    Jing Hongyang Tang Mengru Han Yongdian Xu Lianyong Li Min

    (School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China)(Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072, China)

    Abstract:In order to improve the absorbing properties of M-type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD), a scanning electronic microscopy (SEM), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.

    Key words:M-type barium ferrite; graphene oxide; composite microwave absorber; magnetic property; microwave absorbing property

    Received 2015-03-20.

    Biography:Jing Hongyang (1966—), male, doctor, professor, hjing@tju.edu.cn.

    Foundation item:The National Natural Science Foundation of China (No.51205282).

    Citation:Jing Hongyang, Tang Mengru, Han Yongdian, et al.Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber[J].Journal of Southeast University (English Edition),2015,31(4):511-515.[doi:10.3969/j.issn.1003-7985.2015.04.014]

    The increase in electromagnetic pollution due to the rapid development of gigahertz (GHz) electronic systems and telecommunications has resulted in a growing interest in electromagnetic absorption technology[1-3]. An ideal electromagnetic wave absorber should exhibit a thin matching thickness, low density, broad bandwidth, and strong electromagnetic absorption[4-6]. Nanostructured ferrite-based materials have attracted considerable attention from scientists and technologists. M-type barium hexagonal ferrites (BaFe12O19), also named magnetoplumbite, are one absorption of the mostly used ferrites with applications in permanent magnets, high density magnetic recording media and millimeter wave devices due to their low cost, suitable saturation magnetization, good chemical stability, high resistivity, high magnetic coercivity, etc[7-8]. However, ferrites, as conventional absorbing materials, have some disadvantages, such as a narrow absorbing band, low efficiency, high density and quality, etc, thus restricting their applications to a certain extent[9-10]. Therefore, it is necessary to synthesize composite microwave absorbing materials for widening the microwave absorbing band, increasing the absorption intensity and decreasing the absorbers’ density.

    To our best knowledge, much research on composite microwave absorbers has been reported. Zhan et al.[11] developed a simple, effective and reproducible solvothermal method for the self-assembly of magnetite nanoparticles along with carbon nanotunes (CNTs), which are believed to have potential applications in the microwave absorbing area. Ghasemi et al.[12] reported that the structural, magnetic, and reflection loss characteristics of barium ferrite/functionalized multi-walled carbon nanotube nanocomposites were evaluated. Wang et al.[13] also reported that SrFe12O19/multi-walled carbon nanotube composite exhibits good absorbing performance at a lower frequency (0 to 6 GHz) with good electromagnetic properties. Previous reports demonstrated that the composites of CNTs and magnetic materials would exhibit excellent microwave absorbing properties. Therefore, as a kind of new carbon material, graphene oxide may also be a potential microwave absorbing material similar to CNTs[14-16]. Wang et al.[17]found that the chemically reduced grapheme oxide shows enhanced microwave absorption compared with graphite and carbon nanotubes, and can be expected to display better absorption than high quality graphene, exhibiting a promising prospect as a microwave absorbing material. He et al.[18] demonstrated a simple and efficient chemical approach to prepare multifunctional nano sheets of grapheme/Fe3O4with scalable, cost-effective, highly reproducible, and well controllable properties.

    However, so far there are few reports on the absorbing properties of ferrite/graphene oxide composites in the field of electromagnetic wave absorbers. In this paper, M-type barium ferrite/graphene oxide composite microwave absorbers are synthesized by the sol-gel auto-combustion method. Then, the effects of doping different amounts of graphene oxide (0%, 3%, 5%, 7%, 9%) into the composites on the crystal structure, surface morphology, magnetic and absorbing properties of composites are investigated.

    1Experimental

    1.1 Sample preparation

    The M-type barium ferrite/graphene oxide composite microwave absorber was prepared by the sol-gel auto-combustion method. Ba(NO3)2and Fe(NO3)3were dissolved in deionized water with a molar ratio of 1∶12.Citric acid was used as a chelating agent to form the homogenous, steady and trans-parent sol solutions. The molar ratio of citric acid to metal nitrates was 2∶1. The graphene oxide was dissolved in alcoholic solution and then mixed homogenously for 1 h using an ultrasonic agitation machine. These three solutions were mixed and the pH value of the solution was adjusted to 7 by adding ammonia solution. The polyethylene glycol (PEG) was added to the mixed solution[19]. Then, the obtained solution was heated at 80 ℃ in a water bath for 4 h to form a sol. The obtained sol solutions were heated at 120 ℃ for 20 h for dehydration. During this process, the sol solutions firstly became viscous gels, and then gels were dried and finally a self-propagating combustion phenomenon was seen. When all the dry gels were completely burnt out, fluffy powders (called precursor powders) were obtained. The precursor powders were then fired at 850 ℃ for 3 h to obtain final prepared powders.

    1.2 Experimental techniques

    The phase structure of samples was examined by X-ray diffraction (XRD), which operates at 40 kV and uses Cu Kα radiation in the sweep range of 20° to 90°. Scanning electronic microscopy (SEM) examinations were performed using a Nova NanoSEM 430 under the accelerating voltage of 0.1 to 30 kV. The magnetic characteristics were measured with a physical properties measurement system (PPMS-9) at the external magnetic field of -2 to 2 T. The complex permeability and permittivity of the composite were measured in the frequency range of 1 to 18 GHz with an HP8722ES vector network analyzer. The sample thickness, test temperature, and environmental humidity are 2 mm, 0 ℃, 0%, respectively. The tangent of dialect, magnetic loss and the reflection loss curves were calculated and discussed.

    2Results and Discussion

    2.1 X-ray diffraction analysis

    Fig.1 shows the XRD patterns of M-type barium ferrite/graphene oxide composite microwave absorber, in which the mass fraction of graphene oxide was 0%, 3%, 5%, 7%, 9%, respectively. M-type barium ferrite phase was found to co-exist with a small amount of Fe2O3phase in all samples. Compared with pure M-type barium ferrite, the M-type barium ferrite doped graphene oxide had more characteristic peaks and the impure phases had stronger intensity. Moreover, the main phase was BaFe12O19and the impure phase was Fe2O3in all the five samples. Therefore, the doped graphene oxide and the amount of doped graphene oxide do not change the kinds of phase structure of the composite absorbing materials, but to some extent, increase the impure phase’s intensity.

    Fig.1 XRD patterns of M-type barium ferrite samples doped different contents of graphene oxide

    2.2 Morphology analysis

    The SEM photographs of M-type barium ferrite/graphene oxide composite microwave absorber, in which the mass fraction of graphene oxide was 0%, 3%, 5%, 7%, 9%, respectively, are shown in Fig.2. It can be observed from Fig.2(a) that the microstructure of pure M-type barium ferrite was irregular flakes, substantially uniform in size and distribution. Although there was a certain degree of agglomeration, agglomeration was not very serious. Figs.2(b) to (e) shows that the microstructures of the composites retained a flake structure, substantially uniform in size and distribution, but the agglomeration phenomenon was more obvious and the sizes of particles were larger compared with Fig.2(a). For M-type barium ferrite doped with 3% grapheme oxide, the agglomeration phenomenon was the lightest and the size was the most uniform. It can be seen that the amount of doped graphene oxide does not change the flake morphology of the composite.

    (a) (b)

    (c) (d)

    (e)Fig.2 SEM photographs of M-type barium ferrite samples doped different contents of graphene oxide. (a) 0%; (b) 3%; (c) 5%; (d) 7%; (e) 9%

    2.3 Magnetic property analysis

    Fig.3 shows the hysteresis loops of M-type barium ferrite doped with different amounts of graphene oxide. Tab.1 shows the magnetic properties of M-type barium ferrite doped with different contents of graphene oxide. It is clearly shown that the saturation magnetization (Ms), residual magnetization (Mr) and coercive force (Hc) decreased compared with pure M-type barium ferrite. The decrease inMs,MrandHccould be most likely due to the existence of graphene oxide, which had no magnetism, reducing the magnetic moment. We can also see that the saturation magnetization, remnant magnetization and coercive force of all samples decreased with the increase in the mass fraction of doped graphene oxide; wherein the coercive force became gradually smaller, indicating that permeability was improved. For M-type barium ferrite doped with 3% grapheme oxide, the saturation magnetization, residual magnetization, and coercive force were 37.32 emu/g, 18.85 emu/g, 2 910 Oe, respectively, indicating that the magnetic property reached the best performance. According to the Stoner-Wohlfarth model,S=Mr/Msgradually deviated away from 0.5 with the increasing mass fraction of doped graphene oxide.

    Fig.3 Hysteresis loops of M-type barium ferrite samples doped different contents of graphene oxide

    Massfractionofgrapheneoxide/%Ms/(emu·g-1)ResidualmagnetizationMr/(emu·g-1)Hc/OeS=Mr/Ms058.0528.9733700.499337.3218.8529100.505531.2215.7720010.505719.929.4218230.473918.777.234540.385

    2.4Analysis of electromagnetic parameters and wave absorbing property

    Electromagnetic parameters (μ′,μ″,ε′,ε″) are the intrinsic features of absorbing materials. The dielectric loss tangent and magnetic loss tangent of the absorber medium are defined as tanδu(μ″/μ′) and tanδε(ε″/ε′), respectively. Figs.4 and 5 show the variations of dielectric loss tangent and magnetic loss tangent versus the frequency of M-type barium ferrite doped with different contents of graphene oxide.

    Fig.4 Dielectric loss tangent of different composites

    Fig.5 Magnetic loss tangent of different composites

    In this case, reflection loss depending on the loss tangent value can be evaluated by[20-21]

    (1)

    whereZinis the normalized input impedance.

    (2)

    whereurandεrare the relative permeability and permittivity, respectively, of the composite medium;cis the velocity of electromagnetic waves in free space;fis the frequency of microwaves;dis the thickness of the absorber.

    According to these equations, using the specific parameters of the composite, the relationship between reflection loss and frequency of the composite of 2 mm and 2 cm thick are obtained and shown in Figs.6 and 7. From Fig.6, the microwave absorbing properties of the samples had consistent trends. The reflection loss value for the sample of 3% graphene oxide gradually decreased in the range of 7 to 16 GHz, and reached minimum (-0.23 dB). From Fig.7, the microwave absorbing properties of the samples also had consistent trends. There were two absorbing peaks which were in the range of 3 to 5 GHz and 11 to 13 GHz, respectively, reaching-1.5 and -3.2 dB. The reflection loss value for the sample of 3% graphene oxide reached minimum (-3.2 dB) at 12 GHz. On the whole,

    Fig.6 Reflection loss of different composites in 2 mm thickness

    Fig.7 Reflection loss of different composites in 2 cm thickness

    the sample of 3% graphene oxide has the best absorbing properties among all the samples.

    Compared Fig.7 with Fig.6, it is found that as the thickness of samples increases, absorbing peaks shift to the left and the absorbing performance is improved significantly. M-type barium ferrite/graphene oxide composite absorbing materials not only widen the microwave absorbing band, but also increase the absorption intensity compared with pure M-type barium ferrite. This is caused by the following reasons: 1) Graphene oxide has a special two-dimensional sheet structure, high electrical and thermal conductivity, large specific surface area, light weight, which are beneficial to the absorption and attenuation of electromagnetic waves. 2) Absorption of electromagnetic waves of ferrite materials and graphene oxide are based on magnetic loss and dielectric loss. This makes the ferrite/graphene oxide composite absorbing materials absorb electromagnetic waves using two absorption mechanics to improve their absorbing properties. 3) The reflection loss of ferrites generally occurs in the lower frequency range (<10 GHz), and the reflection loss of graphene oxide usually occurs in the high frequency range (>10 GHz), so the composite of two materials is also beneficial for widening the band absorption.

    3Conclusion

    M-type barium ferrite/graphene oxide composites have been synthesized using the sol-gel auto-combustion method. The doped graphene oxide did not change the kinds of phase structure and the flake morphology of M-type barium ferrite. Moreover, the magnetic properties of the composite absorbing material decreased with the increase in the amount of graphene oxide added. The absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with M-type barium ferrite, wherein the sample with the content of doped graphene oxide being 3% has the minimum reflectivity in 10 to 18 GHz frequencies, and at 12 GHz, its absorbing properties were increased by 20% compared with the M-type barium ferrite.

    References

    [1]Qi X S, Zhong W, Deng C Y, et al. Large-scale synthesis, electromagnetic and enhanced microwave absorption properties of low helicity carbon nanotubes/Fe nanoparticles hybrid [J].MaterialsLetters, 2013, 107(10):374-377.

    [2]Zhao B, Wang Q L, Zhang C R. Fabrication and electromagnetic characteristics of microwave absorbers containing Li0.35Zn0.3Fe2.35O4 micro-belts and nickel-coated carbon fibers [J].JournalofMagnetism&MagneticMaterials, 2013, 345(8):249-254.

    [3]Ge H L, Chen Q, Wang X Q, et al. The research progress of barium ferrite absorbing materials [J].JournalofChinaJiliangUniversity,2006,17(3):182-187. (in Chinese)

    [4]Li Y, Zhao J L, Han J C, et al. New progress in the preparation process of ferrite powders [J].PowderMetallurgyTechnology, 2000, 18(1): 51-55. (in Chinese)

    [5]Zhu W C, Zhang D S, Pan F. The preparation and the research of dispersion of Zn0.5Ni0.5Fe2O4nano powder materials [J].JournalofSoutheastUniversity:NaturalScienceEdition, 2003, 33(2):241-244. (in Chinese)

    [6]Yang A, Chen Y J, Chen Z H, et al. Magnetic and atomic structure parameters of Sc-doped barium hexagonal ferrites [J].JournalofAppliedPhysics, 2008, 103(7): 07E511.

    [7]Meshram M R, Agrawal N K, Sinha B, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber [J].JournalofMagnetism&MagneticMaterials, 2004, 271(2-3):207-214.

    [8]Ghasemi A, Liu X, Morisako A. Magnetic and microwave absorption properties of BaFe12-x(Mn0.5Cu0.5Zr)x/2O19synthesized by sol-gel processing [J].JournalofMagnetismandMagneticMaterials, 2007, 316(2): e105-e108.

    [9]Huo J, Wang L, Yu H J. Polymeric nanocomposites for electromagnetic wave absorption [J].JournalofMaterialsScience, 2009, 44(15): 3917-3927.

    [10]Bi C, Zhu M F, Zhang Q H, et al. Electromagnetic wave absorption properties of multi-walled carbon nanotubes decorated with La-doped BaTiO3nanocrystals synthesized by a solvothermal method [J].MaterialsChemistry&Physics, 2011, 126(3):596-601.

    [11]Zhan Y Q, Zhao R, Lei Y J, et al. A novel carbon nanotubes/Fe3O4inorganic hybrid material: synthesis, characterization and microwave electromagnetic properties [J].JournalofMagnetismandMagneticMaterials, 2011, 323(7): 1006-1010.

    [12]Ghasemi A, Shirsath S E, Liu X X, et al. Enhanced reflection loss characteristics of substituted barium ferrite/functionalized multi-walled carbon nanotube nanocomposites [J].JournalofAppliedPhysics, 2011, 109(7): 07A507.

    [13]Wang W T, Li Q L, Chang C B. Effect of MWCNTs content on the magnetic and wave absorbing properties of ferrite-MWCNTs composites [J].SyntheticMetals, 2011, 161(1-2): 44-50.

    [14]Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials [J].Small, 2010, 6(6):711-723.

    [15]Zhan Y Q, Meng F B, Lei Y J, et al. One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4hybrid material and its microwave electromagnetic properties [J].MaterialsLetters, 2011, 65(11): 1737-1740.

    [16]Zhang X F, Dong X L, Huang H, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules [J].AppliedPhysicsLetters, 2006, 89(5): 053115-01-053115-03.

    [17]Wang C, Han X J, Xu P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material [J].AppliedPhysicsLetters, 2011, 98(7):072906-01-072906-03.

    [18]He H K, Gao C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4nanoparticles [J].ACSAppliedMaterials&Interfaces, 2010, 2(11): 3201-3210.

    [19]Jing H Y, Ding X, Li M, et al. Process optimization and magnetic properties of M-type barium ferrite [J].JournalofTianjinUniversity:ScienceandTechnology, 2014, 47(7): 641-646. (in Chinese)

    [20]Che R, Peng L M, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes [J].AdvancedMaterials, 2004, 16(5): 401-405.

    [21]Xu P, Han X J, Wang C, et al. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole [J].TheJournalofPhysicalChemistryB, 2008, 112(10): 2775-2781.

    doi:10.3969/j.issn.1003-7985.2015.04.014

    亚洲国产欧美人成| 搡老熟女国产l中国老女人| 国产精品一区二区免费欧美| 欧美精品啪啪一区二区三区| eeuss影院久久| 中文字幕人妻丝袜一区二区| 母亲3免费完整高清在线观看| 亚洲av免费在线观看| 亚洲七黄色美女视频| av女优亚洲男人天堂| 精品人妻一区二区三区麻豆 | 国产伦在线观看视频一区| 色哟哟哟哟哟哟| 亚洲激情在线av| 天天添夜夜摸| 成人性生交大片免费视频hd| 国产精品野战在线观看| 国产视频一区二区在线看| 午夜影院日韩av| 亚洲精品粉嫩美女一区| 真人一进一出gif抽搐免费| 在线播放国产精品三级| 色老头精品视频在线观看| 国产av在哪里看| 免费高清视频大片| 久99久视频精品免费| 国产成人a区在线观看| 国产黄片美女视频| 亚洲美女视频黄频| 中国美女看黄片| 特大巨黑吊av在线直播| 老熟妇乱子伦视频在线观看| eeuss影院久久| 在线观看美女被高潮喷水网站 | 日本 欧美在线| 国产亚洲欧美98| 精品久久久久久久人妻蜜臀av| 老司机在亚洲福利影院| 草草在线视频免费看| 91在线精品国自产拍蜜月 | 亚洲欧美日韩无卡精品| а√天堂www在线а√下载| 最新在线观看一区二区三区| 搞女人的毛片| 亚洲美女黄片视频| 亚洲欧美日韩卡通动漫| 国内久久婷婷六月综合欲色啪| 无限看片的www在线观看| 又粗又爽又猛毛片免费看| 亚洲精品美女久久久久99蜜臀| 一个人观看的视频www高清免费观看| 一级作爱视频免费观看| 免费观看精品视频网站| 日韩欧美国产一区二区入口| 色综合站精品国产| 亚洲成人久久爱视频| 免费人成在线观看视频色| 国产99白浆流出| 国产精品,欧美在线| 久久天躁狠狠躁夜夜2o2o| 成熟少妇高潮喷水视频| 一个人看的www免费观看视频| 2021天堂中文幕一二区在线观| 天堂动漫精品| 日本一二三区视频观看| 亚洲在线观看片| 中文亚洲av片在线观看爽| 国产精品一及| 好男人在线观看高清免费视频| 色尼玛亚洲综合影院| 白带黄色成豆腐渣| 精品国产美女av久久久久小说| 香蕉丝袜av| 在线看三级毛片| 91在线观看av| 欧美av亚洲av综合av国产av| 日韩av在线大香蕉| 日韩欧美在线二视频| 激情在线观看视频在线高清| 一进一出好大好爽视频| 亚洲欧美日韩高清专用| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 露出奶头的视频| 最新中文字幕久久久久| 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 99久久九九国产精品国产免费| 亚洲国产精品sss在线观看| 亚洲性夜色夜夜综合| 黄色片一级片一级黄色片| 中文字幕av在线有码专区| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| xxxwww97欧美| 久久精品国产亚洲av涩爱 | 长腿黑丝高跟| 在线免费观看不下载黄p国产 | 亚洲第一电影网av| 人妻夜夜爽99麻豆av| 国产成人福利小说| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 精品人妻1区二区| 乱人视频在线观看| 欧美极品一区二区三区四区| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 午夜免费激情av| 国产 一区 欧美 日韩| 国产视频一区二区在线看| 最新中文字幕久久久久| tocl精华| 午夜精品一区二区三区免费看| 国产视频一区二区在线看| 黄片小视频在线播放| 亚洲最大成人手机在线| 国产伦精品一区二区三区四那| 免费av不卡在线播放| 日韩欧美一区二区三区在线观看| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 国产三级中文精品| 免费大片18禁| 国产又黄又爽又无遮挡在线| 人人妻,人人澡人人爽秒播| 国内毛片毛片毛片毛片毛片| 在线播放国产精品三级| 男人舔奶头视频| 国产精品精品国产色婷婷| 桃色一区二区三区在线观看| 757午夜福利合集在线观看| avwww免费| a在线观看视频网站| 国内精品久久久久精免费| 免费在线观看影片大全网站| 香蕉丝袜av| 亚洲人成网站在线播| 老熟妇乱子伦视频在线观看| 老汉色av国产亚洲站长工具| 又爽又黄无遮挡网站| 欧美日韩精品网址| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 国产午夜精品论理片| 日本 av在线| 日本一二三区视频观看| 国产伦在线观看视频一区| avwww免费| 男人的好看免费观看在线视频| 亚洲欧美激情综合另类| 麻豆成人av在线观看| АⅤ资源中文在线天堂| 狂野欧美激情性xxxx| 国语自产精品视频在线第100页| 色噜噜av男人的天堂激情| 一区二区三区免费毛片| 丁香六月欧美| 欧美在线黄色| 午夜免费激情av| 国产伦精品一区二区三区四那| 日本免费一区二区三区高清不卡| 国产精品精品国产色婷婷| 成人亚洲精品av一区二区| 亚洲av二区三区四区| 男女床上黄色一级片免费看| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 琪琪午夜伦伦电影理论片6080| 在线免费观看不下载黄p国产 | 精品久久久久久成人av| 在线观看av片永久免费下载| 色播亚洲综合网| 亚洲在线观看片| 男女午夜视频在线观看| 午夜老司机福利剧场| 可以在线观看毛片的网站| 少妇人妻一区二区三区视频| av女优亚洲男人天堂| 一个人看视频在线观看www免费 | 在线播放无遮挡| 国产精品香港三级国产av潘金莲| 真人一进一出gif抽搐免费| 好看av亚洲va欧美ⅴa在| 国产免费av片在线观看野外av| 成年人黄色毛片网站| 免费av观看视频| 国内揄拍国产精品人妻在线| 97超级碰碰碰精品色视频在线观看| 熟妇人妻久久中文字幕3abv| 女生性感内裤真人,穿戴方法视频| 最近在线观看免费完整版| 欧美+日韩+精品| 18禁国产床啪视频网站| 非洲黑人性xxxx精品又粗又长| 久久精品国产亚洲av涩爱 | 久久久久国内视频| 国产亚洲精品av在线| 国内揄拍国产精品人妻在线| 欧美日韩福利视频一区二区| 手机成人av网站| 十八禁网站免费在线| 欧美中文日本在线观看视频| 欧美一区二区精品小视频在线| 欧美性猛交╳xxx乱大交人| 欧美大码av| 男人舔奶头视频| 亚洲精华国产精华精| 天堂av国产一区二区熟女人妻| 午夜福利在线在线| 性色avwww在线观看| 亚洲午夜理论影院| 男女床上黄色一级片免费看| 老司机福利观看| 悠悠久久av| 男女之事视频高清在线观看| 亚洲国产精品久久男人天堂| 国产真实伦视频高清在线观看 | 看片在线看免费视频| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 怎么达到女性高潮| 久久99热这里只有精品18| bbb黄色大片| 欧美日韩精品网址| 国产黄色小视频在线观看| 国产高清三级在线| 热99在线观看视频| 亚洲一区高清亚洲精品| 97碰自拍视频| 久9热在线精品视频| 国内精品一区二区在线观看| 国产精品自产拍在线观看55亚洲| 国产精品一区二区免费欧美| eeuss影院久久| 可以在线观看的亚洲视频| 国产精品1区2区在线观看.| 九色成人免费人妻av| 欧美成人免费av一区二区三区| 老司机午夜福利在线观看视频| 一本综合久久免费| 国产成人福利小说| 久久九九热精品免费| 一本精品99久久精品77| 午夜福利在线观看免费完整高清在 | 国产亚洲av嫩草精品影院| 国产成人啪精品午夜网站| 日韩精品中文字幕看吧| 亚洲国产欧美人成| 一级黄片播放器| 波多野结衣巨乳人妻| 国产欧美日韩一区二区三| 午夜免费激情av| 在线十欧美十亚洲十日本专区| 国产野战对白在线观看| 18禁美女被吸乳视频| 人妻丰满熟妇av一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产老妇女一区| 亚洲熟妇中文字幕五十中出| 国产欧美日韩一区二区精品| 亚洲国产精品合色在线| 丰满人妻一区二区三区视频av | 天堂网av新在线| 悠悠久久av| 欧美成人a在线观看| 一级毛片女人18水好多| 日本五十路高清| 真人一进一出gif抽搐免费| 美女被艹到高潮喷水动态| 国产精品影院久久| 欧美乱妇无乱码| 国内精品久久久久精免费| 久久精品国产亚洲av香蕉五月| 色播亚洲综合网| 亚洲无线观看免费| 丰满人妻一区二区三区视频av | 一级毛片高清免费大全| 美女高潮喷水抽搐中文字幕| 成人性生交大片免费视频hd| av在线蜜桃| 国模一区二区三区四区视频| 精品久久久久久久人妻蜜臀av| 草草在线视频免费看| www.www免费av| 亚洲va日本ⅴa欧美va伊人久久| 99热只有精品国产| 国产亚洲欧美98| ponron亚洲| 俄罗斯特黄特色一大片| a级一级毛片免费在线观看| 国产精品一及| 欧美中文日本在线观看视频| 最好的美女福利视频网| 色精品久久人妻99蜜桃| 亚洲av五月六月丁香网| 69人妻影院| 级片在线观看| 丰满的人妻完整版| 国内精品久久久久久久电影| 亚洲专区中文字幕在线| 国产真实乱freesex| 特级一级黄色大片| 18禁在线播放成人免费| 国产欧美日韩精品一区二区| 97人妻精品一区二区三区麻豆| 免费看十八禁软件| 久久精品国产综合久久久| 免费高清视频大片| 十八禁人妻一区二区| 手机成人av网站| 精品免费久久久久久久清纯| 人妻丰满熟妇av一区二区三区| 少妇丰满av| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 亚洲av熟女| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 少妇的丰满在线观看| 日韩欧美国产一区二区入口| 欧美性猛交╳xxx乱大交人| 黄色丝袜av网址大全| eeuss影院久久| 最近在线观看免费完整版| 亚洲 欧美 日韩 在线 免费| 亚洲av第一区精品v没综合| 91九色精品人成在线观看| 他把我摸到了高潮在线观看| 国产成人av教育| 三级国产精品欧美在线观看| 免费大片18禁| 国产色爽女视频免费观看| 国产高清视频在线播放一区| av女优亚洲男人天堂| 一区二区三区激情视频| а√天堂www在线а√下载| 搡老熟女国产l中国老女人| 亚洲激情在线av| x7x7x7水蜜桃| 悠悠久久av| 制服丝袜大香蕉在线| 国产亚洲精品一区二区www| 亚洲美女黄片视频| 中出人妻视频一区二区| 久久久久久九九精品二区国产| 69人妻影院| 搞女人的毛片| 成年女人永久免费观看视频| 午夜日韩欧美国产| 一个人免费在线观看的高清视频| 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 日本 欧美在线| 老司机在亚洲福利影院| 欧美在线一区亚洲| 一级毛片高清免费大全| 久久久精品欧美日韩精品| 色av中文字幕| 久久99热这里只有精品18| 亚洲国产精品久久男人天堂| 国产av在哪里看| 亚洲欧美激情综合另类| 精品一区二区三区人妻视频| tocl精华| 欧美日韩瑟瑟在线播放| 最近最新中文字幕大全免费视频| 国产高清三级在线| 午夜a级毛片| 成人亚洲精品av一区二区| 精品人妻偷拍中文字幕| 51国产日韩欧美| 欧美日韩精品网址| 亚洲黑人精品在线| 欧美高清成人免费视频www| 国产精品香港三级国产av潘金莲| 特大巨黑吊av在线直播| 日韩欧美国产一区二区入口| 狂野欧美白嫩少妇大欣赏| 国内少妇人妻偷人精品xxx网站| 国产亚洲精品久久久com| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 亚洲av不卡在线观看| 国产一区在线观看成人免费| 亚洲精品456在线播放app | 免费搜索国产男女视频| 老司机在亚洲福利影院| 亚洲无线在线观看| 国产伦在线观看视频一区| 俄罗斯特黄特色一大片| 在线国产一区二区在线| 久久久精品欧美日韩精品| 黄色丝袜av网址大全| 宅男免费午夜| 中文字幕人妻熟人妻熟丝袜美 | 亚洲一区高清亚洲精品| 精品久久久久久,| 免费看十八禁软件| 国产极品精品免费视频能看的| 一区二区三区免费毛片| 婷婷亚洲欧美| 一区二区三区免费毛片| 成人永久免费在线观看视频| 久久6这里有精品| 亚洲va日本ⅴa欧美va伊人久久| 美女高潮喷水抽搐中文字幕| 啦啦啦韩国在线观看视频| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久,| 精品午夜福利视频在线观看一区| 亚洲精品日韩av片在线观看 | 国语自产精品视频在线第100页| 欧美激情在线99| 黄色成人免费大全| 桃红色精品国产亚洲av| 欧美色欧美亚洲另类二区| 亚洲精品在线观看二区| 婷婷丁香在线五月| 午夜免费观看网址| 国产激情欧美一区二区| 国产精品女同一区二区软件 | 国产中年淑女户外野战色| 国产精品影院久久| 99久国产av精品| 亚洲美女视频黄频| 亚洲在线自拍视频| a级毛片a级免费在线| 好看av亚洲va欧美ⅴa在| 岛国视频午夜一区免费看| 国产色婷婷99| 亚洲精品国产精品久久久不卡| 狂野欧美激情性xxxx| 最新中文字幕久久久久| 久久人妻av系列| 亚洲片人在线观看| 淫妇啪啪啪对白视频| 亚洲精品粉嫩美女一区| 99热这里只有是精品50| 成人特级av手机在线观看| 久久精品亚洲精品国产色婷小说| 麻豆国产97在线/欧美| 在线播放无遮挡| 两个人视频免费观看高清| 欧美日本视频| 久久6这里有精品| a级一级毛片免费在线观看| 欧美日本亚洲视频在线播放| 成人av在线播放网站| 99久久久亚洲精品蜜臀av| 国产成人影院久久av| 麻豆久久精品国产亚洲av| 18美女黄网站色大片免费观看| 黄色日韩在线| 欧美黑人巨大hd| 成人午夜高清在线视频| 精品一区二区三区av网在线观看| 18禁黄网站禁片免费观看直播| 久久精品国产99精品国产亚洲性色| 一进一出抽搐gif免费好疼| 免费搜索国产男女视频| 国产一级毛片七仙女欲春2| 亚洲七黄色美女视频| 麻豆成人av在线观看| 精品欧美国产一区二区三| 午夜免费成人在线视频| 亚洲精品乱码久久久v下载方式 | svipshipincom国产片| 免费av毛片视频| 亚洲在线观看片| 国产99白浆流出| 国内精品久久久久久久电影| 一区福利在线观看| 亚洲avbb在线观看| 长腿黑丝高跟| 一个人看视频在线观看www免费 | 欧美日韩国产亚洲二区| 综合色av麻豆| 少妇高潮的动态图| 国产高清有码在线观看视频| 国产熟女xx| 成年女人永久免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久人人做人人爽| 欧美另类亚洲清纯唯美| 亚洲精品一区av在线观看| 国产精品久久久久久久久免 | 亚洲国产日韩欧美精品在线观看 | 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| 国产av麻豆久久久久久久| 国产高清视频在线观看网站| 欧美+日韩+精品| 一边摸一边抽搐一进一小说| 国产精品98久久久久久宅男小说| 18美女黄网站色大片免费观看| 精品国产超薄肉色丝袜足j| 午夜福利在线观看吧| 每晚都被弄得嗷嗷叫到高潮| av片东京热男人的天堂| 午夜福利18| 久久久久精品国产欧美久久久| 亚洲av美国av| 99久久成人亚洲精品观看| 色综合亚洲欧美另类图片| 亚洲人与动物交配视频| 亚洲精品亚洲一区二区| 国产成人av教育| 又紧又爽又黄一区二区| 午夜老司机福利剧场| 国产伦一二天堂av在线观看| 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 精品久久久久久,| 国产又黄又爽又无遮挡在线| 久久中文看片网| 亚洲国产日韩欧美精品在线观看 | 韩国av一区二区三区四区| 免费人成视频x8x8入口观看| 国产精品国产高清国产av| 国产精品嫩草影院av在线观看 | 久久久久久久精品吃奶| 婷婷亚洲欧美| 国产成人aa在线观看| 日韩 欧美 亚洲 中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产蜜桃级精品一区二区三区| 国产 一区 欧美 日韩| 精品乱码久久久久久99久播| 国产亚洲精品一区二区www| 十八禁人妻一区二区| av天堂在线播放| 97超级碰碰碰精品色视频在线观看| 少妇人妻一区二区三区视频| 亚洲av成人精品一区久久| 免费高清视频大片| 国产精品国产高清国产av| 在线观看日韩欧美| 亚洲成人久久性| 很黄的视频免费| 亚洲真实伦在线观看| 一本一本综合久久| 国产乱人视频| 色播亚洲综合网| 午夜福利高清视频| 很黄的视频免费| 91av网一区二区| 女警被强在线播放| 日韩精品青青久久久久久| 色精品久久人妻99蜜桃| 老熟妇乱子伦视频在线观看| 九色成人免费人妻av| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美精品综合久久99| 亚洲精品日韩av片在线观看 | 少妇裸体淫交视频免费看高清| 看黄色毛片网站| 久久久久久久久久黄片| 最近最新中文字幕大全电影3| 精品人妻偷拍中文字幕| 嫩草影院入口| 国产老妇女一区| 女人十人毛片免费观看3o分钟| 国产成+人综合+亚洲专区| 亚洲熟妇熟女久久| 天堂av国产一区二区熟女人妻| 99精品欧美一区二区三区四区| 91在线观看av| 我要搜黄色片| 国产高清视频在线播放一区| 亚洲人成伊人成综合网2020| 少妇丰满av| 日韩欧美在线乱码| 俄罗斯特黄特色一大片| 一个人看的www免费观看视频| 男人的好看免费观看在线视频| 欧美日韩精品网址| 很黄的视频免费| 亚洲av美国av| 成人高潮视频无遮挡免费网站| 69人妻影院| 亚洲 国产 在线| 精品人妻一区二区三区麻豆 | 亚洲精品色激情综合| 国产成人影院久久av| 日本黄色视频三级网站网址| 51国产日韩欧美| 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| 一二三四社区在线视频社区8| netflix在线观看网站| 香蕉丝袜av| 少妇高潮的动态图| 国产日本99.免费观看| 3wmmmm亚洲av在线观看| 午夜视频国产福利| 母亲3免费完整高清在线观看| 亚洲在线观看片| 一个人观看的视频www高清免费观看| 真实男女啪啪啪动态图| 亚洲性夜色夜夜综合| 色哟哟哟哟哟哟| 88av欧美| 人人妻人人看人人澡| 亚洲成av人片免费观看| eeuss影院久久| 成人18禁在线播放| 午夜亚洲福利在线播放| 身体一侧抽搐| 亚洲精品乱码久久久v下载方式 | 非洲黑人性xxxx精品又粗又长| 搡女人真爽免费视频火全软件 | 午夜福利在线观看吧|