• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of concurrent precipitation on recrystallization textures in commercial Al-Mn alloys

    2015-03-01 08:07:25TuYiyouHuangLinghuiSunZhongyueZhouXuefengJiangJianqing

    Tu Yiyou  Huang Linghui  Sun Zhongyue  Zhou Xuefeng  Jiang Jianqing,2

    (1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)(2Nanjing University of Information Science and Technology, Nanjing 210044, China)

    ?

    Effect of concurrent precipitation on recrystallization textures in commercial Al-Mn alloys

    Tu Yiyou1Huang Linghui1Sun Zhongyue1Zhou Xuefeng1Jiang Jianqing1,2

    (1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)(2Nanjing University of Information Science and Technology, Nanjing 210044, China)

    Abstract:The effect of concurrent precipitation on recrystallization textures in AA 3003 aluminum alloys was investigated using X-ray diffraction and electron backscattering diffraction(EBSD) analyses. A weak recrystallization texture was observed in the AA 3003 alloy annealed at 783 K due to the high annealing temperature. Under the same conditions, extremely high P {011}〈111〉 recrystallization textures were detected in the AA 3003 alloy added with 0.39%Sc. Based on the EBSD results, no intensely preferential orientation nucleation of recrystallization grains was observed in the early stage of recrystallization for both alloys. However, concurrent precipitation strongly retarded the growth of recrystallization grains, except for P nucleation sites, thereby conferring an apparent initial growth advantage for P nucleation sites compared with other nucleation sites. Therefore, a sharp P {011}〈111〉 texture appeared in concurrently precipitated AA 3003 alloys.

    Key words:AA3003 alloy; concurrent precipitation; recrystallization texture

    Received 2015-04-16.

    Biography:Tu Yiyou(1978—), male, doctor, associate professor, tuyiyou@seu.edu.cn.

    Foundation items: The National Natural Science Foundation of China (No.51201031), the Natural Science Foundation of Jiangsu Province (No.BK2011615), the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2011024).

    Citation:Tu Yiyou, Huang Linghui, Sun Zhongyue, et al.Effect of concurrent precipitation on recrystallization textures in commercial Al-Mn alloys[J].Journal of Southeast University (English Edition),2015,31(4):501-505.[doi:10.3969/j.issn.1003-7985.2015.04.012]

    Recrystallization texture has been a subject of metallurgical research due to the fact that texture is one of the main factors responsible for the anisotropy of the mechanical properties of the final sheets[1-3]. The mechanisms of recrystallization textures in aluminum alloys are widely debated and generally interpreted using two theories[2,4-5]: 1) Oriented nucleation, in which the preferred formation of nuclei with special orientations determines the final recrystallization texture; and 2) Oriented growth, which originates from a random spectrum of nuclei and wherein structures with the optimal growth conditions dominate the recrystallization texture. However, discussion solely based on one of these two theories fails in most cases. Therefore, a combination of both theories has been proved to aid explanations of the recrystallization textures of aluminum alloys; this strategy is based on growth selection from a limited spectrum of preferentially formed nucleus orientations[2, 6-7].

    The recrystallization texture of most aluminum alloys is characterized by a cubic orientation with scattering along the rolling direction toward the Goss orientation. As-deformed supersaturated AA 3000 series aluminum alloys conventionally result in different recrystallization textures after recrystallization annealing because of the effect of concurrent precipitation[6, 8-11]. Nes et al.[9]found that concurrent precipitation results in the formation of relatively strong P{011} 〈455〉 and ND-rotated cubic {001} 〈310〉 textures in commercial alloys. Moreover, continuous cast AA 3015 alloys exhibit remarkably strong recrystallization textures[10-11]. The formation of the P texture strongly depends on the annealing temperature[11-13]. However, the relationship between the concurrent precipitation and composition of recrystallization textures has been rarely reported in the literature. The present work aims to examine the effect of concurrent precipitation on the nucleation and growth of recrystallization grains at a high annealing temperature of 783 K in as-rolled commercial AA 3003 alloys and recrystallization texture components.

    1Materials and Experiments

    We studied two Al alloy samples: 1) AA 3003: Al-0.93%Mn-0.45%Fe-0.08%Si-0.06%Cu-0.02%Ti and 2) AA 3003+Sc: Al-0.90%Mn-0.39%Fe-0.10%Si-0.05%Cu-0.02%Ti-0.39%Sc (in mass fraction). The alloys were cast into 200 mm×150 mm×20 mm plates by using steel molds and then solution treated (ST) at 913 K for 72 h. The two types of ST plates were subsequently deformed into sheets by cold rolling with a true strain of 2.20. Finally, the rolled sheets were isothermally annealed at 783 K.

    The microstructures of the cold rolled and annealed samples were observed through anodization and optical microscopy under polarized light. All the micrographs were obtained from longitudinal sections, defined by rolling direction (RD) and normal direction (ND).

    The macro-texture measurements were performed using one-fourth thick cold-rolled sheets via X-ray diffraction (XRD). The (111), (200), and (220) pole figures were measured up to a maximum tilt angle of 75° by the Schulz back-reflection method with CuKαradiation. Orientation distribution functions (ODFs) were calculated from incomplete pole figures by using a series expansion method[14]. These ODFs are presented as plots of constantφ2sections with isointensity contours in the Euler space, which is defined by Euler angles, namely,φ1,Φ, andφ2. In addition, microtextures were monitored through electron backscatter diffraction (EBSD) analysis by using a field-emission scanning electron microscope (FEI Sirion).

    2Results and Discussion

    2.1 Microstructure and texture of the as-rolled sheets

    Fig.1 shows the microstructures and textures of the as-rolled AA 3003 and AA 3003+Sc alloys. Figs.1(a) and (b) illustrate that both alloys display a fibrous microstructure, which is a typical deformation structure. Figs.1(c) and (d) show that both the as-rolled alloys exhibit similar rolling texture, namely, copper {112} 〈111〉 textures, which is a typical rolling texture of aluminum alloys.

    (a) (b)

    (c) (d)

    2.2 Macro-recrystallization textures and recrystallization microstructures

    Fig.2 shows the recrystallization microstructures and macro-recrystallization texture of cold-rolled AA 3003 and AA 3003+Sc alloys after annealing at 783 K. The AA 3003 alloy annealed at 783 K for 1 h was fully recrystallized, showing fine, equiaxed grains with a mean diameter of approximately 10 μm (see Fig.2(a)). Recrystallization is not affected by the concurrent precipitation of Mn-bearing dispersoids. In principle, a high amount of stored deformation energy and a high density of microstructural heterogeneities for nucleation and precipitation are dispelled after recrystallization. This dispelling phenomenon tends to delay the precipitation of Mn-bearing dispersoids when the recrystallization occurs prior to precipitation. By contrast, the AA 3003+Sc alloy displayed coarse and elongated recrystallization grains along the RD/ND plane (see Fig.2(b)). The precipitation of Al3Sc particles precedes the recrystallization in the as-rolled AA 3003+Sc alloy annealed at 783 K. Moreover, the concurrent precipitation strongly affects the recrystallization behavior of the alloys due to the small nucleation barrier for the precipitation of Al3Sc particles[15]. In addition, the Al3Sc particles tend to precipitate at the grain boundaries, which are along the RD/TD plane in the deformed alloys. Consequently, the recrystallizing grains experience the highest drag in the direction normal to the rolling plane, leading to the pancake-like recrystallization of grains.

    Recrystallization textures significantly differed between AA 3003 alloys with and without Sc addition. The precipitation of Mn-bearing precipitates starts after the recrystallization in the AA 3003 alloy because of the high annealing temperature of 783 K[15]. Consequently, the recrystallization textures are comprised of cubic {001} 〈100〉, weak ND-rotated {001} 〈310〉 and P {011}〈111〉 components (see Fig.2(c)). However, the recrystallization texture of the AA 3003+Sc alloy shows an extremely sharp P {011}〈111〉 component (see Fig.2(d)), which is observed when the precipitation occurs prior to or simultaneously with recovery and recrystallization processes, i.e., concurrent precipitation[6].

    (a) (b)

    (c) (d)

    2.3 Micro-recrystallization textures

    Fig.3 demonstrates the EBSD maps and orientation relationships of the recrystallization grains of AA 3003 and AA 3003+Sc alloys after annealing at 783 K. As shown in our previous work[15], the annealing temperatures are below the critical temperatureTCof the alloy and recrystallization grains are expected to be large and pancake-like. However, in the present study, the EBSD maps show the presence of several fine, equiaxed recrystallization grains with numerous fractions of approximately 1/10 (see Fig.3(a)).The crystallographic orientation of fine, equiaxed grains and large, pancake-like recrystallization grains are indicated by dash and solid lines, respectively, in the orientation relationship maps (see Fig.3(b)). The orientation relationship maps demonstrate that most of the large, pancake-like grains are P- and ND-rotated cubic grains, which are indicated by solid lines, whereas the fine, equiaxed grains are randomly oriented and stop growing after reaching an average size of approximately 15 μm.

    Fig.3 EBSD maps of AA 3003+Sc alloy after annealing at 783 K for 1 h. (a) EBSD orientation map; (b) Orientation relationship of grains in the (111) polar diagram

    3Discussions

    The mechanisms of recrystallization textures in Al alloys are intensely debated and generally considered to combine oriented nucleation and growth[2,4]. In the present work, a sharp P texture was observed in the AA 3003+Sc alloy, whereas a weak texture was detected in the AA 3003 alloy. Considering the origin of P texture components, researchers must determine whether P orientated grains have a nucleation or growth advantage over other randomly oriented grains.

    The EBSD maps show some nucleated recrystallization grains of AA 3003 (see Fig.4(a)) and AA 3003+Sc alloys (see Fig.4(b)) at the beginning of recrystallization, i.e., annealing at 783 K. However, the nature of the nucleation sites of these orientations has not yet been fully identified. The nucleation of recrystallization in the AA3003 alloy occurs along the constituent particles, and the EBSD map shows that the recrystallization grains are randomly orientated with a mean diameter of approximately 10 μm (see Fig.4(a)). Similarly, the number density of P- and ND-rotated cubic orientation grains shows the same order of magnitude as the randomly oriented grains in the AA 3003+Sc alloys (marked by the arrows in Fig.4(b)). However, the nucleated grains with P orientations are considerably larger than randomly oriented grains in the AA 3003+Sc alloy. The volume fraction of P-oriented grains is higher than that of randomly oriented grains. Therefore, the sharp P texture appears at the beginning of recrystallization in the AA 3003+Sc alloy.

    Fig.4 Orientation of nucleated recrystallization grains at the beginning of recrystallization. (a) AA 3003 alloy annealed at 783 K for 25 s; (b) AA3003+Sc alloy annealed at 783 K for 500 s

    Recrystallization is completed before the beginning of significant precipitation in the as-rolled AA3003 alloy annealed at 783 K[15]. However, the precipitation of Al3Sc always occurs prior to recrystallization in the AA3003 alloy added with 0.4% Sc, and the concurrent precipitation remarkably affects the recrystallization (see Fig.5). In the AA 3003 alloy, randomly oriented grains nucleate and grow uniformly. By contrast, the effective radii of grains with P- and ND-rotated cubic components typically develop to over 100 μm and are elongated in the RD/ND plane with an aspect ratio greater than 4.0. P nucleation sites have an initial growth advantage over other random nucleation sites because of their 40°-〈111〉 rotation relationship to the copper {112} 〈111〉 component[6]. The boundaries between such sites and the surrounding deformed matrix consist of 7-type interfaces and are minimally affected by precipitation and segregation. This situation results in precipitation-induced oriented growth. Moreover, precipitation tends to occur at the boundaries between the recrystallized deformation zones of random orientations and the copper deformation matrix, which present locally high supersaturation and low nucleation barriers. The large number of dense precipitates in the alloys provides sufficient Zener pinning and promptly terminates the growth of randomly oriented grains after nucleation. This phenomenon leads to the formation of fine, equiaxed recrystallization grains. Similarly, the P recrystallization texture in Al-Mn-Mg aluminum alloy is in excellent agreement with the oriented growth theory[5].

    Fig.5 TEM images showing the precipitation of a large number of Al3Sc particles in the subgrains of the as-rolled AA3003+Sc alloy annealed at 783 K for 500 s

    4Conclusion

    In this study, the effect of concurrent precipitation on recrystallization textures in Al-Mn alloys was investigated. Concurrent precipitation strongly affected the recrystallization behavior of the alloys, leading to strong orientation densities close to the P {011} 〈111〉 recrystallization textures. However, no intensely preferential orientation nucleation of recrystallization grains was observed. P nucleation sites show an evident initial growth advantage over other nucleation sites because of their 40°-〈111〉 rotation relationship to the copper {112} 〈111〉 component of the typical rolling textures of aluminum alloys. In addition, the sharp P {011}〈111〉 texture appeared at the beginning of recrystallization.

    References

    [1]Mishin O V, Jensen D J, Hansen N. Evolution of microstructure and texture during annealing of aluminum AA1050 cold rolled to high and ultrahigh strains [J].MetallurgicalandMaterialsTransactionsA, 2010, 41(11):2936-2948.

    [2]Engler O, Yang P, Kong X W. On the formation of recrystallization textures in binary Al-1.3%Mn investigated by means of local texture analysis [J].ActaMaterialia, 1996, 44(8):3349-3369.

    [3]Mishin O V, Godfrey A, Jensen D J, et al. Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain [J].ActaMaterialia, 2013, 61(14):5354-5364.

    [4]Benum S, Nes E. Effect of precipitation on the evolution of cube recrystallisation texture [J].ActaMaterialia, 1997, 45(11):4593-4602.

    [5]Ma M, Wang W, Zhang J, et al. The role of oriented growth in p texture development in Al-Mn-Mg aluminum alloy [J].JournalofMaterialEngineeringandPerformance, 2014, 23(9):3257-3265.

    [6]Tangen S, Sjolstad K, Furu T, et al. Effect of concurrent precipitation on recrystallization and evolution of the P-texture component in a commercial Al-Mn alloy [J].MetallurgicalandMaterialsTransactionsA, 2010, 41(11):2970-2983.

    [7]Sidor J J, Decroos K, Petrov R H, et al. Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: experimental study and modeling [J].InternationalJournalofPlasticity, 2015, 66(3):119-137.

    [8]Liu W C, Morris J G. Recrystallization textures of the M{113}〈110〉 and P{011} 〈455〉 orientations in a supersaturated Al-Mn alloy [J].ScriptaMaterialia, 2007, 56(3):217-220.

    [9]Daaland O, Nes E. Recrystallization texture development in commercial Al-Mn-Mg alloys [J].ActaMaterialia, 1996, 44(4):1413-1435.

    [10]Liu W C, Morris J G. Comparison of the texture evolution in cold rolled DC and SC AA 5182 aluminum alloys [J].MaterialsScienceandEngineeringA, 2003, 339(1/2):183-193.

    [11]Liu W C, Morris J G. Evolution of recrystallization and recrystallization texture in continuous-cast AA 3015 aluminum alloy [J].MetallurgicalandMaterialsTransactionsA, 2005, 36(10):2829-2848.

    [12]Huang K, Engler O, Li Y J, et al. Evolution in microstructure and properties during non-isothermal annealing of a cold-rolled Al-Mn-Fe-Si alloy with different microchemistry states [J].MaterialsScienceandEngineeringA, 2015, 628(3):216-229.

    [13]Liu W, Ma M, Yang F. Effect of the heat treatment on the cube recrystallization texture of Al-Mn-Mg aluminum alloy [J].MetallurgicalandMaterialsTransactionsA, 2013, 44(6):2857-2868.

    [14]Bunge H J.Textureanalysisinmaterialsscience:mathematicalmethods[M]. Butterworths, 1982.

    [15]Tu Y, Qian H, Zhou X, et al. Effect of scandium on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy [J].MetallurgicalandMaterialsTransactionsA, 2014, 45(4):1883-1891.

    doi:10.3969/j.issn.1003-7985.2015.04.012

    欧美亚洲日本最大视频资源| 午夜福利在线免费观看网站| 叶爱在线成人免费视频播放| 91av网站免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 免费久久久久久久精品成人欧美视频| 国产免费男女视频| 免费看a级黄色片| 午夜福利,免费看| 高清黄色对白视频在线免费看| x7x7x7水蜜桃| 美女福利国产在线| 婷婷成人精品国产| 天堂√8在线中文| 一边摸一边抽搐一进一小说 | 搡老岳熟女国产| 午夜福利免费观看在线| 性少妇av在线| 久久精品国产综合久久久| 美女视频免费永久观看网站| 99热只有精品国产| 69精品国产乱码久久久| 99国产精品99久久久久| 亚洲少妇的诱惑av| 亚洲性夜色夜夜综合| 日本一区二区免费在线视频| 热re99久久国产66热| 欧美日韩亚洲高清精品| 中文字幕人妻丝袜一区二区| 久99久视频精品免费| 脱女人内裤的视频| 老熟女久久久| 国产精品av久久久久免费| av福利片在线| 丁香六月欧美| 新久久久久国产一级毛片| 国产亚洲欧美在线一区二区| 免费观看a级毛片全部| 亚洲在线自拍视频| 国产99白浆流出| 热99久久久久精品小说推荐| 两性夫妻黄色片| 久久热在线av| 免费在线观看影片大全网站| 美女高潮喷水抽搐中文字幕| 在线观看免费日韩欧美大片| 亚洲欧洲精品一区二区精品久久久| 在线国产一区二区在线| 免费在线观看视频国产中文字幕亚洲| 国产人伦9x9x在线观看| 我的亚洲天堂| 亚洲国产欧美网| 最新美女视频免费是黄的| 国产成人免费无遮挡视频| 一区二区三区国产精品乱码| 精品卡一卡二卡四卡免费| 亚洲午夜精品一区,二区,三区| 精品国产超薄肉色丝袜足j| 老熟女久久久| av视频免费观看在线观看| 美女高潮到喷水免费观看| 大型av网站在线播放| 男人的好看免费观看在线视频 | 大香蕉久久网| 国产精华一区二区三区| 50天的宝宝边吃奶边哭怎么回事| www.自偷自拍.com| 天天添夜夜摸| 久久久久视频综合| 国产精品亚洲一级av第二区| 亚洲男人天堂网一区| 成年人黄色毛片网站| 丰满迷人的少妇在线观看| 丰满饥渴人妻一区二区三| 免费在线观看完整版高清| 久久九九热精品免费| 丰满迷人的少妇在线观看| 热re99久久精品国产66热6| 欧美黑人欧美精品刺激| 老司机午夜十八禁免费视频| 国产精品国产高清国产av | 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频日本深夜| 在线免费观看的www视频| 久久九九热精品免费| 免费在线观看日本一区| av不卡在线播放| 国产成人欧美| 国产亚洲精品久久久久5区| 婷婷丁香在线五月| 欧美不卡视频在线免费观看 | 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 91精品国产国语对白视频| 韩国精品一区二区三区| 人人妻人人澡人人爽人人夜夜| aaaaa片日本免费| 美国免费a级毛片| 国产在线观看jvid| 国产成人影院久久av| 精品第一国产精品| 身体一侧抽搐| 国产欧美日韩精品亚洲av| 99热国产这里只有精品6| 亚洲av成人一区二区三| 两个人免费观看高清视频| 国产黄色免费在线视频| 男男h啪啪无遮挡| 十八禁高潮呻吟视频| 欧美日韩乱码在线| xxx96com| 大型黄色视频在线免费观看| 大型av网站在线播放| 夫妻午夜视频| 久久久久久人人人人人| 日韩视频一区二区在线观看| www.熟女人妻精品国产| 亚洲精品国产区一区二| 丝袜美腿诱惑在线| 国产人伦9x9x在线观看| 亚洲全国av大片| 亚洲九九香蕉| 制服人妻中文乱码| av线在线观看网站| 亚洲一区二区三区欧美精品| 亚洲 欧美一区二区三区| 嫩草影视91久久| 黄频高清免费视频| 国产日韩一区二区三区精品不卡| 女人高潮潮喷娇喘18禁视频| 视频在线观看一区二区三区| 看黄色毛片网站| 欧美精品高潮呻吟av久久| 免费人成视频x8x8入口观看| 91老司机精品| 亚洲欧美色中文字幕在线| 日韩人妻精品一区2区三区| 9色porny在线观看| tube8黄色片| 久久久久久久久久久久大奶| 丝袜美足系列| 久久精品熟女亚洲av麻豆精品| 这个男人来自地球电影免费观看| 99久久99久久久精品蜜桃| 一级a爱片免费观看的视频| 1024视频免费在线观看| 丝袜美足系列| 国产91精品成人一区二区三区| 操出白浆在线播放| 水蜜桃什么品种好| 亚洲人成77777在线视频| 久久精品国产99精品国产亚洲性色 | 国产不卡一卡二| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 午夜免费观看网址| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 国产精品二区激情视频| e午夜精品久久久久久久| 亚洲色图av天堂| 亚洲久久久国产精品| 午夜老司机福利片| 欧美不卡视频在线免费观看 | 国产精品成人在线| 欧美 亚洲 国产 日韩一| 黄色女人牲交| 无人区码免费观看不卡| 麻豆乱淫一区二区| 久久精品人人爽人人爽视色| 久久ye,这里只有精品| 少妇粗大呻吟视频| 久久久久久久久久久久大奶| 亚洲中文日韩欧美视频| 两个人免费观看高清视频| 欧美色视频一区免费| 亚洲一区二区三区不卡视频| 免费看a级黄色片| 黄片小视频在线播放| 1024香蕉在线观看| 黑丝袜美女国产一区| 91国产中文字幕| 色尼玛亚洲综合影院| 亚洲一区中文字幕在线| 丁香欧美五月| 免费观看人在逋| 日本撒尿小便嘘嘘汇集6| 国产成人免费无遮挡视频| 纯流量卡能插随身wifi吗| 十八禁网站免费在线| 一级,二级,三级黄色视频| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 一a级毛片在线观看| 一级片免费观看大全| 亚洲色图综合在线观看| 久久精品国产亚洲av香蕉五月 | 波多野结衣av一区二区av| 午夜福利在线观看吧| 看片在线看免费视频| 亚洲国产看品久久| 性少妇av在线| 国产亚洲一区二区精品| 高清黄色对白视频在线免费看| 亚洲在线自拍视频| 国产主播在线观看一区二区| 国产97色在线日韩免费| 国产无遮挡羞羞视频在线观看| 叶爱在线成人免费视频播放| 欧美精品av麻豆av| 亚洲国产精品sss在线观看 | av片东京热男人的天堂| 精品一区二区三区视频在线观看免费 | av天堂在线播放| av超薄肉色丝袜交足视频| 看免费av毛片| 精品视频人人做人人爽| 免费观看a级毛片全部| www日本在线高清视频| 99re6热这里在线精品视频| 两人在一起打扑克的视频| 建设人人有责人人尽责人人享有的| 国产精品自产拍在线观看55亚洲 | 久久久水蜜桃国产精品网| 别揉我奶头~嗯~啊~动态视频| 成人永久免费在线观看视频| 国产精品二区激情视频| 国产男女内射视频| 女同久久另类99精品国产91| 极品教师在线免费播放| av国产精品久久久久影院| av在线播放免费不卡| av福利片在线| 在线观看免费视频日本深夜| 51午夜福利影视在线观看| 久久热在线av| 国产av一区二区精品久久| av福利片在线| 色婷婷久久久亚洲欧美| 午夜福利在线免费观看网站| xxxhd国产人妻xxx| 久久天堂一区二区三区四区| 中出人妻视频一区二区| 人人妻,人人澡人人爽秒播| 久久精品91无色码中文字幕| 免费日韩欧美在线观看| 久久香蕉国产精品| 人人妻人人添人人爽欧美一区卜| 丰满的人妻完整版| 久久久久久亚洲精品国产蜜桃av| 女人被躁到高潮嗷嗷叫费观| 免费看十八禁软件| 欧美人与性动交α欧美软件| 久久精品人人爽人人爽视色| 夜夜躁狠狠躁天天躁| 国产一区在线观看成人免费| 国产成人免费观看mmmm| www.自偷自拍.com| 午夜精品久久久久久毛片777| av免费在线观看网站| 99国产综合亚洲精品| 高潮久久久久久久久久久不卡| 国产淫语在线视频| 成人国语在线视频| 亚洲全国av大片| 这个男人来自地球电影免费观看| 下体分泌物呈黄色| 一夜夜www| 看片在线看免费视频| 国产精品免费一区二区三区在线 | 少妇粗大呻吟视频| 欧美精品一区二区免费开放| 黑人巨大精品欧美一区二区mp4| 成在线人永久免费视频| 美女福利国产在线| 欧美日本中文国产一区发布| 国产在线精品亚洲第一网站| 国产一卡二卡三卡精品| 国产成人欧美在线观看 | 成年女人毛片免费观看观看9 | 又大又爽又粗| av不卡在线播放| av有码第一页| 亚洲色图综合在线观看| 一本一本久久a久久精品综合妖精| 色综合欧美亚洲国产小说| 成人国产一区最新在线观看| 久久精品亚洲av国产电影网| 九色亚洲精品在线播放| 男女免费视频国产| 99国产精品一区二区三区| videosex国产| 国产激情欧美一区二区| 国产精品免费一区二区三区在线 | 国产精品影院久久| 国产国语露脸激情在线看| 久久久精品区二区三区| 夜夜爽天天搞| 下体分泌物呈黄色| 亚洲国产精品一区二区三区在线| 欧美人与性动交α欧美软件| 人人妻人人澡人人爽人人夜夜| 怎么达到女性高潮| 1024香蕉在线观看| av天堂久久9| 在线观看免费视频网站a站| 免费在线观看亚洲国产| 丝瓜视频免费看黄片| 后天国语完整版免费观看| 一二三四在线观看免费中文在| 99精国产麻豆久久婷婷| 精品高清国产在线一区| 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频| 人妻 亚洲 视频| 中出人妻视频一区二区| 波多野结衣av一区二区av| 精品国产一区二区久久| 亚洲av成人不卡在线观看播放网| 香蕉国产在线看| 亚洲欧美日韩另类电影网站| 最近最新中文字幕大全免费视频| 久久精品亚洲熟妇少妇任你| 国内毛片毛片毛片毛片毛片| 亚洲一区二区三区不卡视频| 叶爱在线成人免费视频播放| 一级毛片高清免费大全| 女性生殖器流出的白浆| 免费观看精品视频网站| 91精品三级在线观看| 久久ye,这里只有精品| 久久精品aⅴ一区二区三区四区| 亚洲成国产人片在线观看| 老熟女久久久| 日本撒尿小便嘘嘘汇集6| 自线自在国产av| 午夜精品久久久久久毛片777| 在线观看www视频免费| 久久久久久久精品吃奶| 亚洲情色 制服丝袜| 999久久久国产精品视频| 国产欧美亚洲国产| 女人精品久久久久毛片| 欧美人与性动交α欧美软件| 国产精品二区激情视频| 久久午夜亚洲精品久久| 免费一级毛片在线播放高清视频 | 自拍欧美九色日韩亚洲蝌蚪91| 黑人巨大精品欧美一区二区mp4| 久久久久久久午夜电影 | 9色porny在线观看| 国产日韩欧美亚洲二区| av超薄肉色丝袜交足视频| 一区二区三区国产精品乱码| 国产高清激情床上av| 精品无人区乱码1区二区| 亚洲精品成人av观看孕妇| 国产男女超爽视频在线观看| 99精品在免费线老司机午夜| 亚洲精品美女久久av网站| 亚洲精品久久午夜乱码| 久久香蕉国产精品| 黄色毛片三级朝国网站| videosex国产| 午夜91福利影院| 90打野战视频偷拍视频| 色综合婷婷激情| 久久久国产精品麻豆| 久久 成人 亚洲| 久久香蕉国产精品| 亚洲av成人一区二区三| 免费观看人在逋| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看视频国产中文字幕亚洲| 久久99一区二区三区| 欧美精品啪啪一区二区三区| 免费人成视频x8x8入口观看| 老熟妇乱子伦视频在线观看| 免费看十八禁软件| 日本黄色视频三级网站网址 | 久久久久久久国产电影| 黄色片一级片一级黄色片| ponron亚洲| 国产精品成人在线| 亚洲国产精品合色在线| 久久精品人人爽人人爽视色| 色尼玛亚洲综合影院| 日韩欧美一区视频在线观看| 亚洲精品国产色婷婷电影| 丰满的人妻完整版| 亚洲在线自拍视频| 日韩三级视频一区二区三区| 精品高清国产在线一区| 成在线人永久免费视频| 日韩免费高清中文字幕av| 精品国产一区二区三区久久久樱花| 一本大道久久a久久精品| 老汉色av国产亚洲站长工具| 热re99久久国产66热| 国产精品一区二区在线观看99| 色综合婷婷激情| 成人亚洲精品一区在线观看| 美国免费a级毛片| 精品国产一区二区三区久久久樱花| 丁香六月欧美| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频| 极品教师在线免费播放| 又黄又爽又免费观看的视频| 麻豆av在线久日| 久热爱精品视频在线9| 99riav亚洲国产免费| 激情视频va一区二区三区| 在线观看免费日韩欧美大片| 欧美 日韩 精品 国产| 99久久国产精品久久久| 精品亚洲成国产av| 校园春色视频在线观看| 国产免费av片在线观看野外av| 国产精品欧美亚洲77777| 国产免费av片在线观看野外av| 亚洲欧洲精品一区二区精品久久久| 亚洲,欧美精品.| 国产成人av激情在线播放| 天堂动漫精品| 看黄色毛片网站| 国内毛片毛片毛片毛片毛片| 国产精品国产高清国产av | 飞空精品影院首页| 久久久精品国产亚洲av高清涩受| 女人高潮潮喷娇喘18禁视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲片人在线观看| 最新美女视频免费是黄的| 亚洲av成人av| 王馨瑶露胸无遮挡在线观看| 狠狠婷婷综合久久久久久88av| 色老头精品视频在线观看| 亚洲精华国产精华精| 成人特级黄色片久久久久久久| 男人操女人黄网站| 人人妻,人人澡人人爽秒播| 国产亚洲欧美98| 啦啦啦免费观看视频1| 丰满人妻熟妇乱又伦精品不卡| 在线免费观看的www视频| 亚洲色图综合在线观看| 黄色视频,在线免费观看| svipshipincom国产片| 日韩欧美一区视频在线观看| 国产精品一区二区免费欧美| 91成年电影在线观看| 欧美乱色亚洲激情| 中亚洲国语对白在线视频| 精品国产超薄肉色丝袜足j| 国产欧美日韩综合在线一区二区| 色在线成人网| 国产精品欧美亚洲77777| 人妻一区二区av| 精品少妇久久久久久888优播| 成人免费观看视频高清| 热99国产精品久久久久久7| 亚洲精华国产精华精| 国产亚洲一区二区精品| 极品人妻少妇av视频| 波多野结衣av一区二区av| 国产男女内射视频| 高清视频免费观看一区二区| 亚洲午夜理论影院| 母亲3免费完整高清在线观看| 丰满饥渴人妻一区二区三| 人人妻人人澡人人看| 亚洲美女黄片视频| 伦理电影免费视频| 国产三级黄色录像| 亚洲va日本ⅴa欧美va伊人久久| 一级,二级,三级黄色视频| 久久婷婷成人综合色麻豆| 很黄的视频免费| 99re在线观看精品视频| 丰满迷人的少妇在线观看| 女人久久www免费人成看片| 国产成+人综合+亚洲专区| 日韩人妻精品一区2区三区| 亚洲精品中文字幕在线视频| 女人精品久久久久毛片| 热99久久久久精品小说推荐| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区黑人| 成人特级黄色片久久久久久久| 三级毛片av免费| 久久国产精品男人的天堂亚洲| 最近最新中文字幕大全电影3 | 久久久久精品国产欧美久久久| 成年人免费黄色播放视频| 日韩免费高清中文字幕av| 午夜福利在线观看吧| 纯流量卡能插随身wifi吗| 国产单亲对白刺激| 亚洲成人国产一区在线观看| 午夜91福利影院| 久久亚洲真实| 纯流量卡能插随身wifi吗| 老司机午夜福利在线观看视频| 国产精品久久久人人做人人爽| av国产精品久久久久影院| 少妇裸体淫交视频免费看高清 | 天堂俺去俺来也www色官网| 午夜老司机福利片| 久久精品熟女亚洲av麻豆精品| 黄色a级毛片大全视频| 久久国产精品大桥未久av| 曰老女人黄片| 国产欧美日韩一区二区精品| 丁香欧美五月| 国产成人av激情在线播放| 99精国产麻豆久久婷婷| 亚洲欧美日韩另类电影网站| 国产精品秋霞免费鲁丝片| 欧美黑人精品巨大| 国产成人免费无遮挡视频| 大型av网站在线播放| 亚洲精品中文字幕在线视频| 久久草成人影院| 99精品欧美一区二区三区四区| 美国免费a级毛片| 日韩大码丰满熟妇| 99国产极品粉嫩在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉国产精品| 一区二区三区国产精品乱码| 黑丝袜美女国产一区| 久久精品国产综合久久久| 黑丝袜美女国产一区| 韩国av一区二区三区四区| 天天添夜夜摸| 欧美日韩国产mv在线观看视频| 视频区欧美日本亚洲| 亚洲成人手机| 人人妻人人澡人人爽人人夜夜| 美女福利国产在线| 极品教师在线免费播放| av电影中文网址| 免费女性裸体啪啪无遮挡网站| 美女国产高潮福利片在线看| av超薄肉色丝袜交足视频| 一级a爱视频在线免费观看| 免费看十八禁软件| 亚洲欧美激情在线| 欧美乱妇无乱码| 不卡一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 老熟妇仑乱视频hdxx| 很黄的视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 老司机福利观看| 国产蜜桃级精品一区二区三区 | 国产又爽黄色视频| 国产精品 欧美亚洲| 亚洲视频免费观看视频| 一级毛片女人18水好多| 午夜福利在线免费观看网站| www日本在线高清视频| 99香蕉大伊视频| 午夜福利乱码中文字幕| 亚洲av片天天在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美av亚洲av综合av国产av| 免费观看精品视频网站| 久久亚洲真实| 婷婷精品国产亚洲av在线 | 日韩视频一区二区在线观看| 亚洲中文字幕日韩| 久久草成人影院| 国产午夜精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| aaaaa片日本免费| 欧美黄色片欧美黄色片| 岛国在线观看网站| 黄色片一级片一级黄色片| 久久精品国产清高在天天线| 亚洲自偷自拍图片 自拍| 麻豆国产av国片精品| avwww免费| 精品国产国语对白av| 成年人黄色毛片网站| 国产又色又爽无遮挡免费看| 亚洲国产欧美网| 久久性视频一级片| 国产淫语在线视频| 午夜日韩欧美国产| 两性夫妻黄色片| 久久精品熟女亚洲av麻豆精品| 亚洲av片天天在线观看| 久久性视频一级片| 久久精品熟女亚洲av麻豆精品| 色综合婷婷激情| 香蕉国产在线看| 在线观看免费视频网站a站| 久久精品国产综合久久久| 成年人黄色毛片网站| 一区福利在线观看| 精品卡一卡二卡四卡免费| 久久午夜亚洲精品久久| av欧美777| 好看av亚洲va欧美ⅴa在| 波多野结衣一区麻豆| 日韩欧美一区二区三区在线观看 | 国产精品.久久久| 麻豆乱淫一区二区| av网站在线播放免费| 精品久久久久久久毛片微露脸| 国产一区二区三区视频了| 欧美中文综合在线视频|