• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction monitoring of lock head base plate using distributed optical fibre sensing technique

    2015-03-01 09:21:44SongZhanpuShiBinZhuHonghuShenMengfenZhangDanSunYijie

    Song Zhanpu Shi Bin Zhu Honghu Shen Mengfen Zhang Dan Sun Yijie

    (1School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China)(2Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA)

    ?

    Construction monitoring of lock head base plate using distributed optical fibre sensing technique

    Song Zhanpu1,2Shi Bin1Zhu Honghu1Shen Mengfen2Zhang Dan1Sun Yijie1

    (1School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China)(2Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA)

    Abstract:The concrete hydration heat release process of the base plate is monitored using Roman optical time domain reflectometry(ROTDR)sensing sensors. The monitoring data shows that the internal maximum temperature of the base plate is about 54 ℃ after the concrete was cured for 120 h. The fiber Bragg grating (FBG) temperature sensors are adopted to measure the surface temperature of the concrete and the temperature results are used to compensate the data measured by the pulse-prepump Brillouin optical time-domain analyzer(PPP-BOTDA) to obtain the real concrete surface strain of the base plate. The monitoring data is analyzed to obtain a clear understanding of the strain state of the base plate under the effect of concrete hydration heat release. The monitoring results demonstrate the potential of distributed optical fibre sensing techniques as a powerful tool in real-time construction monitoring, and also provide an important insight into the design, construction and maintenance of large hydraulic structures.

    Key words:construction monitoring; lock head base plate; optical fibre sensing; lock engineering; concrete

    Received 2015-03-17.

    Biographies:Song Zhanpu (1989—), male, graduate; Shi Bin (corresponding author), male, doctor, professor, shibin@nju.edu.cn.

    Foundation items:The National Key Technology R& D Program during the 12th Five-Year Plan Period (No.2012BAK10B05), the State Key Program of National Natural Science of China (No.41427801).

    Citation:Song Zhanpu, Shi Bin, Zhu Honghu, et al. Construction monitoring of a lock head base plate using distributed optical fibre sensing technique[J].Journal of Southeast University (English Edition),2015,31(4):535-540.[doi:10.3969/j.issn.1003-7985.2015.04.018]

    The safety of ship locks should be guaranteed to protect people and their properties downstream. Therefore, the health monitoring of ship lock structures is a critical issue[1]. The stress state of a ship lock structure depends on its type and structural complexity. In addition, the construction process and the control of hydration temperature have a significant influence on the structural quality. Thus, the monitoring of the structural temperature and strain during construction plays a significant role in ensuring the construction quality of ship locks[2].

    At present, the traditional monitoring techniques can hardly meet the requirements of modern structural monitoring due to the following deficiencies[3]. Most of the sensors are single-point sensors with a relatively low survival rate and can hardly perform in real-time or automatic monitoring. Single-point sensors are integrated into an organized monitoring system with difficulty. As a result, it is necessary to develop and apply the innovative technologies and methods to structural monitoring. In recent years, the distributed optical fibre sensing-based construction monitoring and health diagnosis methods have been developed and widely adopted in different structural monitoring systems[4-10]. A study in this research area was carried out by Shi et al[11]. They utilized the Brillion scattering-based sensing optical fibres to measure the strain distribution of a tunnel in Nanjing, China. Matta et al.[12]installed optical fibre on steel bars to measure the strain distribution of a bridge. However, both of them focused on built structure health monitoring. In this paper, we employ three distributed optical fibre sensing techniques including FBG, ROTDR and PPP-BOTDA to monitor the construction stage of a ship lock head base plate. The monitoring results are presented and analyzed, which provide an insight into the design, construction and maintenance of large hydraulic structures. Herein, the working principles of three distributed optical fibre sensing techniques are introduced.

    1Working Principles of Distributed Optical Fibre Sensing Techniques

    In the past few decades, several distributed optical fibre sensing techniques have been developed. FBG, ROTDR and PPP-BOTDA are the most frequently used distributed optical fibre sensing techniques. Tab.1 lists the features of the three techniques, and the structures of the sensors used in monitoring are shown in Fig.1. The ROTDR temperature sensing cable is only sensitive to temperature. The PPP-BOTDA strain sensing cable is cross sensitive to strain and temperature.

    Tab.1Features of three distributed optical fibre sensing techniques

    TechniqueFBGROTDRPPP-BOTDAMeasuringdistance/km2,4,6,825Spatialresolution1m5cmMeasurementaccuracy±0.2℃±0.2℃±7.5×10-6Measurementrange-40to200℃-40to120℃-0.03to0.04Young smodulus/GPa2000.331.1Stiffnesscoefficient/(MN·m-1)0.6186.6

    The sensing function of FBG was first discovered in the formation of photo-generated optical fibres by Hill et al[13].

    Fig.1 Structure of the sensors.(a) FBG sensor; (b) ROTDR sensing cable; (c) PPP-BOTDA sensing cable

    The Bragg grating is written into a segment of Ge-doped single-mode fibre, in which a periodic modulation of the core refractive index is formed by exposure to a spatial pattern of ultraviolet (UV) light[14]. According to Bragg’s law, when a broadband source of light has been injected into the fibre, FBG reflects a narrow spectral part of light at a certain wavelength[15]. FBG can accurately measure strain and temperature by use of its wavelength shift. FBG sensors with different wavelengths can be connected to construct a quasi-distributed sensing array.

    In the measurement process of ROTDR, an intense laser pulse is launched into a sensing fibre. Due to collision between photon and optical fibre molecules, the back scattering light is yielded. The back scattering light can be divided into Rayleigh scattering light, Raman scattering light and Brillouin scattering light[16]. The frequency spectrum characteristics of Rayleigh and Raman scattering lights are influenced by a variety of factors, such as strain, pressure, electric magnetic and so on. According to the frequency spectrum of Rayleigh scattering light, it can be divided into anti-Stokes light and Stoke light, as shown in Fig.2. ROTDR can measure the temperature distribution if the frequency spectrum of Rayleigh scattering light is captured.

    The PPP-BOTDA sensing technique is based on stimulated Brillouin backscattering. During measurement, the pulse laser (pump laser) and probe continuous wave are injected into an optical fibre from two ends. When the

    Fig.2 Scattering lights in a sensing optical fibre[16]

    frequency difference between the two lasers equals the Brillouin frequency shift, the Brillouin backscattering will be stimulated and the energy transfer will be generated between the two lasers[17]. As shown in Fig.3, a new method using a pre-pump pulse in front of a traditional laser pulse to enhance the accuracy and spatial resolution was introduced by Kishida et al.[18], which can enhance the accuracy and spatial resolution of the sensing technique.

    Fig.3 Working principle of PPP-BOTDA

    According to the linear relationship between the Brillouin frequency shift and the strain or temperature, the strain or temperature can be measured by detecting the frequency change of stimulated Brillouin scattering and the equation is given as[19]

    VB(T,ε)=Cεε+CTT

    whereCεandCTare the strain and temperature coefficients;νBis the Brillouin frequency shift;εandTare the strain variation and temperature variation, respectively. To accurately obtain the stress-strain field of the structure under load, we must correct the strain, which was affected by temperature. In this paper, the authors adopt the FBG temperature sensors to measure the surface temperature of the concrete and the temperature results are used to compensate the data measured by PPP-BOTDA to obtain the real concrete surface strain of the base plate.

    2Project Background

    The ship lock as a case study is located in Jiangsu province, China. The size of the lock head base plate is 53.8 m×29.2 m×3.0 m. In order to control the concrete hydration temperature of the base plate, two post-cast strips (width: 1 m) were used to separate the base plate into three blocks of a similar size, defined as base plate 1, 2, 3, respectively. The blocks were poured with concrete one by one and the construction process is shown in Fig.4.

    Fig.4 The construction process of the base plate

    The ROTDR distributed temperature optical fibre sensing cable was laid on the central parts of base plate 1, 2, 3 with a U-shaped distribution,as shown in Fig.5(a).

    Fig.5 Layout of the distributed optical fibre sensing system(unit:dm).(a) ROTDR temperature measurement; (b) FBG/PPP-BOTDA strain measurement; (c) Work filed ROTDR temperature measurement; (d) Work field monitoring station

    According to the structural characteristics of the ship lock, distributed optical fibre sensing cable based on PPP-BOTDA was laid to real-time monitor the concrete strain and six FBG temperature sensors were installed along with the PPP-BOTDA sensing cable to monitor its temperature, as shown in Fig.5(b). The distance from the cable to the base plate surface is 10 cm. Fig.5(c) shows the layout of the ROTDR sensing cable in the work field. The construction of the three blocks of the base plate and the monitoring station are shown in Fig.5(d).

    3Real-Time Monitoring Results

    Base plate 2 was poured with concrete on March 9, 2012. The internal concrete temperature of the base plate was real-time monitored by the ROTDR technique and the monitoring data of the base plate geometric centre temperature is shown in Fig.6. It can be seen that the concrete hydration of base plate 2 produced a violent reaction and the peak temperature of the internal concrete block reached 53.7 ℃ after the concrete had been cured for 120 h. The change process of the concrete temperature can be divided into four stages: ① 0 to 20 h is defined as the beginning stage of the concrete hydration, in the end of which the concrete pouring was completed; ② From 20 to 55 h, the hydration was energetic and the concrete temperature of the base plate increased rapidly and the rate of the hydration exothermic reached a maximum in the 30th hour, which was marked as pointAin the figure; ③ From 55 to 120 h, the hydration reaction and the heat dissipation from the base plate surface reached a dynamic balance and the internal temperature of the base plate was affected by rain; ④ after 120 h, the hydration reaction was substantially completed and the internal concrete temperature began to decrease, as a result of dissipating heat from the base plate surface.

    Fig.6 The temperature vs. time of base plate 2

    The central temperature of the three base plates is shown in Fig.7. The internal concrete temperature of three base plates reached a maximum on the 5th day and all of them were approximately 54 ℃. Overall, the change trend in the central temperature of the three base plates is similar.

    Fig.7 The center temperature change trends of three base plates

    The concrete internal temperature of base plate 2 was monitored by the ROTDR sensing cable and the upper/lower surface temperatures were monitored by FBG thermometers. The monitoring results are shown in Fig.8, which indicate that the temperature of the internal and upper surface of the base plate reached a maximum almost at the same time (5 d after the concrete poured) and the maximum central temperature was 54 ℃. The temperature of the lower surface reached a maximal value of 46.3 ℃. The temperature of the lower surface changed slowly after reached the peak value. This can be attributed to the energetic hydration, which led to the rapid increase of the internal temperature. The hydration reaction essentially completed after 7 d, and the internal temperature gradually decreased and tended towards stability. Due to the better cooling condition near the upper surface, the temperature difference between the internal and the upper surface was much higher than the lower surface temperature. It suggests that the hydration heat of the base plate mainly dissipated through the upper surface.

    Fig.8 The concrete temperature of base plate 2

    The PPP-BOTDA technique was employed to monitore the concrete surface strain of three base plates after each of them was poured. The concrete surface temperature, monitored by the FBG sensors, was used to compensate the strain values obtained by Eq.(1). The corrected concrete strain monitoring results are shown in Fig.9.

    Fig.9 The strain of three base plates.(a) The upper surface strain; (b) The lower surface strain

    It can be seen from Fig.9 that, 2 d after the concrete pouring (2012-03-10), the upper and lower surfaces of concrete of base plate 2 were subjected to tensile strain, and both of their strains were about 170×10-6. This was mainly because the concrete hydration heat was being released and the structure of the base plate was affected by thermal stress. Then, the concrete hydration heat was weakened and the temperature of the surface concrete decreased 8 d after the concrete pouring. At the same time, the thermal stress decreased and the concrete strain of the upper surface was reduced to about 50×10-6, as shown in Fig.9(a). However, the concrete strain of the lower surface was maintained at approximately 90×10-6, as shown in Fig.8(b). This was mainly because the lower surface concrete was based on the foundation and its temperature dropped more slowly than that of the upper surface. Therefore, the effect of thermal stress on the internal concrete was much greater than that of the upper surface concrete. In addition, the upper surface concrete strain of base plate 1 had an irregular distribution 2 d after the concrete pouring, as shown in Fig.9(a). The authors considered the monitoring data to be an instrumental error. On March 26, 2012, 18 d after the concrete had been poured, the concrete heat hydration had finished and the base plate was weakly affected by the structural thermal stress. The concrete strains of the upper and lower surface were reduced to zero. Compared with the concrete strain of base plates 1 and 3, similar trends were observed. Thus, it can be concluded that the base plate structure is mainly affected by the thermal stress of the concrete hydration heat release at the early construction stage.

    4Conclusion

    The concrete hydration heat temperature of the ship lock base plate was real-time monitored by the ROTDR technique. The results show that the central temperature of the base plate reached a maximum after the concrete had cured for 120 h and the maximum was about 54 ℃.

    According to the monitoring data of the PPP-BOTDA and FBG sensors, the concrete of the base plate showed tensile stress during its construction and the base plate structure is mainly affected by temperature stress of the concrete hydration heat release in the early construction stage.

    These monitoring results indicate above that the distributed optical fibre sensing technique used in this paper is a powerful and useful tool to real-time monitor the base plate construction of a ship lock structure. The distributed optical fibre sensing can be applied to infrastructural engineering construction monitoring.

    References

    [1]Song Z P, Zhang D, Shi B, et al. A study on distributed measurement in ship lock structural construction monitoring using fibre optic sensing [C]//GlobalViewofEngineeringGeologyandtheEnvironmentTechnologies. Beijing, 2012: 605-610.

    [3]Shi B, Xu H Z, Zhang D, et al. Feasibility study on application of BOTDR to health monitoring for large infrastructure engineering [J].ChineseJournalofRockMechanics&Engineering, 2004, 23(3): 493-499. (in Chinese)

    [4]Zhang D, Shi B, Wu Z S, et al. Distributed optical fibre sensor based on BOTDR and its application to structural health monitoring [J].ChinaCivilEngineeringJournal, 2005, 36(11): 83-87. (in Chinese)

    [5]Bastianini F, Matta F, Galati N, et al. A Brillouin smart FRP material and a strain data post processing software for structural health monitoring through laboratory testing and field application on a highway bridge[C]//ProcSPIE. San Diego, CA, USA, 2005, 5765: 600-611.

    [6]Bao X Y, Dhliwayo J, Heron N, et al. Experimental and theoretical studies on a distributed temperature sensor based on Brollouin scattering [J].LightwaveTechnology, 1995, 13(7):1340-1348.

    [7]Wu Z S, Shi B, Harada T, et al. An experimental study on the measuring characteristics of BOTDR for structure health monitoring [J].ChinaCivilEngineeringJournal, 2005, 6(11): 83-87. (in Chinese)

    [8]Zhu H H, Yin J H, Zhang L, et al. Monitoring internal displacements of a model dam using FBG sensing bars [J].AdvancesinStructuralEngineering, 2010, 13(2): 249-261.

    [9]Zhu H H, Yin J H, Jin W, et al. Health monitoring of foundations using fibre Bragg grating sensing technology [J].ChinaCivilEngineeringJournal, 2010, 43(6): 109-115. (in Chinese)

    [10]Fei B, Shi B, Zhu H H, et al. Study on the temperature field reconstruction for mass concrete based on DTS-GS method [C]//NewFrontiersinGeotechnicalEngineering. Shanghai, 2014: 150-159.

    [11]Shi B, Xu H Z, Chen B, et al. A feasibility study on the application of fibre-optic distributed sensors for strain measurement in the Taiwan strait tunnel project [J].MarineGeoresources&Geotechnology, 2003, 21(3/4): 333-343.

    [12]Matta F, Bastianini F, Galati N, et al. Distributed strain measurement in steel bridge with fibre optic sensors: validation through diagnostic load test [J].JournalofPerformanceofConstructedFacilities, 2008, 22(4): 264-273.

    [13]Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication [J].ApplPhysLett, 1978, 32(10): 647-649.

    [14]Zhu H H, Ho A L, Yin J H, et al. An optical fibre monitoring system for evaluating the performance of a soil nailed slope [J].SmartStructures&Systems, 2012, 9(5): 393-410.

    [15]Morey W W, Meltz G, Glenn W H. Fibre optic Bragg grating sensors [J].ProceedingsofSPIE, 1989, 1169(96): 98-107.

    [16]Grattan K T V, Sun T. Fiber optic sensor technology: an overview [J].Sensors&Actuators, 2000, 82(1):40-61.

    [17]Horiguchi T, Tateda M. BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory [J].JournalofLightwaveTechnology, 1989, 7(8): 1170-1176.

    [18]Kishida K, Li C H. Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system [J].StructuralHealthMonitoringandIntelligentInfrastructure, 2005, 5855: 471-477.

    [19]Bernini R, Minardo A, Zeni L. Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors [J].OpticalEngineering, 2002, 41(9): 2186-2194.

    doi:10.3969/j.issn.1003-7985.2015.04.018

    女人高潮潮喷娇喘18禁视频| 日本黄色日本黄色录像| 一本大道久久a久久精品| 51午夜福利影视在线观看| 国产毛片在线视频| 欧美变态另类bdsm刘玥| 亚洲欧美色中文字幕在线| 女人高潮潮喷娇喘18禁视频| 美女中出高潮动态图| 人人妻人人澡人人看| 一区二区三区精品91| 亚洲欧美成人综合另类久久久| 成年女人毛片免费观看观看9 | 成人漫画全彩无遮挡| 精品人妻在线不人妻| 亚洲四区av| 国产精品一国产av| 国产成人精品久久久久久| 美女脱内裤让男人舔精品视频| 久久久久久久久久久免费av| 亚洲第一区二区三区不卡| 男女下面插进去视频免费观看| 久久性视频一级片| 亚洲伊人久久精品综合| 欧美中文综合在线视频| 久久影院123| 中文字幕高清在线视频| a 毛片基地| 999精品在线视频| 日日啪夜夜爽| 亚洲精品久久成人aⅴ小说| 国产精品.久久久| 老鸭窝网址在线观看| 日本wwww免费看| 夫妻午夜视频| 免费观看性生交大片5| 国产在视频线精品| 久久久久国产精品人妻一区二区| 国产精品免费视频内射| 秋霞伦理黄片| 国产av精品麻豆| 男女免费视频国产| 欧美激情极品国产一区二区三区| 亚洲成人av在线免费| 久久99精品国语久久久| 麻豆av在线久日| 街头女战士在线观看网站| 精品久久久久久电影网| 男女高潮啪啪啪动态图| 啦啦啦视频在线资源免费观看| 97人妻天天添夜夜摸| 晚上一个人看的免费电影| 免费少妇av软件| 精品少妇黑人巨大在线播放| 国产熟女欧美一区二区| 丝袜人妻中文字幕| 日本vs欧美在线观看视频| 久久午夜综合久久蜜桃| 王馨瑶露胸无遮挡在线观看| 另类精品久久| 亚洲国产成人一精品久久久| 日韩制服丝袜自拍偷拍| 午夜免费观看性视频| 黄色一级大片看看| 午夜福利免费观看在线| 最近最新中文字幕大全免费视频 | 国产有黄有色有爽视频| 亚洲一区二区三区欧美精品| 日韩不卡一区二区三区视频在线| 一边亲一边摸免费视频| 啦啦啦中文免费视频观看日本| 久久精品亚洲熟妇少妇任你| 久久久精品区二区三区| 丝袜喷水一区| 精品人妻熟女毛片av久久网站| 成年美女黄网站色视频大全免费| 日韩av免费高清视频| 久久久久网色| 精品人妻在线不人妻| 这个男人来自地球电影免费观看 | 久久久国产精品麻豆| 亚洲欧洲国产日韩| netflix在线观看网站| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 国产视频首页在线观看| 亚洲精品在线美女| 国产探花极品一区二区| 美女主播在线视频| 国产成人免费无遮挡视频| 狠狠精品人妻久久久久久综合| 精品酒店卫生间| 操出白浆在线播放| 中文字幕高清在线视频| 国产亚洲av片在线观看秒播厂| 香蕉丝袜av| av又黄又爽大尺度在线免费看| 9热在线视频观看99| 80岁老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 久久热在线av| 老司机靠b影院| 女人久久www免费人成看片| 精品国产一区二区久久| 欧美乱码精品一区二区三区| 人妻 亚洲 视频| 汤姆久久久久久久影院中文字幕| 啦啦啦在线免费观看视频4| av线在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 男女国产视频网站| 麻豆精品久久久久久蜜桃| 高清视频免费观看一区二区| 日韩制服骚丝袜av| 老司机亚洲免费影院| 秋霞伦理黄片| 国产极品粉嫩免费观看在线| 久久精品亚洲熟妇少妇任你| 人妻一区二区av| 国产极品天堂在线| 久久ye,这里只有精品| 国产日韩欧美视频二区| kizo精华| 欧美久久黑人一区二区| 久热爱精品视频在线9| 欧美变态另类bdsm刘玥| 免费人妻精品一区二区三区视频| 久久97久久精品| 国产亚洲一区二区精品| 国产乱人偷精品视频| 国产黄色视频一区二区在线观看| 日本色播在线视频| 国产精品久久久久久人妻精品电影 | 日韩一区二区三区影片| 在线亚洲精品国产二区图片欧美| 波多野结衣av一区二区av| 亚洲精品美女久久久久99蜜臀 | 一区福利在线观看| 美女高潮到喷水免费观看| 电影成人av| 国产麻豆69| 国产精品一区二区在线不卡| 丰满少妇做爰视频| 999精品在线视频| 九草在线视频观看| 亚洲av成人精品一二三区| 亚洲婷婷狠狠爱综合网| 久久久国产欧美日韩av| 亚洲七黄色美女视频| av网站在线播放免费| av女优亚洲男人天堂| 人妻 亚洲 视频| 日本av免费视频播放| 国产成人av激情在线播放| 少妇猛男粗大的猛烈进出视频| 国产在线免费精品| 人人妻人人澡人人爽人人夜夜| 中文欧美无线码| 国产精品一区二区在线不卡| 国产精品免费视频内射| 国产精品久久久人人做人人爽| 国产成人精品在线电影| 一区二区三区精品91| av网站在线播放免费| 嫩草影院入口| 欧美日韩亚洲高清精品| kizo精华| 亚洲av欧美aⅴ国产| 日本vs欧美在线观看视频| 精品少妇久久久久久888优播| a级毛片黄视频| 亚洲美女搞黄在线观看| 国产在线视频一区二区| 永久免费av网站大全| 菩萨蛮人人尽说江南好唐韦庄| av国产精品久久久久影院| 国产日韩欧美视频二区| 两个人免费观看高清视频| 亚洲人成电影观看| 校园人妻丝袜中文字幕| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 视频在线观看一区二区三区| www.熟女人妻精品国产| 一级a爱视频在线免费观看| 欧美在线黄色| 欧美人与善性xxx| 精品国产露脸久久av麻豆| 亚洲国产精品一区二区三区在线| 亚洲熟女精品中文字幕| 中文字幕人妻熟女乱码| 国产成人av激情在线播放| 亚洲精品在线美女| 国产毛片在线视频| 一区二区三区精品91| 久久午夜综合久久蜜桃| 青春草国产在线视频| 精品人妻在线不人妻| 亚洲国产欧美一区二区综合| 日本猛色少妇xxxxx猛交久久| 女性被躁到高潮视频| 国产成人一区二区在线| 久久久久视频综合| 国产乱来视频区| 人体艺术视频欧美日本| 国产人伦9x9x在线观看| 国产在线一区二区三区精| 美女大奶头黄色视频| 高清不卡的av网站| h视频一区二区三区| 国产国语露脸激情在线看| 丝袜脚勾引网站| 国产欧美亚洲国产| 午夜激情久久久久久久| 丝袜在线中文字幕| 国产福利在线免费观看视频| 9191精品国产免费久久| 另类亚洲欧美激情| 久久久精品国产亚洲av高清涩受| 亚洲精品中文字幕在线视频| 这个男人来自地球电影免费观看 | 国产欧美亚洲国产| 欧美中文综合在线视频| 亚洲av在线观看美女高潮| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 久久精品aⅴ一区二区三区四区| 国产欧美日韩综合在线一区二区| 国产老妇伦熟女老妇高清| 欧美激情极品国产一区二区三区| 夫妻午夜视频| 国产又爽黄色视频| 别揉我奶头~嗯~啊~动态视频 | 99久久99久久久精品蜜桃| 少妇被粗大的猛进出69影院| 精品久久蜜臀av无| 国产欧美日韩一区二区三区在线| 街头女战士在线观看网站| 国产精品嫩草影院av在线观看| 十八禁网站网址无遮挡| 欧美日韩亚洲国产一区二区在线观看 | 精品卡一卡二卡四卡免费| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区激情| 亚洲色图综合在线观看| 欧美97在线视频| 亚洲欧美成人综合另类久久久| 一级黄片播放器| 欧美日韩亚洲综合一区二区三区_| 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 你懂的网址亚洲精品在线观看| 中文精品一卡2卡3卡4更新| av天堂久久9| 成人毛片60女人毛片免费| 狂野欧美激情性xxxx| 亚洲欧美一区二区三区国产| 免费看不卡的av| 男女之事视频高清在线观看 | 国产高清不卡午夜福利| 可以免费在线观看a视频的电影网站 | 国产在线一区二区三区精| 欧美日韩一区二区视频在线观看视频在线| 777米奇影视久久| 午夜激情av网站| 高清视频免费观看一区二区| 视频区图区小说| 亚洲欧美清纯卡通| 午夜免费观看性视频| 成人手机av| 啦啦啦视频在线资源免费观看| 亚洲视频免费观看视频| 少妇的丰满在线观看| 18禁观看日本| 最黄视频免费看| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版| 免费日韩欧美在线观看| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 午夜福利一区二区在线看| 女人精品久久久久毛片| 午夜精品国产一区二区电影| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区精品视频观看| 交换朋友夫妻互换小说| av电影中文网址| 伦理电影大哥的女人| 制服人妻中文乱码| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 纯流量卡能插随身wifi吗| 久久精品亚洲av国产电影网| 国产日韩欧美视频二区| av网站免费在线观看视频| netflix在线观看网站| 成年人免费黄色播放视频| 中国国产av一级| 久久精品aⅴ一区二区三区四区| 各种免费的搞黄视频| 狠狠精品人妻久久久久久综合| 黄片无遮挡物在线观看| 国产黄色视频一区二区在线观看| 老鸭窝网址在线观看| 不卡av一区二区三区| 国产高清不卡午夜福利| 中文字幕av电影在线播放| 欧美黑人欧美精品刺激| 久久久久人妻精品一区果冻| 蜜桃在线观看..| 亚洲欧洲日产国产| 日韩电影二区| av网站在线播放免费| tube8黄色片| 亚洲欧美成人综合另类久久久| 国产一级毛片在线| 青草久久国产| 国产无遮挡羞羞视频在线观看| 久久免费观看电影| www日本在线高清视频| 亚洲成人av在线免费| 久久国产亚洲av麻豆专区| 91精品三级在线观看| 久久久久人妻精品一区果冻| a级片在线免费高清观看视频| 午夜久久久在线观看| 日本欧美视频一区| 成年女人毛片免费观看观看9 | 久热这里只有精品99| 精品久久蜜臀av无| 一个人免费看片子| 最新在线观看一区二区三区 | avwww免费| 精品午夜福利在线看| 一个人免费看片子| 桃花免费在线播放| 男女午夜视频在线观看| 日韩制服骚丝袜av| 老熟女久久久| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 中文字幕人妻熟女乱码| 国产精品久久久久久久久免| 国产极品粉嫩免费观看在线| 久久精品国产a三级三级三级| 日本一区二区免费在线视频| 男人舔女人的私密视频| 日韩伦理黄色片| 中文字幕亚洲精品专区| 看非洲黑人一级黄片| 婷婷色av中文字幕| 制服诱惑二区| 国产欧美日韩一区二区三区在线| 一区二区av电影网| 18禁观看日本| 免费不卡黄色视频| 亚洲av在线观看美女高潮| 国产精品秋霞免费鲁丝片| 亚洲美女搞黄在线观看| 亚洲美女视频黄频| 亚洲图色成人| 日日撸夜夜添| 欧美av亚洲av综合av国产av | 亚洲第一青青草原| 久久久久人妻精品一区果冻| 男女床上黄色一级片免费看| av国产精品久久久久影院| 日本黄色日本黄色录像| 亚洲色图综合在线观看| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| av网站在线播放免费| 日韩 亚洲 欧美在线| 精品久久久久久电影网| 9热在线视频观看99| 人体艺术视频欧美日本| 久久午夜综合久久蜜桃| 国产深夜福利视频在线观看| 亚洲色图 男人天堂 中文字幕| 国产黄色视频一区二区在线观看| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 国产不卡av网站在线观看| 女人精品久久久久毛片| 在线观看www视频免费| 午夜福利在线免费观看网站| 日本av手机在线免费观看| 在线观看人妻少妇| 国产精品成人在线| 日本欧美国产在线视频| 亚洲欧美成人精品一区二区| 成人国产av品久久久| 美女国产高潮福利片在线看| 亚洲国产欧美一区二区综合| 一区二区三区激情视频| av免费观看日本| 飞空精品影院首页| 久久这里只有精品19| videos熟女内射| 精品午夜福利在线看| 午夜福利乱码中文字幕| 制服人妻中文乱码| 日韩,欧美,国产一区二区三区| 久久 成人 亚洲| 国产极品天堂在线| 亚洲av综合色区一区| 成人黄色视频免费在线看| 午夜精品国产一区二区电影| 亚洲免费av在线视频| 日本欧美视频一区| www.熟女人妻精品国产| 男女床上黄色一级片免费看| 久久综合国产亚洲精品| 一区福利在线观看| 婷婷色综合大香蕉| 视频区图区小说| 久久精品亚洲熟妇少妇任你| 亚洲男人天堂网一区| 日本一区二区免费在线视频| 亚洲国产精品成人久久小说| 19禁男女啪啪无遮挡网站| 久久影院123| 国产淫语在线视频| 亚洲国产av影院在线观看| 妹子高潮喷水视频| 精品福利永久在线观看| 久久精品国产综合久久久| 国产在线视频一区二区| 亚洲欧洲精品一区二区精品久久久 | 精品少妇一区二区三区视频日本电影 | 亚洲精品aⅴ在线观看| 咕卡用的链子| 欧美激情 高清一区二区三区| 中文字幕最新亚洲高清| 久久鲁丝午夜福利片| av卡一久久| 51午夜福利影视在线观看| 一二三四在线观看免费中文在| 在线观看免费日韩欧美大片| 伊人久久大香线蕉亚洲五| 日韩大片免费观看网站| 成年动漫av网址| 搡老乐熟女国产| 久久鲁丝午夜福利片| 女人爽到高潮嗷嗷叫在线视频| 成人毛片60女人毛片免费| 麻豆乱淫一区二区| 成人国产麻豆网| 在线观看一区二区三区激情| 中国国产av一级| 精品酒店卫生间| 免费在线观看视频国产中文字幕亚洲 | 日韩视频在线欧美| 丰满迷人的少妇在线观看| 飞空精品影院首页| 国产成人免费观看mmmm| 日韩欧美一区视频在线观看| 日本av手机在线免费观看| 国产高清不卡午夜福利| 最近2019中文字幕mv第一页| 最黄视频免费看| 波多野结衣av一区二区av| 欧美另类一区| 成年人免费黄色播放视频| 亚洲综合精品二区| 又大又爽又粗| 国产深夜福利视频在线观看| 免费久久久久久久精品成人欧美视频| 精品少妇黑人巨大在线播放| 亚洲欧美清纯卡通| 十八禁人妻一区二区| 免费黄网站久久成人精品| av又黄又爽大尺度在线免费看| 亚洲视频免费观看视频| 精品少妇内射三级| av.在线天堂| 99热全是精品| 精品一区二区免费观看| 欧美黑人精品巨大| 啦啦啦在线免费观看视频4| 国产伦人伦偷精品视频| 国产亚洲一区二区精品| 亚洲免费av在线视频| 亚洲人成网站在线观看播放| 男男h啪啪无遮挡| 国产成人精品久久久久久| 精品少妇一区二区三区视频日本电影 | 天美传媒精品一区二区| 国产av精品麻豆| 狂野欧美激情性bbbbbb| 午夜老司机福利片| 亚洲精品久久成人aⅴ小说| 看免费av毛片| 黄频高清免费视频| 国产无遮挡羞羞视频在线观看| 99热网站在线观看| 1024香蕉在线观看| 午夜日韩欧美国产| 午夜日本视频在线| 乱人伦中国视频| 美女扒开内裤让男人捅视频| 不卡视频在线观看欧美| 免费日韩欧美在线观看| av免费观看日本| 日本欧美视频一区| 久久99热这里只频精品6学生| 狠狠婷婷综合久久久久久88av| 国产精品国产三级国产专区5o| 国产麻豆69| 考比视频在线观看| 午夜日韩欧美国产| 亚洲av国产av综合av卡| 精品亚洲乱码少妇综合久久| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 丝袜脚勾引网站| 操出白浆在线播放| 日韩电影二区| 少妇猛男粗大的猛烈进出视频| 亚洲av欧美aⅴ国产| 在线亚洲精品国产二区图片欧美| 一边亲一边摸免费视频| 亚洲中文av在线| 成年人午夜在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 天天影视国产精品| 日本爱情动作片www.在线观看| 免费观看av网站的网址| 热re99久久精品国产66热6| 各种免费的搞黄视频| 欧美黑人欧美精品刺激| 欧美国产精品va在线观看不卡| 午夜av观看不卡| 巨乳人妻的诱惑在线观看| 综合色丁香网| 亚洲欧美精品自产自拍| 晚上一个人看的免费电影| 一边亲一边摸免费视频| 99国产精品免费福利视频| 黄色毛片三级朝国网站| 亚洲成人av在线免费| 国产 一区精品| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| 一级a爱视频在线免费观看| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲 | 国产一区二区三区av在线| 如何舔出高潮| 亚洲国产av影院在线观看| 欧美精品高潮呻吟av久久| 国产激情久久老熟女| 宅男免费午夜| 亚洲 欧美一区二区三区| 国产在线免费精品| 亚洲国产最新在线播放| 狠狠婷婷综合久久久久久88av| 成年人午夜在线观看视频| 这个男人来自地球电影免费观看 | 亚洲美女黄色视频免费看| 欧美成人精品欧美一级黄| 日韩制服骚丝袜av| 久久国产精品男人的天堂亚洲| 亚洲精品国产一区二区精华液| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| 欧美乱码精品一区二区三区| 如日韩欧美国产精品一区二区三区| 美女午夜性视频免费| 啦啦啦视频在线资源免费观看| 男女边摸边吃奶| 高清在线视频一区二区三区| 精品一区二区三区av网在线观看 | 啦啦啦视频在线资源免费观看| a级毛片在线看网站| 人人妻,人人澡人人爽秒播 | 午夜91福利影院| 两性夫妻黄色片| 欧美97在线视频| 99久久综合免费| 欧美日韩成人在线一区二区| 巨乳人妻的诱惑在线观看| 卡戴珊不雅视频在线播放| 亚洲人成电影观看| 欧美在线黄色| 99久久99久久久精品蜜桃| 如日韩欧美国产精品一区二区三区| 成年动漫av网址| 精品久久久精品久久久| 欧美精品一区二区免费开放| 精品一品国产午夜福利视频| 天天躁日日躁夜夜躁夜夜| 免费观看a级毛片全部| av视频免费观看在线观看| 无限看片的www在线观看| 日韩伦理黄色片| 宅男免费午夜| 一边摸一边抽搐一进一出视频| 色婷婷av一区二区三区视频| 亚洲,欧美,日韩| 国产精品一区二区精品视频观看| 十分钟在线观看高清视频www| 天堂中文最新版在线下载| 在线亚洲精品国产二区图片欧美| 久久久久人妻精品一区果冻| 国产成人精品无人区| 十八禁高潮呻吟视频|