• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE

    2015-03-01 09:21:45WangSiqiHuangXiaomingMaTaoZhuTanyongTangTaoLiuWanchen

    Wang Siqi  Huang Xiaoming  Ma Tao  Zhu Tanyong  Tang Tao  Liu Wanchen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    ?

    Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE

    Wang Siqi Huang Xiaoming Ma Tao Zhu Tanyong Tang Tao Liu Wanchen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    Abstract:In order to compare the impact of thickness of different layers on fatigue lives of different semi-rigid asphalt pavement structures, the mechanical results from finite element models in ABAQUS are incorporated with the fatigue results from fatigue models in FE-SAFE to calculate the mechanical response and fatigue lives of semi-rigid pavement structures under heavy traffic loads. Then the influences on fatigue lives caused by the changes in the thickness of layers in pavement structures are also evaluated. The numerical simulation results show that the aggregated base and the large stone porous mixture (LSPM) base have better anti-cracking performance than the conventional semi-rigid base. The appropriate thickness range for the aggregated layer in the aggregated base is 15 to 18 cm. The thickness of the LSPM layer in the LSPM base is recommended to be less than 15 cm.

    Key words:conventional semi-rigid base; aggregated base; large stone porous mixture; reflective cracking; fatigue life; numerical simulation

    Received 2015-06-23.

    Biographies:Wang Siqi (1991—), male, graduate; Huang Xiaoming(corresponding author), male, doctor, professor, huangxm@seu.edu.cn.

    Foundation item:The National Natural Science Foundation of China (No.51378121).

    Citation:Wang Siqi, Huang Xiaoming, Ma Tao, et al.Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE[J].Journal of Southeast University (English Edition),2015,31(4):541-546.[doi:10.3969/j.issn.1003-7985.2015.04.019]

    Asphalt pavement structures with semi-rigid bases are vulnerable to reflective cracking and fatigue. It is necessary to investigate the propagation of reflective cracking in pavement structures, and the use of numerical simulating methods is proved to be valid. Predictions of the fatigue behavior under repeated uniaxial loading were conducted by coupling the viscoelastic continuum damage mechanics (VCDM) model with numerical models built in ABAQUS[1-2]. Three-dimensional finite element models were also utilized to confirm that the interlayer systems were effective in abating reflective cracking[3]. In China, in order to deal with the complex weather conditions and heavy loads, three types of semi-rigid asphalt pavement structures were utilized. The conventional semi-rigid base using stabilized materials was widely used due to its excellent anti-rutting performance and low-cost properties[4]. The stabilized materials in the conventional semi-rigid base were usually lime ash aggregate (LAA), lime ash soil (LAS) and cement treated base (CTB)[5]. The shrinkage and temperature contraction of LAA and LAS in this type of base limited their utilization[6]. Compared with LAA and LAS, CTB was a more stable alternative, but the stiffness, water content and cement content needed to be carefully calculated[7-8]. Wang et al.[9-10]made a new type of aggregated base by placing graded stones as a layer between the surface layer and the semi-rigid base. It is confirmed that by adding the graded stone layer, the distribution of stress in the aggregated base is changed, and therefore the anti-cracking property of the semi-rigid pavement structure is increased. Another method was introduced to modify the stabilized material base by placing the large stone porous mixture (LSPM) layer between the surface layer and the semi-rigid base. Guo[11]developed finite element models by using ANSYS to confirm that an appropriate choice of gradation when using open-graded large stone asphalt mixes (which was similar to LSPM) can dramatically enhance the anti-cracking performance of semi-rigid pavement structures.

    Unfortunately, the relationship between the thickness of layers and fatigue lives of pavement structures remains unclear, especially in those with an aggregated base or LSPM base. Field tests proved that the thickness of overlay mixtures is the major factor that influences the anti-cracking performance of asphalt overlays[12]. According to indoor experimental results[13], the reasonable thickness of stress absorbing layers (SAL) was 2 to 3 cm. However, the SAL only consisted of rock chips, sand and polymer modified asphalt. Wei[14]claimed that the bearing capacity and reflective-cracking resistance of the pavement structure cannot increase infinitely when increasing the thickness of graded stones layer. Wu[15]performed orthogonal tests and indicated that the thickness of the asphalt treated base in the semi-rigid base is crucial in resisting reflective cracking, but the suitable thickness needed to be carefully determined. Li[16]established finite element models and found that the position of layers, the frictional contact conditions and the thickness of layers were the most contributing parameters affecting the fatigue life of the whole semi-rigid pavement structure.

    This paper aims to analyze the impact of thickness of layers on the fatigue lives of different semi-rigid asphalt pavement structures by developing finite element models using ABAQUS and fatigue models using FE-SAFE (an accessory of ANSYS). Three semi-rigid pavement structures are the conventional semi-rigid base, aggregated base and LSPM base. ABAQUS models are first used to calculate the mechanical responses under heavy traffic loads. Then the output results of ABAQUS models are incorporated into FE-SAFE to simulate the fatigue performance of pavement structures. The fatigue lives of three pavement structures are also calculated. Finally, the influences on fatigue lives caused by the changes of the thickness of layers in pavement structures are evaluated.

    1Establishment of ABAQUS and FE-SAFE Models for Three Structures

    Three semi-rigid pavement structures are shown in Tab.1. Structure 1 represents the conventional semi-rigid pavement structure. Structure 2 represents the pavement structure using the aggregated base by placing the aggregated layer between the surface asphalt layer and the semi-rigid base. Structure 3 represents the pavement structure using the LSPM base by placing the LSPM layer between the surface asphalt layer and the semi-rigid base.

    Tab.1 Typical pavement structures

    Notes: SMA—stone matrix asphalt; AC—asphalt concrete; GM—graded materials or graded stones.

    When defining boundary conditions, the bottom of the model was set to be completely constrained, and both sides were symmetrically constrained in the horizontal direction. The tire pressure was distributed in rectangular instead of circle. Each rectangular was 0.213 m×0.167 m in size to make sure that the loading contact patch was equal to the circular one. According to the static equivalent principle, the standard axle loading was converted to uniformly distributed pressureP(0.117 MPa) based on plane models in elasticity.

    The layer-divided model without remeshing[17]was developed to simulate the development of reflective cracking in each layer. This model was based on the following assumptions: 1) Reflective cracking developed from bottom to top; 2) Only the fatigue caused by symmetric loads was considered; and 3) The fatigue life of the whole structure was the sum of the fatigue life of each layer.

    The procedures of building a ABAQUS model for Structure 1 are given as follows: First, the model for completed sub-base using LAS was built and the fatigue life was calculated as shown in Fig.1(a); the fatigue life of the CTB layer was calculated using LAS layer with transverse crack; while the fatigue life of AC-25 was calculated using LAS and CTB layer with transverse crack; the sub-surface layer AC-20 was calculated by the model of LAS, CTB and AC-25 with transverse crack; and the fatigue life of the surface layer SMA-13 was calculated by the model of LAS, CTB, AC-20 and AC-25 with transverse crack, as shown in Fig.1(b). The ABAQUS models for Structure 2 and Structure 3 were built using the same procedures.

    (a)

    (c)Fig.1 Procedures of building ABAQUS model for Structure 1. (a) Calculation of the fatigue life of LAS; (b) Calculation of the fatigue life of SMA-13

    Then the results of ABAQUS were transferred into FE-SAFE for fatigue simulations. The SMA-13, AC-20, AC-25, CTB and LAS were put into the analysis group in FE-SAFE. Note that the GM in Structure 2 was removed from the analysis group because it had no contributions in the fatigue lives of pavement structures. In order to simulate the transition of stress at the center of the surface of the pavement, the loading pressure was transferred based on the following equation:

    P(t)=sin(10πt)0

    (1)

    where the amplitude is 1; the phase angle is -π/2; and the frequency is 10 Hz.

    After defining the properties of materials and the loading pressure in FE-SAFE, the calculations were operated in FE-SAFE to simulate the fatigue performance of pavement structures. Then the fatigue results in FE-SAFE were inputted into ABAQUS to obtain the isotherm graphs (see Fig.2(a)). In order to calculate the fatigue life of each layer, the ABAQUS models were separated along the centerline, as shown in Fig.2(b). Mark points were set in the center of each layer. Assume that the fatigue life of one particular mark point wasPk, then the elastic stress of this mark point can be calculated by

    (2)

    whereSPEandPFEare set by FE-SAFE according to the mechanical properties of materials in each layer. Then the fatigue life of each layer was calculated by repeating cycles under pressure defined previously according to the Miner theory. Finally, the logarithmic fatigue life of each layer from bottom to top was collected by calculating these mark points. This method was proved to be valid and had good correlations with indoor fatigue test results[18].

    (a)

    (c)Fig.2 Isotherm graphs from ABAQUS. (a) Before the separation of the model; (b) After the separation of the model

    2Comparisons of Fatigue Lives among Three Pavement Structures

    The results of fatigue life from the FE-SAFE model are shown in Tab.2, Tab.3 and Tab.4.

    Tab.2 Fatigue life of each layer in Structure 1

    Tab.3 Fatigue life of each layer in Structure 2

    Tab.4 Fatigue life of each layer in Structure 3

    From Tabs.2 to 4, it can be seen that in the semi-rigid pavement structures, the proportions in fatigue life of each structure can be considered as the loading times of the reflective cracking in this layer. Considering the fact that the surface asphalt layer has better anti-cracking performance than other layers, if the surface asphalt layer has a large proportion in the fatigue life, the whole semi-rigid pavement structure can have better anti-cracking performance. The surface asphalt layer has the least proportion in the fatigue life in Structure 1 (57.75%) compared with Structure 3 (69.8%) and Structure 2 (71.77%), which means that the use of the outstanding anti-cracking performance of the surface asphalt layer is not fully developed in Structure 1.

    Tab.3 shows that the existence of the GM layer changes the proportions of the fatigue life of Structure 2 dramatically. The proportion of the fatigue life of ATB is 34.48% in Structure 2. It is confirmed that the ATB layer combined with the GM layer is beneficial in resisting reflective cracking in Structure 2.

    Tab.4 shows that even though the proportion of the LSPM layer in Structure 3 is only 0.4%, it leads to the increase in the proportions of the fatigue life of the surface asphalt layer (SMA-13, AC-20 and AC-25) (69.39%) compared with that of Structure 2 (36.69%). This means that the utilization of the LSPM layer can make good use of anti-cracking performance of the surface asphalt layer in Structure 3.

    From Tabs.2 to 4, it can also be seen that Structure 1 has the largest thickness (74 cm) with the shortest fatigue life (1 322 034), while Structure 3 has the smallest thickness (68 cm) with the longest fatigue life (2 958 627). It can be concluded that the aggregated base (Structure 2) and the LSPM base (Structure 3) are more effective in resisting reflective cracking than the conventional semi-rigid base (Structure 1). Different combinations of layers such as the aggregated base and the LSPM have positive effects on prolonging the fatigue life if the thickness of these layers are determined carefully.

    3Effects of Layer Thickness on Fatigue Life of Three Pavement Structures

    Since the thickness of stress absorbing layers (SAL) is crucial in designing pavement structures to resist reflective cracking[13], it is necessary to investigate the effects of layer thickness on fatigue lives of three pavement structures. Wang[19]built a ABAQUS model and suggested that when the crushed stone base has a thickness in the range of 15 to 25 cm, the pavement structure has an outstanding anti-cracking performance. Zhang et al.[20]conducted simulations and field tests on anti-cracking performance of interface self absorbing composite (ISAC) and found that the ISAC can dissipate reflective cracking efficiently in a pavement structure.

    In this section, the thickness of each layer in the ABAQUS model was changed while performing calculations of the fatigue life of each layer in three pavement structures. The fatigue lives with respect to the thickness of each layer were given to determine the appropriate thickness when designing pavement structures.

    3.1 Effects of thickness of layers on fatigue life of Structure 1

    The effects of thickness of the surface layer and base on the fatigue life of Structure 1 are shown in Fig.3 and Fig.4, respectively.

    Fig.3 Correlation between thickness of surface layer and fatigue life

    Fig.4 Correlation between thickness of base and fatigue life

    Fig.4 shows that the fatigue life of Structure 1 increases as the thickness of semi-rigid base increases. However, if the thickness reaches 36 to 38 cm, the fatigue life decreases slightly as the thickness keeps increasing. This means that the increase in the thickness of the semi-rigid base cannot guarantee the increase of fatigue life in Structure 1. When the semi-rigid base is thin, the main stress in the base is tensile stress. However, the compressive stress starts to appear if the thickness goes beyond a threshold (36 cm in this case), and the stabilized materials in the semi-rigid base become unstable, begin to squeeze each other and change the mechanical property of the whole base. This process definitely sabotages the anti-cracking performance of the semi-rigid base.

    Meanwhile, the fatigue life increases steadily as the surface asphalt layer becomes thicker (see Fig.3). According to previous studies[21], the reflective cracking can be well mitigated by increasing the thickness of the surface asphalt layer. The surface asphalt layer has good anti-cracking performance.

    3.2 Effects of thickness of layers on fatigue life of Structure 2

    The effects of thickness of ATB and the GM layer on the fatigue life of Structure 2 are shown in Fig.5 and Fig.6, respectively.

    Fig.5 Correlation between thickness of ATB and fatigue life

    Fig.6 Correlation between thickness of GM and fatigue life

    Fig.5 and Fig.6 show clearly that the fatigue life increases when the thickness of the ATB layer increases. They also show that the fatigue life of Structure 2 increases dramatically if the thickness of the GM layer is less than 15 cm. The increase of fatigue life slows down as the thickness reaches 15 to 18 cm. The GM layer is the crucial part in Structure 2. It serves as the stress absorbing layer in this structure. Although it has no contributions in calculations of fatigue, it has an indirect impact on resisting reflective cracking from rapid propagation.

    However, the increase in the thickness of the GM layer can increase the fatigue life of Structure 2, which can lead to large fatigue strain in the ATB layer due to the relatively small modulus of the GM layer. This is the reason why the fatigue life of Structure 2 stops increasing when the thickness range of the GM is 15 to 18 cm. Hence, the recommended thickness for the GM layer is from 15 to 18 cm.

    3.3 Effects of thickness of LSPM on fatigue life of Structure 3

    The effect of thickness of the LSPM layer on fatigue life of Structure 3 is shown in Fig.7.

    Fig.7 Correlation between thickness of LSPM and fatigue life

    It can be seen from Fig.7 that the fatigue life of Structure 3 increases when the thick LSPM layer is utilized. This is similar to the trends of the GM in Structure 2. However, when the thickness of the LSPM reaches 15 cm, the increase of the fatigue life of Structure 3 slows down.

    The LSPM layer is the stress absorbing layer in Structure 3. The relatively low modulus leads to the increase of fatigue lives in other layers which come into contact with the LSPM layer. Even though the contribution of the LSPM layer itself in the fatigue life of Structure 3 is insignificant (0.4%), it results in the dramatic increase in proportions of fatigue lives of the surface asphalt layer (69.39%) and sub-base (LAS) (7.41%) in Structure 3 compared with that in Structure 1 (57.75% and 1.46%, respectively). This phenomenon can be explained in two aspects: as for the whole pavement structure, the compress stress from top to bottom and tensile stress from bottom to top can be disseminated when passing through the LSPM layer, as the GM layer does. As for the stress concentration, the reflective cracking needs more time and path to propagate through the LSPM layer due to the inconsistence at the edge of cracking. This can indirectly prolong the fatigue life of Structure 3.

    Unfortunately, determining the appropriate thickness range of the LSPM still remains unsettled. Although increasing the thickness of the LSPM layer is beneficial for resisting reflective cracking, it leads to the degeneration in anti-rutting performance of pavement structures. It is suggested from Fig.7 that the thickness of the LSPM in Structure 3 should be no more than 15 cm.

    4Conclusions

    1) The finite element models using ABAQUS and the fatigue models using FE-SAFE for three semi-rigid pavement structures are established in this paper. The impacts of the thickness of layers on the fatigue lives of three pavement structures are compared by calculating the fatigue lives by FE-SAFE.

    2) The comparisons of the fatigue lives of three semi-rigid pavement structures suggest that the aggregated base and the LSPM base are more beneficial than the conventional semi-rigid base in resisting reflective cracking if they are properly deployed. The thickness of these layers need to be carefully determined.

    3) The numerical simulation results show that the appropriate thickness range of the aggregated layer in the aggregated base is 15 to 18 cm, while the thickness of the LSPM layer in the LSPM base should be no more than 15 cm.

    References

    [1]Kim Y R, Baek C, Underwood B S, et al. Application of viscoelastic continuum damage model based finite element analysis to predict the fatigue performance of asphalt pavements [J].KSCEJournalofCivilEngineering, 2008, 12(2): 109-120.

    [2]Arshadi A, Bahia H. Coupling of viscoelastic continuum damage mechanics and finite element modeling to predict asphalt mastic fatigue behavior [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2015: 15-3321-1-15-3321-15.

    [3]Baek J, Al-Qadi I L. Finite element modeling of reflective cracking under moving vehicular loading: investigation of the mechanism of reflective cracking in hot-mix asphalt overlays reinforced with interlayer systems[C]//ProceedingsofASCE’s2008AirportandHighwayPavementsConference. Washington, DC, USA, 2008: 74-85.

    [4]Huang X M, Wang S J.Analysistheoryandpracticeofmodernasphaltpavementstructure[M]. Beijing: Science Press, 2013. (in Chinese)

    [5]Chen Z D, Wu J M, Zhang X R, et al. Investigation of the typical structure of trunk road asphalt pavement [J].JournalofHighwayandTransportationResearchandDevelopment, 2001, 18(2): 9-12. (in Chinese)

    [6]Jiang Y H, Huang X M, Liao G Y. Fracture mechanics analysis of pavement structure with a sandwich layer of unbound graded aggregate [J].JournalofHefeiUniversityofTechnology, 2009, 32(4): 511-514. (in Chinese)

    [7]Wang Y, Ni F J, Li Z X. Test and estimate control on temperature shrinkage performance of cement-treated macadam [J].JournalofSoutheastUniversity:NaturalScienceEdition, 2008, 38(2):260-264. (in Chinese)

    [8]Wu P, Houben L J M, Scarpas A, et al. Stiffness modulus and fatigue properties of cement stabilized sand with use of a synthetic modified-zeolite additive [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington DC, USA, 2015:15-2880-1-15-2880-12.

    [9]Wang L, Feng D C. Methods for improving using performance of graded broken stone base [J].ChinaJournalofHighwayandTransport, 2006, 19(4): 40-45. (in Chinese)

    [10]Wang H, Li M Y. Evaluation of flexible pavement performance due to variations in aggregate base layer properties [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2015: 15-4877-1-15-4877-22.

    [11]Guo H B. Research on anti-cracking mechanism of open-graded large stone asphalt mixes of asphalt pavement [D].Xi’an: School of Highway of Chang’an University, 2013. (in Chinese)

    [12]Loria L, Hajj Y E, Sebaaly P E. Assessment of reflective cracking models for asphalt pavements [C]//ProceedingsofRoadPavementandMaterialCharacterization,Modeling,andMaintenance. Changsha, China, 2011:72-79.

    [13]Li Z Z, Chen S F, Cheng Y, et al. Fatigue test of composite pavement on stress absorbing layers for reflective cracking [C]//ThirdInternationalConferenceonTransportationEngineering(ICTE). Chengdu, China, 2011:1390-1395.

    [14]Wei D X. Distress mode and structure optimization of asphalt pavement with semi-rigid base [D]. Xi’an: School of Highway of Chang’an University, 2010. (in Chinese)

    [15]Wu J T. The rational position and thickness of semi-rigid base in asphalt pavement [D]. Xi’an: School of Highway of Chang’an University, 2009. (in Chinese)

    [16]Li H B. Study of asphalt pavement structure based on adaptability of semi-rigid base [D]. Xi’an: School of Highway of Chang’an University, 2010. (in Chinese)

    [17]Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J].InternationalJournalforNumericalMethodsinEngineering, 1999, 46(1):131-150.

    [18]Liu W C. Numerical simulation of fatigue cracks in typical asphalt pavement [D]. Nanjing: School of Transportation of Southeast University, 2014. (in Chinese)

    [19]Wang H C. Research on surface and reflective crack propagation and fatigue life of graded crushed stone based asphalt pavement [C]//Proceedingsof11thInternationalConferenceofChineseTransportationProfessionals(ICCTP). Nanjing, China, 2011:3103-3114.

    [20]Zhang F, Zhang Y H, Qian H T, et al. Analysis and test study on reflective cracking prevention based on interface self-absorbing composite intermediate layer in semi-rigid asphalt pavement [C]//Proceedingsofthe11thInternationalConferenceofChineseTransportationProfessionals(ICCTP). Nanjing, China, 2011:3359-3367.

    [21]Abou-Jaoude G, Ghauch Z. Numerical investigation of design strategies to achieve perpetual pavements [C/D]//TRB91stAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2012:12-1979-1-12-1979-16.

    doi:10.3969/j.issn.1003-7985.2015.04.019

    美女午夜性视频免费| 国产亚洲欧美精品永久| 国产成人av激情在线播放| 日日摸夜夜添夜夜添小说| 国产亚洲精品综合一区在线观看 | 午夜精品久久久久久毛片777| 国产成人精品久久二区二区91| 午夜福利在线观看吧| 精品欧美一区二区三区在线| 色婷婷久久久亚洲欧美| 国产熟女午夜一区二区三区| 久久热在线av| 国产99白浆流出| 国产精品久久久久久精品电影 | 亚洲一区中文字幕在线| 在线观看一区二区三区| 欧美日韩乱码在线| 欧美丝袜亚洲另类 | 99热这里只有精品一区 | 午夜激情福利司机影院| 窝窝影院91人妻| 亚洲电影在线观看av| 国产精品久久久人人做人人爽| 免费观看人在逋| 老司机午夜十八禁免费视频| 中文字幕精品免费在线观看视频| 男女午夜视频在线观看| 欧美性猛交黑人性爽| 男女视频在线观看网站免费 | 搞女人的毛片| 国产一区在线观看成人免费| 国产精品 国内视频| 色综合欧美亚洲国产小说| 中文字幕精品免费在线观看视频| 亚洲精品一区av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品久久久久久毛片777| 91大片在线观看| 在线观看66精品国产| 午夜a级毛片| 国产成人精品久久二区二区91| 免费在线观看成人毛片| 日本熟妇午夜| 草草在线视频免费看| 国产精品久久久久久人妻精品电影| 日本撒尿小便嘘嘘汇集6| 一级毛片高清免费大全| 亚洲精品一区av在线观看| 俄罗斯特黄特色一大片| 亚洲精品国产一区二区精华液| av电影中文网址| 婷婷精品国产亚洲av在线| 欧美性猛交黑人性爽| 亚洲人成伊人成综合网2020| 国产成+人综合+亚洲专区| 亚洲真实伦在线观看| 午夜福利免费观看在线| 久久这里只有精品19| 色综合婷婷激情| 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 老司机午夜十八禁免费视频| 黑人操中国人逼视频| 国产精品久久久久久亚洲av鲁大| 香蕉丝袜av| 国产区一区二久久| 日本熟妇午夜| 免费在线观看完整版高清| 日韩大码丰满熟妇| 国产99久久九九免费精品| 久久婷婷成人综合色麻豆| 中文字幕人妻丝袜一区二区| 久久久国产成人免费| 欧美最黄视频在线播放免费| 99国产极品粉嫩在线观看| 免费高清在线观看日韩| 国产激情久久老熟女| 欧美日韩精品网址| 国产精品久久久人人做人人爽| 男女视频在线观看网站免费 | av免费在线观看网站| 一区二区日韩欧美中文字幕| 一本久久中文字幕| 麻豆一二三区av精品| 自线自在国产av| 国产精品av久久久久免费| 欧美中文日本在线观看视频| 亚洲欧美精品综合一区二区三区| 免费电影在线观看免费观看| 欧美乱妇无乱码| 一级毛片女人18水好多| 国产野战对白在线观看| 免费人成视频x8x8入口观看| 黑人欧美特级aaaaaa片| 日韩欧美国产一区二区入口| 成人午夜高清在线视频 | www.999成人在线观看| 亚洲色图 男人天堂 中文字幕| xxx96com| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| 特大巨黑吊av在线直播 | 久久性视频一级片| 一级毛片精品| 搡老岳熟女国产| 99久久无色码亚洲精品果冻| 脱女人内裤的视频| 国产av在哪里看| 免费女性裸体啪啪无遮挡网站| 99久久精品国产亚洲精品| 国产免费男女视频| 午夜福利一区二区在线看| 又大又爽又粗| 中文字幕高清在线视频| 午夜a级毛片| 18禁裸乳无遮挡免费网站照片 | 99re在线观看精品视频| 禁无遮挡网站| 国产精品亚洲美女久久久| 美女免费视频网站| 给我免费播放毛片高清在线观看| 国产激情偷乱视频一区二区| 美女午夜性视频免费| 精品久久久久久久末码| 国产1区2区3区精品| 欧美日本亚洲视频在线播放| 午夜福利在线观看吧| 欧美一级a爱片免费观看看 | 欧美日韩亚洲综合一区二区三区_| xxxwww97欧美| 亚洲五月色婷婷综合| www.999成人在线观看| 美女 人体艺术 gogo| 欧美乱色亚洲激情| 国产主播在线观看一区二区| 欧美人与性动交α欧美精品济南到| 欧美最黄视频在线播放免费| 日韩精品免费视频一区二区三区| 99riav亚洲国产免费| 人人妻人人看人人澡| 天天躁狠狠躁夜夜躁狠狠躁| 男人的好看免费观看在线视频 | 老司机靠b影院| 一个人免费在线观看的高清视频| 精品久久久久久成人av| 午夜福利高清视频| 精品久久久久久久末码| 99久久99久久久精品蜜桃| 丁香欧美五月| 1024手机看黄色片| 亚洲一区中文字幕在线| 国产三级黄色录像| 婷婷丁香在线五月| 免费在线观看影片大全网站| 欧美成人性av电影在线观看| 亚洲 欧美一区二区三区| 国产男靠女视频免费网站| 亚洲人成77777在线视频| 久久午夜亚洲精品久久| 看片在线看免费视频| 无遮挡黄片免费观看| 色播亚洲综合网| 国产精品一区二区免费欧美| 午夜免费成人在线视频| 国产精品久久视频播放| 黄色毛片三级朝国网站| 国产主播在线观看一区二区| 99热6这里只有精品| 色婷婷久久久亚洲欧美| 波多野结衣高清作品| 成人国语在线视频| 国产一级毛片七仙女欲春2 | www.熟女人妻精品国产| 曰老女人黄片| 在线天堂中文资源库| 在线av久久热| 国产亚洲av高清不卡| 亚洲成av片中文字幕在线观看| 精品熟女少妇八av免费久了| 国产精品98久久久久久宅男小说| 欧美激情极品国产一区二区三区| 亚洲av电影不卡..在线观看| 亚洲专区中文字幕在线| 最近最新免费中文字幕在线| 欧美乱码精品一区二区三区| 久久久久久久久久黄片| 人妻久久中文字幕网| 动漫黄色视频在线观看| 国产精品爽爽va在线观看网站 | 好男人电影高清在线观看| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 国产又色又爽无遮挡免费看| 青草久久国产| 欧美激情久久久久久爽电影| 老汉色av国产亚洲站长工具| svipshipincom国产片| 国产高清视频在线播放一区| 丝袜人妻中文字幕| 99国产精品一区二区三区| 宅男免费午夜| 亚洲欧美精品综合久久99| 成人特级黄色片久久久久久久| 久久久国产精品麻豆| 欧洲精品卡2卡3卡4卡5卡区| 最好的美女福利视频网| 香蕉国产在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 搞女人的毛片| 黄色视频不卡| 91大片在线观看| 村上凉子中文字幕在线| 亚洲人成电影免费在线| 国语自产精品视频在线第100页| 国产成年人精品一区二区| 国产视频内射| 亚洲精品中文字幕在线视频| 精品免费久久久久久久清纯| 一级毛片高清免费大全| 日本精品一区二区三区蜜桃| 日本在线视频免费播放| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 亚洲精品粉嫩美女一区| 制服人妻中文乱码| 村上凉子中文字幕在线| 无人区码免费观看不卡| 色哟哟哟哟哟哟| 国产高清有码在线观看视频 | 国产熟女xx| 免费电影在线观看免费观看| 老司机午夜福利在线观看视频| 少妇 在线观看| 叶爱在线成人免费视频播放| 成人18禁高潮啪啪吃奶动态图| 精品电影一区二区在线| 黄片大片在线免费观看| 激情在线观看视频在线高清| 成在线人永久免费视频| 真人做人爱边吃奶动态| 亚洲成av片中文字幕在线观看| 国产亚洲欧美98| 久久久久久免费高清国产稀缺| 亚洲九九香蕉| 热re99久久国产66热| 在线永久观看黄色视频| 成人三级做爰电影| 亚洲国产毛片av蜜桃av| 免费在线观看成人毛片| 亚洲成人久久性| 中亚洲国语对白在线视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区精品视频观看| 亚洲中文av在线| 操出白浆在线播放| 老熟妇乱子伦视频在线观看| 黄频高清免费视频| 欧美乱码精品一区二区三区| 90打野战视频偷拍视频| 国产99久久九九免费精品| 国产精品久久久人人做人人爽| 亚洲成人久久爱视频| 麻豆成人av在线观看| 日本免费a在线| 亚洲 欧美一区二区三区| 黄色女人牲交| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 国产精品亚洲av一区麻豆| 黄色 视频免费看| 夜夜爽天天搞| 少妇熟女aⅴ在线视频| 亚洲av日韩精品久久久久久密| 欧美国产日韩亚洲一区| 久久精品夜夜夜夜夜久久蜜豆 | 国产v大片淫在线免费观看| 一区二区三区高清视频在线| 成年人黄色毛片网站| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 日日摸夜夜添夜夜添小说| 国产精品,欧美在线| 久久久久国产一级毛片高清牌| 亚洲一区二区三区色噜噜| av超薄肉色丝袜交足视频| 国产亚洲精品一区二区www| 久久久水蜜桃国产精品网| 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 久9热在线精品视频| 在线观看免费视频日本深夜| 夜夜爽天天搞| 午夜激情av网站| 日本免费a在线| 亚洲中文日韩欧美视频| 国产野战对白在线观看| 在线看三级毛片| 国产精品综合久久久久久久免费| 国产成人影院久久av| 欧美不卡视频在线免费观看 | x7x7x7水蜜桃| 999久久久国产精品视频| 黄片大片在线免费观看| 欧美成人午夜精品| 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久| 亚洲七黄色美女视频| 午夜日韩欧美国产| 欧美日韩中文字幕国产精品一区二区三区| 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 伦理电影免费视频| 91麻豆精品激情在线观看国产| 国产精品亚洲av一区麻豆| 此物有八面人人有两片| 欧美日韩一级在线毛片| 老司机靠b影院| 国产亚洲av嫩草精品影院| 又紧又爽又黄一区二区| 久久精品成人免费网站| 亚洲专区国产一区二区| 两个人视频免费观看高清| 韩国av一区二区三区四区| 国产精品九九99| 欧美一级a爱片免费观看看 | 男人操女人黄网站| 亚洲一区二区三区色噜噜| 久久久久九九精品影院| 午夜两性在线视频| 午夜福利视频1000在线观看| 国产一级毛片七仙女欲春2 | 免费看a级黄色片| 99久久国产精品久久久| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 精品少妇一区二区三区视频日本电影| 国产成人精品久久二区二区91| 精品卡一卡二卡四卡免费| 19禁男女啪啪无遮挡网站| 国内精品久久久久精免费| 亚洲激情在线av| 欧美国产日韩亚洲一区| 1024香蕉在线观看| 级片在线观看| 国产成年人精品一区二区| 国产激情久久老熟女| 国产又色又爽无遮挡免费看| 午夜成年电影在线免费观看| 日韩欧美一区视频在线观看| 国产单亲对白刺激| 国产不卡一卡二| 可以免费在线观看a视频的电影网站| 大型黄色视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 国产真实乱freesex| 999精品在线视频| 欧美成狂野欧美在线观看| 久久香蕉精品热| 又大又爽又粗| 夜夜看夜夜爽夜夜摸| 国产成人影院久久av| 一边摸一边做爽爽视频免费| 一本一本综合久久| 老熟妇仑乱视频hdxx| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 非洲黑人性xxxx精品又粗又长| 成人av一区二区三区在线看| 午夜老司机福利片| 午夜福利18| 欧美黄色淫秽网站| 巨乳人妻的诱惑在线观看| 女人被狂操c到高潮| 亚洲国产精品999在线| 可以免费在线观看a视频的电影网站| 日本五十路高清| 日韩一卡2卡3卡4卡2021年| 婷婷精品国产亚洲av在线| 97超级碰碰碰精品色视频在线观看| 999久久久国产精品视频| 香蕉国产在线看| 亚洲一区中文字幕在线| 欧美性猛交╳xxx乱大交人| 中文字幕av电影在线播放| 变态另类丝袜制服| 亚洲国产日韩欧美精品在线观看 | 亚洲色图av天堂| 一个人观看的视频www高清免费观看 | 一边摸一边抽搐一进一小说| 久久久久久免费高清国产稀缺| 午夜免费激情av| 亚洲一区二区三区色噜噜| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 美女 人体艺术 gogo| 亚洲精品一区av在线观看| 国产成人欧美在线观看| 草草在线视频免费看| 日韩欧美国产在线观看| 中文字幕人妻丝袜一区二区| 中文字幕高清在线视频| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 欧美 亚洲 国产 日韩一| 18禁美女被吸乳视频| 成人国产综合亚洲| 一本久久中文字幕| 天天躁夜夜躁狠狠躁躁| 亚洲免费av在线视频| 久久国产精品男人的天堂亚洲| 女人被狂操c到高潮| 国产不卡一卡二| 国产片内射在线| 亚洲成人国产一区在线观看| 免费观看精品视频网站| 淫秽高清视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩乱码在线| 一二三四在线观看免费中文在| 免费人成视频x8x8入口观看| 亚洲电影在线观看av| 欧美日韩一级在线毛片| 村上凉子中文字幕在线| svipshipincom国产片| 欧美黄色片欧美黄色片| 精品高清国产在线一区| 亚洲精品中文字幕一二三四区| 精品乱码久久久久久99久播| 日日夜夜操网爽| 久久久精品欧美日韩精品| 国产免费男女视频| 视频在线观看一区二区三区| 国产一级毛片七仙女欲春2 | 国产不卡一卡二| 国产高清videossex| 波多野结衣高清作品| 中文字幕高清在线视频| av视频在线观看入口| av免费在线观看网站| 欧美成狂野欧美在线观看| 成人国产一区最新在线观看| 精品欧美一区二区三区在线| 亚洲第一青青草原| 波多野结衣巨乳人妻| 少妇裸体淫交视频免费看高清 | 999精品在线视频| 国产成人av教育| 亚洲美女黄片视频| 久久伊人香网站| 一二三四社区在线视频社区8| 啦啦啦韩国在线观看视频| or卡值多少钱| 日韩精品中文字幕看吧| 禁无遮挡网站| 国产av在哪里看| 国产激情久久老熟女| 精品乱码久久久久久99久播| 亚洲av中文字字幕乱码综合 | 黄色成人免费大全| 男人操女人黄网站| 91成人精品电影| 国产精品 欧美亚洲| 深夜精品福利| 亚洲一区二区三区不卡视频| av超薄肉色丝袜交足视频| 999精品在线视频| 99久久精品国产亚洲精品| 日韩精品免费视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲久久久国产精品| 亚洲av成人一区二区三| 久久亚洲真实| ponron亚洲| 中出人妻视频一区二区| 亚洲精品色激情综合| netflix在线观看网站| 啪啪无遮挡十八禁网站| 一区二区三区高清视频在线| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| 老司机午夜福利在线观看视频| 午夜a级毛片| 人妻丰满熟妇av一区二区三区| 国产三级黄色录像| 又黄又爽又免费观看的视频| 欧美色视频一区免费| 色在线成人网| 久久热在线av| 99国产综合亚洲精品| 一级a爱视频在线免费观看| 久99久视频精品免费| 亚洲第一av免费看| 欧美一级a爱片免费观看看 | 国产成人欧美在线观看| 日韩欧美三级三区| 国产亚洲精品综合一区在线观看 | 人妻久久中文字幕网| 深夜精品福利| 无限看片的www在线观看| 18禁裸乳无遮挡免费网站照片 | 午夜福利视频1000在线观看| 免费看a级黄色片| 国产av一区在线观看免费| 久久香蕉国产精品| 亚洲av五月六月丁香网| 一级作爱视频免费观看| 国产不卡一卡二| 国产99久久九九免费精品| 51午夜福利影视在线观看| 在线观看www视频免费| e午夜精品久久久久久久| 免费av毛片视频| 一区二区三区国产精品乱码| 亚洲五月天丁香| 日本免费一区二区三区高清不卡| 少妇的丰满在线观看| 国产91精品成人一区二区三区| 免费一级毛片在线播放高清视频| 一夜夜www| 精品国产超薄肉色丝袜足j| 国产区一区二久久| 88av欧美| 欧美 亚洲 国产 日韩一| 香蕉国产在线看| 美女大奶头视频| 亚洲在线自拍视频| 国产黄色小视频在线观看| 国产99白浆流出| 免费看日本二区| 国产成年人精品一区二区| 国产免费男女视频| 欧美色视频一区免费| 啦啦啦免费观看视频1| 一级毛片女人18水好多| 亚洲aⅴ乱码一区二区在线播放 | 99在线人妻在线中文字幕| 欧美精品啪啪一区二区三区| 精品熟女少妇八av免费久了| 一区二区日韩欧美中文字幕| 热re99久久国产66热| 免费看十八禁软件| 欧美日本亚洲视频在线播放| 国产精品一区二区免费欧美| 18禁美女被吸乳视频| 12—13女人毛片做爰片一| 欧美日韩亚洲国产一区二区在线观看| 国产精品二区激情视频| 色婷婷久久久亚洲欧美| 在线观看免费午夜福利视频| 婷婷六月久久综合丁香| 欧美日本视频| 成年人黄色毛片网站| 中文字幕人成人乱码亚洲影| 成人欧美大片| 久久精品91无色码中文字幕| 男女午夜视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 俄罗斯特黄特色一大片| 亚洲中文字幕日韩| 国产成人欧美在线观看| 哪里可以看免费的av片| 精品福利观看| 中文字幕精品亚洲无线码一区 | 久久草成人影院| 波多野结衣高清作品| 手机成人av网站| 国内精品久久久久久久电影| 亚洲激情在线av| 搞女人的毛片| av福利片在线| 丰满的人妻完整版| 9191精品国产免费久久| 香蕉国产在线看| avwww免费| 色播在线永久视频| 青草久久国产| 日韩精品免费视频一区二区三区| 人妻丰满熟妇av一区二区三区| 精品免费久久久久久久清纯| 精品电影一区二区在线| 一本精品99久久精品77| 51午夜福利影视在线观看| 日本免费一区二区三区高清不卡| 亚洲男人的天堂狠狠| 久久久久久大精品| 动漫黄色视频在线观看| 99热这里只有精品一区 | 欧美亚洲日本最大视频资源| 99热这里只有精品一区 | 女人高潮潮喷娇喘18禁视频| 91老司机精品| 99久久无色码亚洲精品果冻| 最好的美女福利视频网| 免费观看精品视频网站| 1024视频免费在线观看| 国产成人系列免费观看| 麻豆一二三区av精品| 午夜福利视频1000在线观看| 日韩精品免费视频一区二区三区| 99国产精品99久久久久| 国产亚洲av嫩草精品影院| 国产精品香港三级国产av潘金莲| 国产激情偷乱视频一区二区| 黄片大片在线免费观看| 男女下面进入的视频免费午夜 | 久久久久久久久久黄片| 曰老女人黄片| 国产视频内射|