• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE

    2015-03-01 09:21:45WangSiqiHuangXiaomingMaTaoZhuTanyongTangTaoLiuWanchen

    Wang Siqi  Huang Xiaoming  Ma Tao  Zhu Tanyong  Tang Tao  Liu Wanchen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    ?

    Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE

    Wang Siqi Huang Xiaoming Ma Tao Zhu Tanyong Tang Tao Liu Wanchen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    Abstract:In order to compare the impact of thickness of different layers on fatigue lives of different semi-rigid asphalt pavement structures, the mechanical results from finite element models in ABAQUS are incorporated with the fatigue results from fatigue models in FE-SAFE to calculate the mechanical response and fatigue lives of semi-rigid pavement structures under heavy traffic loads. Then the influences on fatigue lives caused by the changes in the thickness of layers in pavement structures are also evaluated. The numerical simulation results show that the aggregated base and the large stone porous mixture (LSPM) base have better anti-cracking performance than the conventional semi-rigid base. The appropriate thickness range for the aggregated layer in the aggregated base is 15 to 18 cm. The thickness of the LSPM layer in the LSPM base is recommended to be less than 15 cm.

    Key words:conventional semi-rigid base; aggregated base; large stone porous mixture; reflective cracking; fatigue life; numerical simulation

    Received 2015-06-23.

    Biographies:Wang Siqi (1991—), male, graduate; Huang Xiaoming(corresponding author), male, doctor, professor, huangxm@seu.edu.cn.

    Foundation item:The National Natural Science Foundation of China (No.51378121).

    Citation:Wang Siqi, Huang Xiaoming, Ma Tao, et al.Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structures using ABAQUS and FE-SAFE[J].Journal of Southeast University (English Edition),2015,31(4):541-546.[doi:10.3969/j.issn.1003-7985.2015.04.019]

    Asphalt pavement structures with semi-rigid bases are vulnerable to reflective cracking and fatigue. It is necessary to investigate the propagation of reflective cracking in pavement structures, and the use of numerical simulating methods is proved to be valid. Predictions of the fatigue behavior under repeated uniaxial loading were conducted by coupling the viscoelastic continuum damage mechanics (VCDM) model with numerical models built in ABAQUS[1-2]. Three-dimensional finite element models were also utilized to confirm that the interlayer systems were effective in abating reflective cracking[3]. In China, in order to deal with the complex weather conditions and heavy loads, three types of semi-rigid asphalt pavement structures were utilized. The conventional semi-rigid base using stabilized materials was widely used due to its excellent anti-rutting performance and low-cost properties[4]. The stabilized materials in the conventional semi-rigid base were usually lime ash aggregate (LAA), lime ash soil (LAS) and cement treated base (CTB)[5]. The shrinkage and temperature contraction of LAA and LAS in this type of base limited their utilization[6]. Compared with LAA and LAS, CTB was a more stable alternative, but the stiffness, water content and cement content needed to be carefully calculated[7-8]. Wang et al.[9-10]made a new type of aggregated base by placing graded stones as a layer between the surface layer and the semi-rigid base. It is confirmed that by adding the graded stone layer, the distribution of stress in the aggregated base is changed, and therefore the anti-cracking property of the semi-rigid pavement structure is increased. Another method was introduced to modify the stabilized material base by placing the large stone porous mixture (LSPM) layer between the surface layer and the semi-rigid base. Guo[11]developed finite element models by using ANSYS to confirm that an appropriate choice of gradation when using open-graded large stone asphalt mixes (which was similar to LSPM) can dramatically enhance the anti-cracking performance of semi-rigid pavement structures.

    Unfortunately, the relationship between the thickness of layers and fatigue lives of pavement structures remains unclear, especially in those with an aggregated base or LSPM base. Field tests proved that the thickness of overlay mixtures is the major factor that influences the anti-cracking performance of asphalt overlays[12]. According to indoor experimental results[13], the reasonable thickness of stress absorbing layers (SAL) was 2 to 3 cm. However, the SAL only consisted of rock chips, sand and polymer modified asphalt. Wei[14]claimed that the bearing capacity and reflective-cracking resistance of the pavement structure cannot increase infinitely when increasing the thickness of graded stones layer. Wu[15]performed orthogonal tests and indicated that the thickness of the asphalt treated base in the semi-rigid base is crucial in resisting reflective cracking, but the suitable thickness needed to be carefully determined. Li[16]established finite element models and found that the position of layers, the frictional contact conditions and the thickness of layers were the most contributing parameters affecting the fatigue life of the whole semi-rigid pavement structure.

    This paper aims to analyze the impact of thickness of layers on the fatigue lives of different semi-rigid asphalt pavement structures by developing finite element models using ABAQUS and fatigue models using FE-SAFE (an accessory of ANSYS). Three semi-rigid pavement structures are the conventional semi-rigid base, aggregated base and LSPM base. ABAQUS models are first used to calculate the mechanical responses under heavy traffic loads. Then the output results of ABAQUS models are incorporated into FE-SAFE to simulate the fatigue performance of pavement structures. The fatigue lives of three pavement structures are also calculated. Finally, the influences on fatigue lives caused by the changes of the thickness of layers in pavement structures are evaluated.

    1Establishment of ABAQUS and FE-SAFE Models for Three Structures

    Three semi-rigid pavement structures are shown in Tab.1. Structure 1 represents the conventional semi-rigid pavement structure. Structure 2 represents the pavement structure using the aggregated base by placing the aggregated layer between the surface asphalt layer and the semi-rigid base. Structure 3 represents the pavement structure using the LSPM base by placing the LSPM layer between the surface asphalt layer and the semi-rigid base.

    Tab.1 Typical pavement structures

    Notes: SMA—stone matrix asphalt; AC—asphalt concrete; GM—graded materials or graded stones.

    When defining boundary conditions, the bottom of the model was set to be completely constrained, and both sides were symmetrically constrained in the horizontal direction. The tire pressure was distributed in rectangular instead of circle. Each rectangular was 0.213 m×0.167 m in size to make sure that the loading contact patch was equal to the circular one. According to the static equivalent principle, the standard axle loading was converted to uniformly distributed pressureP(0.117 MPa) based on plane models in elasticity.

    The layer-divided model without remeshing[17]was developed to simulate the development of reflective cracking in each layer. This model was based on the following assumptions: 1) Reflective cracking developed from bottom to top; 2) Only the fatigue caused by symmetric loads was considered; and 3) The fatigue life of the whole structure was the sum of the fatigue life of each layer.

    The procedures of building a ABAQUS model for Structure 1 are given as follows: First, the model for completed sub-base using LAS was built and the fatigue life was calculated as shown in Fig.1(a); the fatigue life of the CTB layer was calculated using LAS layer with transverse crack; while the fatigue life of AC-25 was calculated using LAS and CTB layer with transverse crack; the sub-surface layer AC-20 was calculated by the model of LAS, CTB and AC-25 with transverse crack; and the fatigue life of the surface layer SMA-13 was calculated by the model of LAS, CTB, AC-20 and AC-25 with transverse crack, as shown in Fig.1(b). The ABAQUS models for Structure 2 and Structure 3 were built using the same procedures.

    (a)

    (c)Fig.1 Procedures of building ABAQUS model for Structure 1. (a) Calculation of the fatigue life of LAS; (b) Calculation of the fatigue life of SMA-13

    Then the results of ABAQUS were transferred into FE-SAFE for fatigue simulations. The SMA-13, AC-20, AC-25, CTB and LAS were put into the analysis group in FE-SAFE. Note that the GM in Structure 2 was removed from the analysis group because it had no contributions in the fatigue lives of pavement structures. In order to simulate the transition of stress at the center of the surface of the pavement, the loading pressure was transferred based on the following equation:

    P(t)=sin(10πt)0

    (1)

    where the amplitude is 1; the phase angle is -π/2; and the frequency is 10 Hz.

    After defining the properties of materials and the loading pressure in FE-SAFE, the calculations were operated in FE-SAFE to simulate the fatigue performance of pavement structures. Then the fatigue results in FE-SAFE were inputted into ABAQUS to obtain the isotherm graphs (see Fig.2(a)). In order to calculate the fatigue life of each layer, the ABAQUS models were separated along the centerline, as shown in Fig.2(b). Mark points were set in the center of each layer. Assume that the fatigue life of one particular mark point wasPk, then the elastic stress of this mark point can be calculated by

    (2)

    whereSPEandPFEare set by FE-SAFE according to the mechanical properties of materials in each layer. Then the fatigue life of each layer was calculated by repeating cycles under pressure defined previously according to the Miner theory. Finally, the logarithmic fatigue life of each layer from bottom to top was collected by calculating these mark points. This method was proved to be valid and had good correlations with indoor fatigue test results[18].

    (a)

    (c)Fig.2 Isotherm graphs from ABAQUS. (a) Before the separation of the model; (b) After the separation of the model

    2Comparisons of Fatigue Lives among Three Pavement Structures

    The results of fatigue life from the FE-SAFE model are shown in Tab.2, Tab.3 and Tab.4.

    Tab.2 Fatigue life of each layer in Structure 1

    Tab.3 Fatigue life of each layer in Structure 2

    Tab.4 Fatigue life of each layer in Structure 3

    From Tabs.2 to 4, it can be seen that in the semi-rigid pavement structures, the proportions in fatigue life of each structure can be considered as the loading times of the reflective cracking in this layer. Considering the fact that the surface asphalt layer has better anti-cracking performance than other layers, if the surface asphalt layer has a large proportion in the fatigue life, the whole semi-rigid pavement structure can have better anti-cracking performance. The surface asphalt layer has the least proportion in the fatigue life in Structure 1 (57.75%) compared with Structure 3 (69.8%) and Structure 2 (71.77%), which means that the use of the outstanding anti-cracking performance of the surface asphalt layer is not fully developed in Structure 1.

    Tab.3 shows that the existence of the GM layer changes the proportions of the fatigue life of Structure 2 dramatically. The proportion of the fatigue life of ATB is 34.48% in Structure 2. It is confirmed that the ATB layer combined with the GM layer is beneficial in resisting reflective cracking in Structure 2.

    Tab.4 shows that even though the proportion of the LSPM layer in Structure 3 is only 0.4%, it leads to the increase in the proportions of the fatigue life of the surface asphalt layer (SMA-13, AC-20 and AC-25) (69.39%) compared with that of Structure 2 (36.69%). This means that the utilization of the LSPM layer can make good use of anti-cracking performance of the surface asphalt layer in Structure 3.

    From Tabs.2 to 4, it can also be seen that Structure 1 has the largest thickness (74 cm) with the shortest fatigue life (1 322 034), while Structure 3 has the smallest thickness (68 cm) with the longest fatigue life (2 958 627). It can be concluded that the aggregated base (Structure 2) and the LSPM base (Structure 3) are more effective in resisting reflective cracking than the conventional semi-rigid base (Structure 1). Different combinations of layers such as the aggregated base and the LSPM have positive effects on prolonging the fatigue life if the thickness of these layers are determined carefully.

    3Effects of Layer Thickness on Fatigue Life of Three Pavement Structures

    Since the thickness of stress absorbing layers (SAL) is crucial in designing pavement structures to resist reflective cracking[13], it is necessary to investigate the effects of layer thickness on fatigue lives of three pavement structures. Wang[19]built a ABAQUS model and suggested that when the crushed stone base has a thickness in the range of 15 to 25 cm, the pavement structure has an outstanding anti-cracking performance. Zhang et al.[20]conducted simulations and field tests on anti-cracking performance of interface self absorbing composite (ISAC) and found that the ISAC can dissipate reflective cracking efficiently in a pavement structure.

    In this section, the thickness of each layer in the ABAQUS model was changed while performing calculations of the fatigue life of each layer in three pavement structures. The fatigue lives with respect to the thickness of each layer were given to determine the appropriate thickness when designing pavement structures.

    3.1 Effects of thickness of layers on fatigue life of Structure 1

    The effects of thickness of the surface layer and base on the fatigue life of Structure 1 are shown in Fig.3 and Fig.4, respectively.

    Fig.3 Correlation between thickness of surface layer and fatigue life

    Fig.4 Correlation between thickness of base and fatigue life

    Fig.4 shows that the fatigue life of Structure 1 increases as the thickness of semi-rigid base increases. However, if the thickness reaches 36 to 38 cm, the fatigue life decreases slightly as the thickness keeps increasing. This means that the increase in the thickness of the semi-rigid base cannot guarantee the increase of fatigue life in Structure 1. When the semi-rigid base is thin, the main stress in the base is tensile stress. However, the compressive stress starts to appear if the thickness goes beyond a threshold (36 cm in this case), and the stabilized materials in the semi-rigid base become unstable, begin to squeeze each other and change the mechanical property of the whole base. This process definitely sabotages the anti-cracking performance of the semi-rigid base.

    Meanwhile, the fatigue life increases steadily as the surface asphalt layer becomes thicker (see Fig.3). According to previous studies[21], the reflective cracking can be well mitigated by increasing the thickness of the surface asphalt layer. The surface asphalt layer has good anti-cracking performance.

    3.2 Effects of thickness of layers on fatigue life of Structure 2

    The effects of thickness of ATB and the GM layer on the fatigue life of Structure 2 are shown in Fig.5 and Fig.6, respectively.

    Fig.5 Correlation between thickness of ATB and fatigue life

    Fig.6 Correlation between thickness of GM and fatigue life

    Fig.5 and Fig.6 show clearly that the fatigue life increases when the thickness of the ATB layer increases. They also show that the fatigue life of Structure 2 increases dramatically if the thickness of the GM layer is less than 15 cm. The increase of fatigue life slows down as the thickness reaches 15 to 18 cm. The GM layer is the crucial part in Structure 2. It serves as the stress absorbing layer in this structure. Although it has no contributions in calculations of fatigue, it has an indirect impact on resisting reflective cracking from rapid propagation.

    However, the increase in the thickness of the GM layer can increase the fatigue life of Structure 2, which can lead to large fatigue strain in the ATB layer due to the relatively small modulus of the GM layer. This is the reason why the fatigue life of Structure 2 stops increasing when the thickness range of the GM is 15 to 18 cm. Hence, the recommended thickness for the GM layer is from 15 to 18 cm.

    3.3 Effects of thickness of LSPM on fatigue life of Structure 3

    The effect of thickness of the LSPM layer on fatigue life of Structure 3 is shown in Fig.7.

    Fig.7 Correlation between thickness of LSPM and fatigue life

    It can be seen from Fig.7 that the fatigue life of Structure 3 increases when the thick LSPM layer is utilized. This is similar to the trends of the GM in Structure 2. However, when the thickness of the LSPM reaches 15 cm, the increase of the fatigue life of Structure 3 slows down.

    The LSPM layer is the stress absorbing layer in Structure 3. The relatively low modulus leads to the increase of fatigue lives in other layers which come into contact with the LSPM layer. Even though the contribution of the LSPM layer itself in the fatigue life of Structure 3 is insignificant (0.4%), it results in the dramatic increase in proportions of fatigue lives of the surface asphalt layer (69.39%) and sub-base (LAS) (7.41%) in Structure 3 compared with that in Structure 1 (57.75% and 1.46%, respectively). This phenomenon can be explained in two aspects: as for the whole pavement structure, the compress stress from top to bottom and tensile stress from bottom to top can be disseminated when passing through the LSPM layer, as the GM layer does. As for the stress concentration, the reflective cracking needs more time and path to propagate through the LSPM layer due to the inconsistence at the edge of cracking. This can indirectly prolong the fatigue life of Structure 3.

    Unfortunately, determining the appropriate thickness range of the LSPM still remains unsettled. Although increasing the thickness of the LSPM layer is beneficial for resisting reflective cracking, it leads to the degeneration in anti-rutting performance of pavement structures. It is suggested from Fig.7 that the thickness of the LSPM in Structure 3 should be no more than 15 cm.

    4Conclusions

    1) The finite element models using ABAQUS and the fatigue models using FE-SAFE for three semi-rigid pavement structures are established in this paper. The impacts of the thickness of layers on the fatigue lives of three pavement structures are compared by calculating the fatigue lives by FE-SAFE.

    2) The comparisons of the fatigue lives of three semi-rigid pavement structures suggest that the aggregated base and the LSPM base are more beneficial than the conventional semi-rigid base in resisting reflective cracking if they are properly deployed. The thickness of these layers need to be carefully determined.

    3) The numerical simulation results show that the appropriate thickness range of the aggregated layer in the aggregated base is 15 to 18 cm, while the thickness of the LSPM layer in the LSPM base should be no more than 15 cm.

    References

    [1]Kim Y R, Baek C, Underwood B S, et al. Application of viscoelastic continuum damage model based finite element analysis to predict the fatigue performance of asphalt pavements [J].KSCEJournalofCivilEngineering, 2008, 12(2): 109-120.

    [2]Arshadi A, Bahia H. Coupling of viscoelastic continuum damage mechanics and finite element modeling to predict asphalt mastic fatigue behavior [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2015: 15-3321-1-15-3321-15.

    [3]Baek J, Al-Qadi I L. Finite element modeling of reflective cracking under moving vehicular loading: investigation of the mechanism of reflective cracking in hot-mix asphalt overlays reinforced with interlayer systems[C]//ProceedingsofASCE’s2008AirportandHighwayPavementsConference. Washington, DC, USA, 2008: 74-85.

    [4]Huang X M, Wang S J.Analysistheoryandpracticeofmodernasphaltpavementstructure[M]. Beijing: Science Press, 2013. (in Chinese)

    [5]Chen Z D, Wu J M, Zhang X R, et al. Investigation of the typical structure of trunk road asphalt pavement [J].JournalofHighwayandTransportationResearchandDevelopment, 2001, 18(2): 9-12. (in Chinese)

    [6]Jiang Y H, Huang X M, Liao G Y. Fracture mechanics analysis of pavement structure with a sandwich layer of unbound graded aggregate [J].JournalofHefeiUniversityofTechnology, 2009, 32(4): 511-514. (in Chinese)

    [7]Wang Y, Ni F J, Li Z X. Test and estimate control on temperature shrinkage performance of cement-treated macadam [J].JournalofSoutheastUniversity:NaturalScienceEdition, 2008, 38(2):260-264. (in Chinese)

    [8]Wu P, Houben L J M, Scarpas A, et al. Stiffness modulus and fatigue properties of cement stabilized sand with use of a synthetic modified-zeolite additive [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington DC, USA, 2015:15-2880-1-15-2880-12.

    [9]Wang L, Feng D C. Methods for improving using performance of graded broken stone base [J].ChinaJournalofHighwayandTransport, 2006, 19(4): 40-45. (in Chinese)

    [10]Wang H, Li M Y. Evaluation of flexible pavement performance due to variations in aggregate base layer properties [C/D]//TRB94thAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2015: 15-4877-1-15-4877-22.

    [11]Guo H B. Research on anti-cracking mechanism of open-graded large stone asphalt mixes of asphalt pavement [D].Xi’an: School of Highway of Chang’an University, 2013. (in Chinese)

    [12]Loria L, Hajj Y E, Sebaaly P E. Assessment of reflective cracking models for asphalt pavements [C]//ProceedingsofRoadPavementandMaterialCharacterization,Modeling,andMaintenance. Changsha, China, 2011:72-79.

    [13]Li Z Z, Chen S F, Cheng Y, et al. Fatigue test of composite pavement on stress absorbing layers for reflective cracking [C]//ThirdInternationalConferenceonTransportationEngineering(ICTE). Chengdu, China, 2011:1390-1395.

    [14]Wei D X. Distress mode and structure optimization of asphalt pavement with semi-rigid base [D]. Xi’an: School of Highway of Chang’an University, 2010. (in Chinese)

    [15]Wu J T. The rational position and thickness of semi-rigid base in asphalt pavement [D]. Xi’an: School of Highway of Chang’an University, 2009. (in Chinese)

    [16]Li H B. Study of asphalt pavement structure based on adaptability of semi-rigid base [D]. Xi’an: School of Highway of Chang’an University, 2010. (in Chinese)

    [17]Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J].InternationalJournalforNumericalMethodsinEngineering, 1999, 46(1):131-150.

    [18]Liu W C. Numerical simulation of fatigue cracks in typical asphalt pavement [D]. Nanjing: School of Transportation of Southeast University, 2014. (in Chinese)

    [19]Wang H C. Research on surface and reflective crack propagation and fatigue life of graded crushed stone based asphalt pavement [C]//Proceedingsof11thInternationalConferenceofChineseTransportationProfessionals(ICCTP). Nanjing, China, 2011:3103-3114.

    [20]Zhang F, Zhang Y H, Qian H T, et al. Analysis and test study on reflective cracking prevention based on interface self-absorbing composite intermediate layer in semi-rigid asphalt pavement [C]//Proceedingsofthe11thInternationalConferenceofChineseTransportationProfessionals(ICCTP). Nanjing, China, 2011:3359-3367.

    [21]Abou-Jaoude G, Ghauch Z. Numerical investigation of design strategies to achieve perpetual pavements [C/D]//TRB91stAnnualMeetingCompendiumofPapers. Washington, DC, USA, 2012:12-1979-1-12-1979-16.

    doi:10.3969/j.issn.1003-7985.2015.04.019

    亚洲精品中文字幕在线视频| 中文欧美无线码| 最黄视频免费看| 激情五月婷婷亚洲| 免费日韩欧美在线观看| 亚洲精品一区蜜桃| 午夜福利视频在线观看免费| 午夜老司机福利剧场| 熟女电影av网| 亚洲第一青青草原| 另类亚洲欧美激情| 国产精品免费一区二区三区在线| 国产精品免费一区二区三区在线| 日日摸夜夜添夜夜添小说| 免费观看人在逋| 又黄又粗又硬又大视频| 国产色视频综合| 高清黄色对白视频在线免费看| 日韩精品免费视频一区二区三区| 日韩成人在线观看一区二区三区| 国产不卡一卡二| 久久久水蜜桃国产精品网| 久久99一区二区三区| 中文字幕人妻熟女乱码| 在线av久久热| 国产aⅴ精品一区二区三区波| 欧美大码av| 国产片内射在线| 黄片播放在线免费| 亚洲 欧美一区二区三区| 国产亚洲精品综合一区在线观看 | 国产熟女xx| 99国产精品一区二区三区| 在线观看66精品国产| 女人被躁到高潮嗷嗷叫费观| 波多野结衣高清无吗| 国产xxxxx性猛交| 日韩欧美一区二区三区在线观看| 19禁男女啪啪无遮挡网站| 琪琪午夜伦伦电影理论片6080| 又大又爽又粗| 最近最新中文字幕大全电影3 | 老司机福利观看| 91在线观看av| 午夜免费成人在线视频| 国产伦人伦偷精品视频| 91麻豆av在线| 亚洲国产精品合色在线| 午夜a级毛片| 中文字幕人妻丝袜制服| 成年女人毛片免费观看观看9| 9191精品国产免费久久| 国产三级在线视频| 久久久久久久午夜电影 | 精品一区二区三区视频在线观看免费 | 国产精品综合久久久久久久免费 | 亚洲伊人色综图| 久久天堂一区二区三区四区| 日韩av在线大香蕉| 99久久精品国产亚洲精品| 国产激情欧美一区二区| 亚洲精品中文字幕在线视频| 国产黄a三级三级三级人| 99riav亚洲国产免费| 自拍欧美九色日韩亚洲蝌蚪91| 色综合婷婷激情| 久久婷婷成人综合色麻豆| 国产精品免费一区二区三区在线| 大香蕉久久成人网| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| 80岁老熟妇乱子伦牲交| 老鸭窝网址在线观看| 成年女人毛片免费观看观看9| 国产亚洲精品综合一区在线观看 | 国产一区二区三区综合在线观看| 高清毛片免费观看视频网站 | 亚洲精品成人av观看孕妇| 天天影视国产精品| 成在线人永久免费视频| 性少妇av在线| 国产熟女xx| 韩国精品一区二区三区| 午夜福利在线免费观看网站| 国产欧美日韩综合在线一区二区| 99国产精品99久久久久| 国产精品影院久久| 国产一区二区三区在线臀色熟女 | 99久久人妻综合| 欧美日本中文国产一区发布| 女警被强在线播放| 一级毛片女人18水好多| 老汉色∧v一级毛片| 宅男免费午夜| 99热国产这里只有精品6| 91老司机精品| 女同久久另类99精品国产91| 99re在线观看精品视频| 国产精品久久视频播放| 一级毛片女人18水好多| 国产精品综合久久久久久久免费 | 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 国产精华一区二区三区| 人人澡人人妻人| 精品一区二区三区视频在线观看免费 | 亚洲视频免费观看视频| 久久天躁狠狠躁夜夜2o2o| 亚洲免费av在线视频| 脱女人内裤的视频| 757午夜福利合集在线观看| 午夜免费成人在线视频| 久久中文字幕一级| 欧美黄色淫秽网站| 757午夜福利合集在线观看| 丁香欧美五月| 精品福利永久在线观看| 男女高潮啪啪啪动态图| 亚洲专区国产一区二区| 亚洲中文av在线| 成年人黄色毛片网站| 亚洲国产精品sss在线观看 | 精品久久久久久久毛片微露脸| 香蕉丝袜av| 久久九九热精品免费| 亚洲欧美精品综合久久99| 人人妻人人添人人爽欧美一区卜| 热99国产精品久久久久久7| 妹子高潮喷水视频| 美女午夜性视频免费| 国产精品日韩av在线免费观看 | 香蕉国产在线看| 亚洲国产中文字幕在线视频| 国产精品野战在线观看 | 亚洲国产欧美一区二区综合| 操美女的视频在线观看| 曰老女人黄片| 在线天堂中文资源库| 在线观看免费午夜福利视频| 色综合婷婷激情| 色在线成人网| 母亲3免费完整高清在线观看| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 国产精品二区激情视频| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲aⅴ乱码一区二区在线播放 | 老汉色av国产亚洲站长工具| aaaaa片日本免费| 热99国产精品久久久久久7| 另类亚洲欧美激情| 美女 人体艺术 gogo| 香蕉久久夜色| 午夜a级毛片| 黄片大片在线免费观看| 精品高清国产在线一区| 久久人人精品亚洲av| а√天堂www在线а√下载| 色综合欧美亚洲国产小说| 精品国产国语对白av| 女性被躁到高潮视频| 热re99久久国产66热| 国产成+人综合+亚洲专区| 国产精品98久久久久久宅男小说| 国产亚洲av高清不卡| 伊人久久大香线蕉亚洲五| av视频免费观看在线观看| 久久人妻福利社区极品人妻图片| 午夜福利在线观看吧| 国产成人欧美在线观看| 男男h啪啪无遮挡| 亚洲三区欧美一区| 亚洲精品久久成人aⅴ小说| 俄罗斯特黄特色一大片| 69精品国产乱码久久久| 伦理电影免费视频| 成年版毛片免费区| 亚洲,欧美精品.| 女警被强在线播放| 免费日韩欧美在线观看| 男女床上黄色一级片免费看| 性欧美人与动物交配| 水蜜桃什么品种好| 色综合站精品国产| 成人影院久久| 国产三级在线视频| 成人黄色视频免费在线看| 在线观看舔阴道视频| 亚洲片人在线观看| 成年人黄色毛片网站| 91九色精品人成在线观看| av欧美777| 香蕉国产在线看| av电影中文网址| 80岁老熟妇乱子伦牲交| 欧美黄色淫秽网站| 国产精品综合久久久久久久免费 | 久久久久久久午夜电影 | 久久人人97超碰香蕉20202| 19禁男女啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 女同久久另类99精品国产91| 日本黄色日本黄色录像| 久久久国产成人免费| 国产精品野战在线观看 | 麻豆国产av国片精品| 国产1区2区3区精品| 国产又爽黄色视频| 午夜精品在线福利| 精品福利观看| 亚洲性夜色夜夜综合| 久久久国产一区二区| 精品国产超薄肉色丝袜足j| 91成年电影在线观看| www.精华液| 日韩免费av在线播放| 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 国产又色又爽无遮挡免费看| 国产麻豆69| 亚洲av五月六月丁香网| 亚洲人成77777在线视频| 校园春色视频在线观看| 欧美亚洲日本最大视频资源| 亚洲黑人精品在线| 亚洲色图综合在线观看| 少妇被粗大的猛进出69影院| 桃色一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 精品免费久久久久久久清纯| 欧美久久黑人一区二区| 国产精品香港三级国产av潘金莲| av片东京热男人的天堂| 老汉色∧v一级毛片| 日本a在线网址| 夜夜躁狠狠躁天天躁| 欧美av亚洲av综合av国产av| 久久九九热精品免费| 久久精品亚洲精品国产色婷小说| 亚洲熟妇中文字幕五十中出 | 午夜免费观看网址| 欧美一级毛片孕妇| 亚洲 国产 在线| av网站免费在线观看视频| 窝窝影院91人妻| 国产又色又爽无遮挡免费看| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| 成年人免费黄色播放视频| 久久久久九九精品影院| 国产男靠女视频免费网站| 久久久水蜜桃国产精品网| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 咕卡用的链子| 在线永久观看黄色视频| 成人手机av| 人妻丰满熟妇av一区二区三区| 老熟妇仑乱视频hdxx| 国产一区二区在线av高清观看| 国产精品偷伦视频观看了| 黄色怎么调成土黄色| 999久久久精品免费观看国产| 日本欧美视频一区| 国产伦人伦偷精品视频| 婷婷丁香在线五月| 国产精品国产高清国产av| 啦啦啦免费观看视频1| 高清黄色对白视频在线免费看| 成人三级做爰电影| 欧美日韩精品网址| 午夜a级毛片| 久久亚洲真实| 高清在线国产一区| 丰满饥渴人妻一区二区三| 91成人精品电影| 国产av一区二区精品久久| 99在线人妻在线中文字幕| 91av网站免费观看| 婷婷丁香在线五月| 夜夜看夜夜爽夜夜摸 | www.999成人在线观看| 18禁裸乳无遮挡免费网站照片 | 亚洲欧美日韩无卡精品| 69av精品久久久久久| 欧美另类亚洲清纯唯美| 激情视频va一区二区三区| 深夜精品福利| 精品久久久久久电影网| 曰老女人黄片| 亚洲av美国av| 美女 人体艺术 gogo| 韩国av一区二区三区四区| 免费看a级黄色片| 国产有黄有色有爽视频| 午夜成年电影在线免费观看| 国产无遮挡羞羞视频在线观看| 99re在线观看精品视频| 精品人妻1区二区| 亚洲第一欧美日韩一区二区三区| 国产麻豆69| 日韩国内少妇激情av| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 99久久国产精品久久久| 中文字幕av电影在线播放| 麻豆成人av在线观看| 国产高清激情床上av| 日韩av在线大香蕉| 高清在线国产一区| 亚洲成人免费电影在线观看| 欧美日本中文国产一区发布| 18禁黄网站禁片午夜丰满| 欧美乱码精品一区二区三区| 亚洲第一av免费看| 久久99一区二区三区| 国产高清videossex| 热re99久久精品国产66热6| 成年人免费黄色播放视频| 精品久久久久久电影网| 不卡av一区二区三区| 久热这里只有精品99| 国产色视频综合| 色播在线永久视频| 琪琪午夜伦伦电影理论片6080| 久久人妻av系列| 亚洲国产精品999在线| 在线观看日韩欧美| 国产成人欧美| 真人一进一出gif抽搐免费| 亚洲欧美精品综合一区二区三区| 男女下面插进去视频免费观看| 精品久久久精品久久久| 亚洲狠狠婷婷综合久久图片| 美女福利国产在线| 欧美激情极品国产一区二区三区| 亚洲在线自拍视频| 亚洲男人天堂网一区| 午夜成年电影在线免费观看| 男人舔女人下体高潮全视频| 高清av免费在线| 欧美日本亚洲视频在线播放| 最新在线观看一区二区三区| 久久久久亚洲av毛片大全| 午夜精品在线福利| 欧美亚洲日本最大视频资源| 如日韩欧美国产精品一区二区三区| 水蜜桃什么品种好| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲| 99精国产麻豆久久婷婷| 看片在线看免费视频| 18禁国产床啪视频网站| 正在播放国产对白刺激| 亚洲片人在线观看| 国产精品 欧美亚洲| 在线观看一区二区三区激情| 成人国语在线视频| 亚洲国产精品999在线| 操美女的视频在线观看| 新久久久久国产一级毛片| 中文字幕人妻熟女乱码| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区精品| 12—13女人毛片做爰片一| 青草久久国产| 欧美日韩黄片免| 黄片大片在线免费观看| 超碰97精品在线观看| 黄片大片在线免费观看| 999久久久精品免费观看国产| www.www免费av| 亚洲欧美精品综合一区二区三区| 国产黄色免费在线视频| 久久香蕉精品热| 亚洲精华国产精华精| 久久久久国产精品人妻aⅴ院| 丝袜美腿诱惑在线| 亚洲一区二区三区不卡视频| 国产有黄有色有爽视频| 不卡av一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品一区二区www| 国产精品爽爽va在线观看网站 | 黄频高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇的丰满在线观看| 亚洲少妇的诱惑av| 女人被狂操c到高潮| 亚洲精品在线美女| 黄色成人免费大全| 久久久精品欧美日韩精品| 亚洲国产中文字幕在线视频| 久久精品国产综合久久久| 久久 成人 亚洲| 亚洲自拍偷在线| 一区在线观看完整版| 咕卡用的链子| 1024香蕉在线观看| 99久久精品国产亚洲精品| 在线观看免费视频日本深夜| 日韩视频一区二区在线观看| 夫妻午夜视频| 亚洲 国产 在线| 老鸭窝网址在线观看| 亚洲午夜理论影院| 18禁国产床啪视频网站| 首页视频小说图片口味搜索| 亚洲一区二区三区色噜噜 | 亚洲五月婷婷丁香| 一本大道久久a久久精品| 精品乱码久久久久久99久播| 中出人妻视频一区二区| 日本免费一区二区三区高清不卡 | 精品国产乱子伦一区二区三区| 国产高清激情床上av| 日本三级黄在线观看| 欧美黑人精品巨大| 日本三级黄在线观看| 国产免费av片在线观看野外av| 黄色丝袜av网址大全| 亚洲激情在线av| 正在播放国产对白刺激| 国产精品二区激情视频| 伦理电影免费视频| 精品久久久久久,| 国产精品美女特级片免费视频播放器 | 丝袜人妻中文字幕| 久久国产精品人妻蜜桃| 99国产极品粉嫩在线观看| 夜夜爽天天搞| 午夜日韩欧美国产| 国产不卡一卡二| 久久久精品国产亚洲av高清涩受| 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 制服人妻中文乱码| 91成人精品电影| 亚洲人成电影观看| 亚洲国产精品合色在线| 嫩草影院精品99| 女人高潮潮喷娇喘18禁视频| 1024香蕉在线观看| 国产成人一区二区三区免费视频网站| 成年版毛片免费区| 国产成人精品在线电影| 黄色丝袜av网址大全| 国产三级在线视频| 成人黄色视频免费在线看| 水蜜桃什么品种好| 极品教师在线免费播放| 看免费av毛片| 国产欧美日韩一区二区三| 少妇的丰满在线观看| 97碰自拍视频| 欧美精品一区二区免费开放| 97人妻天天添夜夜摸| 成在线人永久免费视频| 高潮久久久久久久久久久不卡| 日韩 欧美 亚洲 中文字幕| 国产成人av教育| 妹子高潮喷水视频| 欧美成人性av电影在线观看| 国产亚洲精品综合一区在线观看 | 亚洲精华国产精华精| 久久国产精品影院| 久久香蕉激情| 婷婷精品国产亚洲av在线| 国产成人欧美在线观看| 99re在线观看精品视频| av天堂久久9| 99国产精品免费福利视频| 久久国产亚洲av麻豆专区| 国产成人精品在线电影| 又黄又爽又免费观看的视频| 嫁个100分男人电影在线观看| 老司机靠b影院| 黄色片一级片一级黄色片| 久久国产乱子伦精品免费另类| 久久久国产一区二区| 久久人人97超碰香蕉20202| 国产伦人伦偷精品视频| 久久久国产一区二区| 老司机深夜福利视频在线观看| 最好的美女福利视频网| 国产精品九九99| 99香蕉大伊视频| 91在线观看av| 亚洲国产毛片av蜜桃av| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 少妇 在线观看| 19禁男女啪啪无遮挡网站| 亚洲成a人片在线一区二区| 国产精品99久久99久久久不卡| 亚洲精品美女久久久久99蜜臀| 日本wwww免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 搡老熟女国产l中国老女人| 视频区欧美日本亚洲| 窝窝影院91人妻| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区av网在线观看| 精品国产美女av久久久久小说| 人妻丰满熟妇av一区二区三区| 国产av精品麻豆| 亚洲专区国产一区二区| 在线观看免费午夜福利视频| 国产xxxxx性猛交| 久久人妻av系列| 国产一区二区三区在线臀色熟女 | 亚洲色图 男人天堂 中文字幕| 99国产极品粉嫩在线观看| 精品久久久久久成人av| 啦啦啦 在线观看视频| 国产免费男女视频| 91国产中文字幕| 日本五十路高清| 国内久久婷婷六月综合欲色啪| 亚洲精品粉嫩美女一区| 美女国产高潮福利片在线看| 成年人黄色毛片网站| 亚洲成人免费av在线播放| 在线播放国产精品三级| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产乱子伦一区二区三区| 国产黄a三级三级三级人| 一级毛片高清免费大全| 黄色视频不卡| 精品国产国语对白av| 亚洲性夜色夜夜综合| 中文字幕精品免费在线观看视频| 午夜亚洲福利在线播放| 无限看片的www在线观看| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 国产精品二区激情视频| 精品一区二区三区av网在线观看| 欧美激情极品国产一区二区三区| 精品卡一卡二卡四卡免费| 黄频高清免费视频| 亚洲一区中文字幕在线| 亚洲国产精品一区二区三区在线| 亚洲午夜精品一区,二区,三区| 欧美在线一区亚洲| 9热在线视频观看99| www.www免费av| 不卡一级毛片| 99热国产这里只有精品6| 亚洲精品在线观看二区| 大码成人一级视频| 成年人黄色毛片网站| 国产三级在线视频| 99精国产麻豆久久婷婷| 亚洲情色 制服丝袜| 99re在线观看精品视频| 夜夜夜夜夜久久久久| 老司机靠b影院| 高清毛片免费观看视频网站 | 人人澡人人妻人| 国产在线观看jvid| 黄色片一级片一级黄色片| 亚洲 欧美 日韩 在线 免费| 香蕉丝袜av| 99精品在免费线老司机午夜| 亚洲成人国产一区在线观看| 人妻久久中文字幕网| 波多野结衣高清无吗| 制服诱惑二区| 亚洲精品成人av观看孕妇| 中文字幕人妻丝袜制服| 丝袜美足系列| 岛国视频午夜一区免费看| 久久欧美精品欧美久久欧美| 一级片免费观看大全| 中文字幕精品免费在线观看视频| 五月开心婷婷网| 久久这里只有精品19| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 女性被躁到高潮视频| 亚洲一区二区三区欧美精品| 不卡一级毛片| 中文字幕人妻熟女乱码| 大型黄色视频在线免费观看| 日本vs欧美在线观看视频| 久久久久亚洲av毛片大全| 国产极品粉嫩免费观看在线| 久久人人97超碰香蕉20202| 成人国语在线视频| 久久亚洲精品不卡| 国产高清国产精品国产三级| 日韩欧美三级三区| 精品国产乱子伦一区二区三区| 久久久久久久午夜电影 | 人人妻人人爽人人添夜夜欢视频| 可以在线观看毛片的网站| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区不卡视频| 交换朋友夫妻互换小说| 久久香蕉精品热| 真人一进一出gif抽搐免费| 18禁观看日本| 亚洲免费av在线视频| 国产xxxxx性猛交| 欧美大码av| 亚洲熟妇熟女久久| 咕卡用的链子| 母亲3免费完整高清在线观看| 日韩中文字幕欧美一区二区|