• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on heat transfer characteristics of a new radiant floor system with phase change material

    2015-03-01 08:07:24XiaYiZhangXiaosong

    Xia Yi Zhang Xiaosong

    (1 School of Energy and Environment, Southeast University, Nanjing 210096, China)(2 School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210046, China)

    ?

    Experimental investigation on heat transfer characteristics of a new radiant floor system with phase change material

    Xia Yi1,2Zhang Xiaosong1

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210046, China)

    Abstract:In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the off-peak period and use them in the peak period. An experimental setup was developed to study the heat transfer characteristics of the new system under both cooling and heating modes. The experimental results show that the double-layer radiant floor system with PCM can meet both the cold and thermal requirements of users. Moreover, with the same duration of the thermal energy storage process, the increase of water temperature supplied to the system can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal energy storage process is the same under different conditions, the increase of supplied water temperature will decrease the thermal energy storage time and ensure the comfort of users.

    Key words:energy-saving; radiant floor; phase change material; double-layer; heat transfer characteristics

    Received 2015-07-24.

    Biographies:Xia Yi(1980—), male, graduate; Zhang Xiaosong (corresponding author), male, doctor, professor, rachpe@seu.edu.cn.

    Foundation items:The National Science and Technology Pillar Program during the 12th Five-Year Plan Period (No.2011BAJ03B14), the National Natural Science Foundation of China (No.51376044).

    Citation:Xia Yi, Zhang Xiaosong. Experimental investigation on heat transfer characteristics of a new radiant floor system with phase change material[J].Journal of Southeast University (English Edition),2015,31(4):496-500.[doi:10.3969/j.issn.1003-7985.2015.04.011]

    With the development of the social economy and the improvement of personal living standards, air-conditioning is widespread in the society. Among all air conditioning technologies, the radiant floor heating system has been widely used in many countries[1-3]. The radiant floor heating system is a low-temperature heating system, which can make efficient use of building space and requires no cleaning[4-6].

    The radiant floor heating system combined with the phase change material(PCM)[7-11]can store thermal energy in the PCM by using valley electricity at night, and the difference between the peak and valley power load will be small. However, the system can only work in winter and should be left idle in summer. As a result, the maintenance consumption of the system will be improved and people need an additional refrigeration device to only work in summer, which will increase the initial cost and operational cost. In order to reduce the cost of the radiant floor heating system combined with PCM, Jin et al.[11]developed a new double-layer PCM floor, which can work for people in both winter and summer. The system is used to store thermal or cold energy during the off-peak period and release it during the peak period. Compared with the radiant floor without PCM, the energy released by the floor with PCM during the peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of the PCM is 150 kJ/kg.

    In order to improve the heat transfer characteristics of the double-layer PCM floor, a new double-layer radiant floor system with PCM is proposed in this paper. In this system, the heat exchange pipes are directly placed in the thermal storage PCM and the cold storage phase PCM. In this paper, an experimental investigation on the heat transfer characteristics of the double-layer radiant floor system with PCM in both cooling and heating modes is reported. The energy storage performance and the energy release characteristics of the new system are analyzed.

    1Double-Layer Radiant Floor System with PCM

    The structure of the new system is shown in Fig.1. The new system consists of the floor, leveling layer, thermal storage PCM, cold storage PCM, reflecting film, insulation layer, building, hot water pipe and cold water pipe. The hot water pipe is filled in the thermal storage PCM, and the cold water pipe is filled in the cold storage PCM. Under different climate conditions, the new system has two operational modes.

    1.1 Cooling mode

    In this operational mode, the new system uses cheap electric power at night to cool the water. The cold water flows into the cold water pipe and cools the cold storage PCM. In this way, the temperature of the cold storage PCM is decreased and the cold energy is stored. In the daytime, when people need a cool environment, the cold storage PCM will release the cold energy to cool the air in the building. As a result, the temperature of the building room will be maintained within the suitable range. In this 5—thermal storage layer; 6—cold storage layer; 7—reflecting film; 8—insulation; 9—building operational mode, the cold energy storage process occurs at night and the cold energy release process occurs in the daytime.

    Fig.1 The structure of double-layer radiant floor with PCM

    1.2 Heating mode

    In this operational mode, the new system uses the cheap electric power at night to heat the water. The hot water flows into the hot water pipe and heats the thermal storage PCM. In this way, the temperature of the thermal storage PCM is improved and the thermal energy is stored. In the daytime, when people need a thermal environment, the thermal storage PCM will release the thermal energy to heat the air in the room. As a result, the temperature of the building room will be maintained within the suitable range. In this operational mode, the thermal energy storage process occurs at night and the heat release process occurs in the daytime.

    The new system has many advantages. First, the new system can use cheap electric power at night to cool or heat water, and store the cold energy or thermal energy which should be used in the daytime. Thus, the cost of the system will be decreased. Secondly, the cold water pipe is filled in the cold storage PCM, and the hot water pipe is filled in the thermal storage PCM. Thus, the heat transfer resistance of the system will be decreased and the heat transfer efficiency of the system will be improved. Finally, the system can work in both summer and winter. As a result, the initial cost of the system will be decreased.

    2Experimental Setup

    2.1 Experimental material

    The phase change energy storage material in the experimental system is organic fatty acid. The specific parameters of the thermal and cold storage PCMs are shown in Tab.1.

    Tab.1 Specific parameters of phase change materials

    2.2 Experimental system

    In the experiment, two different experimental rooms (room A and room B) were built to investigate the effects of different floor structures on the heat transfer characteristics of the double-layer radiant floor system with PCM. The two experimental rooms were built in a temperature and humidity control room. Therefore, the environmental temperature of the two experimental rooms can be controlled.

    Comparing experimental room A with room B, only the places of the thermal and cold storage PCMs are different. In the experimental room A (see Fig.2(a)), the thermal storage PCM is placed below the cold storage PCM. In the experimental room B (see Fig.2(b)), the cold storage PCM is placed below the thermal storage PCM. In both experimental rooms A and B, the thickness of the floor is 10 mm, the thickness of the leveling layer is 30 mm, the thickness of the thermal storage PCM is 25 mm, and the thickness of the cold storage PCM is 30 mm.5—insulation

    Fig.2 Floor structure.(a) Room A; (b) Room B

    2.3 Measuring instruments

    In the experiment, the temperatures of the thermal storage PCM, cold storage PCM, leveling layer, floor, air in the experimental room and air out of the experimental room are tested by T-type thermocouple with an accuracy of 0.1 ℃. The temperature readings are scanned and recorded into the computer by a data acquisition instrument (Agilent 13 970 A). The flow rate of hot water is tested by LC-WB micro flow meter with an accuracy of 0.1 L/h.

    2.4 Experimental process

    The applied flow rate of water in the experiment was 120 L/h. In the experiment, the double-layer radiant floor systems with PCM in both room A and room B were operated in the continuous operation mode. During the first 8 h, the double-layer radiant floor system with PCM was in the energy storage mode. In this mode, feed water was recycled from the constant temperature water bath. During the next 16 h, the double-layer radiant floor system with PCM was in the energy release mode. In this mode, there was no water flowing into the double-layer radiant floor system with PCM, and the energy in the energy storage PCM can be transferred to the air in the experimental rooms, both A and B.

    3Results and Discussion

    In the experiment, the heat transfer characteristics of the double-layer radiant floor system with PCM in both cooling and heating modes were investigated. The temperature fields of the double-layer radiant floor system with PCM in the two experimental rooms under different conditions were studied. The energy storage performance and energy release characteristics of the new system were also analyzed.

    3.1 Cooling mode

    In the experiment of the new double-layer radiant floor in cooling mode, the temperature of cold water was 15 ℃ and the temperature out of the two experimental rooms was 30 ℃.

    The air temperature in different experimental rooms in cooling mode is shown in Fig.3. Fig.3 shows that in cooling mode, the air temperature in room B at the end of the cold energy storage process is higher than that in room A. However, the air temperature in room B at the end of the cold energy release process is close to that in room A. The temperature difference at the end of the cold energy release process is only less than 0.5 ℃. In room A, the air temperature is 26.5 ℃ at the end of the cold energy storage process, which is the same as that at the end of the cold energy release process. Under the same condition, room A has lower air temperature, but the air temperature change in room A is greater than that in room B. This indicates that the double-layer radiant floor system with PCM can meet the cold requirement of users. Therefore, in the cooling mode, the heat transfer performance of room A is a little better than that of room B.

    The temperature of the cold storage PCM in different rooms is shown in Fig.4. It can be seen that the temperature of the cold storage PCM is the lowest at the end of

    Fig.3 Air temperature in room A and B in cooling mode

    the cold energy storage process of the two experimental rooms. In the cold energy release process, the temperature of the cold storage PCM is increased in the two rooms and the temperature of the cold storage PCM in room A is lower than that in room B.

    Fig.4 Temperature of cold storage layer in different rooms in cooling mode

    3.2 Heating mode

    The experiments of the new system in the heating mode were carried out in three operational conditions. Under conditions 1, 2, 3, the temperatures of hot water were 40, 45, 52 ℃, respectively.

    The air temperature in experimental room B and environmental temperature of room B under three conditions are shown in Fig.5. Fig.5 shows that the air in room B has the highest temperature under condition 3, which is 26 ℃ at the end of the the thermal storage process. The air in room B has the lowest temperature under condition 1, which is 17 ℃ at the end of the the thermal storage process. Different from the large temperature difference among three conditions at the end of the the thermal storage process, the temperature difference among three conditions at the end of the heat release process is 5 ℃. It indicates that with the same time of the thermal storage process, the increase of water temperature supplied to the double-layer radiant floor system with PCM will increase the air temperature variation during the heat release process. This can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal storage process is the same under three conditions, the increase of supplied water temperature will decrease the time of the thermal storage process and ensure the comfort of users. Fig.5 also shows that since the air temperature in room B under condition 3 is much higher than those under the other two conditions, the environmental temperature of room B under condition 3 is higher than those under the other two conditions.

    Fig.5 Air temperature in and out of room B under different conditions of heating mode

    Air temperature in different experimental rooms and environmental temperature under condition 2 are shown in Fig.6. It is clear that under condition 2, air temperature in room B at the end of the thermal storage process is much higher than that in room A. However, air temperature in room B at the end of the heat release process is close to that in room A. Note that the temperature difference at the end of the heat release process is only 2 ℃. In room B, the air temperature is 20 ℃ at the end of the thermal storage process and 14 ℃ at the end of the heat release process. This indicates that under the same condition, room B has higher air temperature, but the air temperature change in room B is also larger than that in room A. Therefore, in the heating mode, the heat transfer characteristics of room B is much better than that of room A.

    Fig.6 Air temperature in and out of room A and B under condition 2 of heating mode

    As a result, considering both heating and cooling modes, the heat transfer characteristics of room B are better than those of room A.

    The temperature of the thermal storage PCM in room B under different conditions is shown in Fig.7. Fig.7 shows that the thermal storage PCM in room B has the highest temperature under condition 3. This indicates that the temperature of the thermal storage PCM under condition 3 is much higher than that under the other two conditions at the end of the thermal storage process. However, the temperature of the thermal storage PCM under condition 3 is close to that under the other two conditions at the end of the heat release process.

    Fig.7 Temperature of thermal storage layer in room B under different conditions

    4Conclusion

    In order to improve the heat transfer characteristics of the double-layer PCM floor, a new double-layer radiant floor system with PCM is proposed in this paper, which can store thermal or cold energy in the off-peak period and use them in the peak period. An experimental setup was developed to study the heat transfer characteristics of the double-layer radiant floor system with PCM in both cooling and heating modes.

    The double-layer radiant floor system with PCM can meet both the cold and thermal requirements of users. Considering both heating and cooling modes, the heat transfer characteristics of room B are better than those of room A.

    This indicates that with the same duration of thermal energy storage process, the increase of water temperature supplied to the system will increase air temperature variation during the heat release process, which can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal energy storage process is the same under three conditions, the increase of supplied water temperature will decrease the thermal energy storage time and ensure the comfort of users.

    References

    [1]Jin X, Zhang X S, Luo Y J. A calculation method for the floor surface temperature in radiant floor system [J].EnergyandBuildings, 2010, 42(10): 1753-1758.

    [2]Sattari S, Farhanieh B. A parametric study on radiant floor heating system performance [J].RenewableEnergy, 2006, 31(10): 1617-1626.

    [3]Karabay H, Arici M, Sandik M. A numerical investigation of fluid flow and heat transfer inside a room for floor heating and wall heating systems [J].EnergyandBuildings, 2013, 67: 471-478.

    [4]Fontana L. Thermal performance of radiant heating floors in furnished enclosed spaces [J].AppliedThermalEngineering, 2011, 31(10): 1547-1555.

    [5]Maerefat M, Zolfaghari A, Omidvar A. On the conformity of floor heating systems with sleeping in the eastern-style beds; physiological responses and thermal comfort assessment [J].BuildingandEnvironment, 2012, 47:322-329.

    [6]Jeon J, Jeong S G, Lee J H, et al. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system [J].SolarEnergyMaterialsandSolarCells, 2012, 101: 51-56.

    [7]Haurie L, Mazo J, Delgado M, et al. Fire behaviour of a mortar with different mass fractions of phase change material for use in radiant floor systems [J].EnergyandBuildings, 2014, 84:86-93.

    [8]Zhou G B, He J. Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes [J].AppliedEnergy, 2015, 138:648-660.

    [9]Ansuini R, Larghetti R, Giretti A, et al. Radiant floors integrated with PCM for indoor temperature control [J].EnergyandBuildings, 2011, 43: 3019-3026.

    [10]Mazo J, Delgado M, Marin J M, et al. Modeling a radiant floor system with phase change material (PCM) integrated into a building simulation tool: analysis of a case study of a floor heating system coupled to a heat pump [J].EnergyandBuildings, 2012, 47: 458-466.

    [11]Jin X, Zhang X S. Thermal analysis of a double layer phase change material floor [J].AppliedThermalEngineering, 2011, 31(10): 1576-1581.

    doi:10.3969/j.issn.1003-7985.2015.04.011

    在线观看免费日韩欧美大片 | kizo精华| 日日爽夜夜爽网站| 精品国产一区二区久久| 久久99一区二区三区| 最黄视频免费看| 国产精品久久久久久久电影| 中文天堂在线官网| √禁漫天堂资源中文www| 在线观看三级黄色| av国产久精品久网站免费入址| 91精品国产九色| 亚洲无线观看免费| 人人妻人人澡人人爽人人夜夜| 肉色欧美久久久久久久蜜桃| 精品午夜福利在线看| 欧美日韩国产mv在线观看视频| 在线亚洲精品国产二区图片欧美 | 国产高清不卡午夜福利| 亚洲综合色惰| 日本欧美国产在线视频| 久久久久久久亚洲中文字幕| 大陆偷拍与自拍| 日本与韩国留学比较| 老司机影院毛片| 免费黄频网站在线观看国产| 晚上一个人看的免费电影| 国内精品宾馆在线| 日日摸夜夜添夜夜爱| 777米奇影视久久| 国产国拍精品亚洲av在线观看| 国产成人精品无人区| 日韩av不卡免费在线播放| 国产黄色免费在线视频| 国产精品三级大全| 免费在线观看成人毛片| 成人午夜精彩视频在线观看| 亚洲精品aⅴ在线观看| av又黄又爽大尺度在线免费看| 国产在视频线精品| 久久婷婷青草| 国产永久视频网站| 偷拍熟女少妇极品色| 国产日韩欧美视频二区| 一级爰片在线观看| 自线自在国产av| 亚洲av不卡在线观看| 热re99久久精品国产66热6| 成人无遮挡网站| 一级毛片久久久久久久久女| 国产亚洲午夜精品一区二区久久| 亚州av有码| 九色成人免费人妻av| 人人澡人人妻人| 校园人妻丝袜中文字幕| 国产精品久久久久久精品古装| 色5月婷婷丁香| 亚洲精品,欧美精品| 我要看日韩黄色一级片| 女的被弄到高潮叫床怎么办| 色94色欧美一区二区| 草草在线视频免费看| 亚洲成人手机| 国产免费又黄又爽又色| 亚洲精品乱码久久久久久按摩| a级毛片免费高清观看在线播放| 黄色视频在线播放观看不卡| 亚洲性久久影院| 一级,二级,三级黄色视频| 久久99一区二区三区| 久久国产精品男人的天堂亚洲 | 男女无遮挡免费网站观看| 蜜桃在线观看..| 人人妻人人澡人人爽人人夜夜| 欧美三级亚洲精品| 自拍偷自拍亚洲精品老妇| av天堂久久9| 国产亚洲一区二区精品| 看十八女毛片水多多多| 一区二区av电影网| 插阴视频在线观看视频| 欧美精品高潮呻吟av久久| 国产免费福利视频在线观看| av天堂久久9| 在线观看www视频免费| 伦精品一区二区三区| 欧美日韩视频精品一区| 一二三四中文在线观看免费高清| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品电影小说| 最近手机中文字幕大全| 国模一区二区三区四区视频| 精品一区二区三区视频在线| 高清欧美精品videossex| 国产视频首页在线观看| 中国国产av一级| 一本久久精品| 校园人妻丝袜中文字幕| 国产视频内射| 嫩草影院入口| 精品少妇内射三级| 亚洲精品成人av观看孕妇| 天堂俺去俺来也www色官网| 少妇精品久久久久久久| 观看免费一级毛片| 日韩欧美一区视频在线观看 | 国产免费福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 两个人免费观看高清视频 | 国产精品人妻久久久影院| 丰满迷人的少妇在线观看| 曰老女人黄片| 久久精品国产鲁丝片午夜精品| 国产淫语在线视频| 美女脱内裤让男人舔精品视频| 国产精品久久久久久久电影| 观看av在线不卡| 亚洲av福利一区| 国产成人a∨麻豆精品| 国产亚洲一区二区精品| 日日啪夜夜爽| 日本欧美视频一区| h视频一区二区三区| 欧美最新免费一区二区三区| 91午夜精品亚洲一区二区三区| 欧美xxⅹ黑人| 天天操日日干夜夜撸| 亚洲av成人精品一二三区| av一本久久久久| 一区二区三区四区激情视频| 最近的中文字幕免费完整| 日韩视频在线欧美| 亚洲成人av在线免费| 看非洲黑人一级黄片| 久久午夜综合久久蜜桃| 狂野欧美激情性bbbbbb| 在线观看一区二区三区激情| 欧美日韩综合久久久久久| 国产一区二区在线观看日韩| 久久影院123| 日韩 亚洲 欧美在线| 精品人妻一区二区三区麻豆| a级片在线免费高清观看视频| 国产熟女欧美一区二区| 欧美精品一区二区免费开放| 大片电影免费在线观看免费| 午夜福利视频精品| 热re99久久国产66热| 老司机影院成人| 亚洲精品456在线播放app| 精品人妻一区二区三区麻豆| 日韩视频在线欧美| 国产探花极品一区二区| 久久人妻熟女aⅴ| 五月伊人婷婷丁香| 激情五月婷婷亚洲| 麻豆成人午夜福利视频| 免费黄网站久久成人精品| 亚洲性久久影院| av网站免费在线观看视频| 精品国产一区二区久久| 日韩制服骚丝袜av| 欧美日韩视频高清一区二区三区二| 国产综合精华液| 在现免费观看毛片| av在线app专区| 亚洲欧美日韩东京热| 亚洲精品aⅴ在线观看| 欧美日韩精品成人综合77777| 97在线视频观看| 在线观看免费高清a一片| 国产乱来视频区| 精品99又大又爽又粗少妇毛片| 国产午夜精品一二区理论片| 国产熟女欧美一区二区| 美女主播在线视频| 国产男女内射视频| 一区二区三区免费毛片| 免费看av在线观看网站| 国产免费又黄又爽又色| 国产精品一区二区三区四区免费观看| 久久久亚洲精品成人影院| 99久久精品热视频| 在线观看国产h片| 欧美精品亚洲一区二区| 特大巨黑吊av在线直播| 国产av一区二区精品久久| 夜夜爽夜夜爽视频| 日韩熟女老妇一区二区性免费视频| 成人亚洲欧美一区二区av| av播播在线观看一区| 国产男女内射视频| 五月天丁香电影| videos熟女内射| 精品人妻熟女毛片av久久网站| 91aial.com中文字幕在线观看| 夫妻午夜视频| 男人爽女人下面视频在线观看| 国产在线一区二区三区精| 九草在线视频观看| 国产一区二区三区av在线| 男女国产视频网站| 国产成人aa在线观看| 国产一区有黄有色的免费视频| 亚洲成色77777| 欧美bdsm另类| 91久久精品国产一区二区三区| 在线观看国产h片| 高清欧美精品videossex| 亚洲不卡免费看| 人人妻人人看人人澡| 人体艺术视频欧美日本| 最后的刺客免费高清国语| 日本黄色片子视频| 熟女av电影| 亚洲精品aⅴ在线观看| 各种免费的搞黄视频| 一本久久精品| 国产亚洲av片在线观看秒播厂| 99精国产麻豆久久婷婷| 国产精品福利在线免费观看| 亚洲精品aⅴ在线观看| 26uuu在线亚洲综合色| 99热网站在线观看| 嫩草影院入口| 在线观看一区二区三区激情| 高清午夜精品一区二区三区| 久久久久视频综合| 国内精品宾馆在线| 久久国产精品男人的天堂亚洲 | 国产亚洲最大av| 嫩草影院入口| 中文字幕亚洲精品专区| 99国产精品免费福利视频| 国产精品无大码| 久久99热这里只频精品6学生| 国产精品伦人一区二区| 99国产精品免费福利视频| 五月伊人婷婷丁香| 欧美日韩视频高清一区二区三区二| 在线免费观看不下载黄p国产| 青春草视频在线免费观看| 成人亚洲欧美一区二区av| 日本与韩国留学比较| 狂野欧美激情性xxxx在线观看| 欧美日韩av久久| 欧美变态另类bdsm刘玥| 免费观看av网站的网址| 国产欧美日韩综合在线一区二区 | 春色校园在线视频观看| 在线亚洲精品国产二区图片欧美 | 成年女人在线观看亚洲视频| 国产女主播在线喷水免费视频网站| 最近最新中文字幕免费大全7| 成人无遮挡网站| 免费黄频网站在线观看国产| 成人毛片a级毛片在线播放| 免费av中文字幕在线| 麻豆乱淫一区二区| 九草在线视频观看| 一本—道久久a久久精品蜜桃钙片| 成年人午夜在线观看视频| 另类亚洲欧美激情| 一区在线观看完整版| 一区二区三区免费毛片| 国产淫语在线视频| 久久国产乱子免费精品| 热re99久久国产66热| 成人美女网站在线观看视频| 久久久亚洲精品成人影院| 天堂8中文在线网| 乱人伦中国视频| 国产成人精品久久久久久| 99九九线精品视频在线观看视频| 极品教师在线视频| 精品国产一区二区三区久久久樱花| 高清av免费在线| 在线观看www视频免费| h日本视频在线播放| xxx大片免费视频| 久久人人爽人人片av| 五月开心婷婷网| 久久久久久久久大av| 日日摸夜夜添夜夜爱| 亚洲精品乱码久久久v下载方式| 老司机影院毛片| 少妇丰满av| 午夜福利视频精品| 18禁动态无遮挡网站| 九草在线视频观看| 欧美日韩视频精品一区| 日韩强制内射视频| 久久久久网色| 日日啪夜夜爽| 99国产精品免费福利视频| 国产精品福利在线免费观看| 日日摸夜夜添夜夜爱| 免费看日本二区| 人妻一区二区av| 久久99精品国语久久久| 七月丁香在线播放| 一级毛片我不卡| 在线观看一区二区三区激情| 日韩人妻高清精品专区| 观看美女的网站| 乱人伦中国视频| 亚洲av欧美aⅴ国产| 91久久精品国产一区二区三区| 国产精品伦人一区二区| 99精国产麻豆久久婷婷| 一级a做视频免费观看| 麻豆乱淫一区二区| 日韩熟女老妇一区二区性免费视频| 我的女老师完整版在线观看| 国产成人aa在线观看| 麻豆成人av视频| 99久久精品热视频| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 久久99精品国语久久久| 久久精品久久精品一区二区三区| 女的被弄到高潮叫床怎么办| .国产精品久久| 各种免费的搞黄视频| 精品久久久精品久久久| 欧美精品高潮呻吟av久久| 久久免费观看电影| 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 丰满迷人的少妇在线观看| 丰满饥渴人妻一区二区三| av视频免费观看在线观看| 街头女战士在线观看网站| 亚洲欧美日韩卡通动漫| av线在线观看网站| 一级毛片黄色毛片免费观看视频| 久久久久视频综合| 国产精品熟女久久久久浪| 国产淫语在线视频| 少妇人妻一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 国产淫语在线视频| 亚洲国产色片| 午夜免费观看性视频| 在线观看免费日韩欧美大片 | 噜噜噜噜噜久久久久久91| 亚洲国产欧美日韩在线播放 | 人人妻人人添人人爽欧美一区卜| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 久久人人爽人人爽人人片va| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区 | 大又大粗又爽又黄少妇毛片口| 免费人妻精品一区二区三区视频| 91久久精品国产一区二区成人| 国产日韩欧美在线精品| 只有这里有精品99| 99九九在线精品视频 | 国产一区亚洲一区在线观看| 久久精品夜色国产| 黄色日韩在线| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 男女免费视频国产| 搡老乐熟女国产| 中文字幕免费在线视频6| 夜夜看夜夜爽夜夜摸| 欧美少妇被猛烈插入视频| 国产精品伦人一区二区| 在线天堂最新版资源| 精品一区在线观看国产| 亚洲人成网站在线播| 国产精品一区二区性色av| 国精品久久久久久国模美| 国产免费又黄又爽又色| 国产极品天堂在线| 国精品久久久久久国模美| 乱码一卡2卡4卡精品| a级毛片在线看网站| 少妇猛男粗大的猛烈进出视频| 成人美女网站在线观看视频| 最新的欧美精品一区二区| 久久韩国三级中文字幕| 日韩精品免费视频一区二区三区 | 久久97久久精品| 观看免费一级毛片| 日韩av在线免费看完整版不卡| av在线播放精品| 日本欧美视频一区| 哪个播放器可以免费观看大片| 亚洲综合精品二区| 中文资源天堂在线| 日日撸夜夜添| 亚洲欧美一区二区三区国产| 亚洲中文av在线| 国产欧美另类精品又又久久亚洲欧美| 少妇 在线观看| 国产精品一区二区三区四区免费观看| 在线观看三级黄色| 国产69精品久久久久777片| 大陆偷拍与自拍| 国产精品人妻久久久影院| 特大巨黑吊av在线直播| 天天躁夜夜躁狠狠久久av| 99九九在线精品视频 | 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 黑丝袜美女国产一区| 亚洲av电影在线观看一区二区三区| 十八禁高潮呻吟视频 | 麻豆精品久久久久久蜜桃| 欧美三级亚洲精品| 最近中文字幕高清免费大全6| 日韩精品免费视频一区二区三区 | 亚洲国产色片| 久久鲁丝午夜福利片| 欧美精品国产亚洲| 晚上一个人看的免费电影| 永久免费av网站大全| 噜噜噜噜噜久久久久久91| 久久久久久久大尺度免费视频| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| 久久久欧美国产精品| 亚洲内射少妇av| 亚洲av在线观看美女高潮| 只有这里有精品99| 精品一区二区三区视频在线| 熟女av电影| 亚洲欧美成人综合另类久久久| 美女cb高潮喷水在线观看| 亚洲经典国产精华液单| av天堂久久9| av视频免费观看在线观看| 亚洲av成人精品一二三区| av不卡在线播放| 女人久久www免费人成看片| 高清av免费在线| 国产精品蜜桃在线观看| 欧美精品人与动牲交sv欧美| 丰满少妇做爰视频| 国产在线视频一区二区| 亚洲精品国产成人久久av| 一个人免费看片子| 国产精品福利在线免费观看| 好男人视频免费观看在线| 午夜福利,免费看| √禁漫天堂资源中文www| 伊人久久国产一区二区| 亚洲精品亚洲一区二区| 免费观看的影片在线观看| 3wmmmm亚洲av在线观看| 久久久久网色| 岛国毛片在线播放| 久久综合国产亚洲精品| 美女中出高潮动态图| 国产极品粉嫩免费观看在线 | 一级毛片 在线播放| 欧美日韩亚洲高清精品| 国产女主播在线喷水免费视频网站| 黄色毛片三级朝国网站 | 一本—道久久a久久精品蜜桃钙片| 在线观看www视频免费| 寂寞人妻少妇视频99o| 啦啦啦中文免费视频观看日本| 国产高清三级在线| 搡女人真爽免费视频火全软件| 在线观看www视频免费| 伊人亚洲综合成人网| 嫩草影院入口| 97超碰精品成人国产| 亚洲欧洲国产日韩| videossex国产| 欧美+日韩+精品| 精品久久久久久久久av| 伊人久久国产一区二区| 亚洲成人av在线免费| 偷拍熟女少妇极品色| 午夜视频国产福利| 黑人猛操日本美女一级片| 成年女人在线观看亚洲视频| 久久久久久伊人网av| 特大巨黑吊av在线直播| 欧美精品一区二区大全| 日韩欧美精品免费久久| 亚洲丝袜综合中文字幕| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 欧美变态另类bdsm刘玥| 在线观看免费日韩欧美大片 | 插阴视频在线观看视频| 国产一区二区三区综合在线观看 | 高清视频免费观看一区二区| 啦啦啦在线观看免费高清www| 丁香六月天网| 五月伊人婷婷丁香| 亚洲精品成人av观看孕妇| 男女免费视频国产| 18禁在线无遮挡免费观看视频| 99国产精品免费福利视频| 欧美国产精品一级二级三级 | 99热国产这里只有精品6| 三上悠亚av全集在线观看 | 久久人人爽人人片av| 中文天堂在线官网| 97精品久久久久久久久久精品| 日韩av在线免费看完整版不卡| 乱系列少妇在线播放| 欧美日韩综合久久久久久| 嫩草影院入口| 久久精品国产亚洲av涩爱| 成人18禁高潮啪啪吃奶动态图 | 国产日韩欧美视频二区| 亚洲精品视频女| 国产中年淑女户外野战色| 亚洲一区二区三区欧美精品| 韩国av在线不卡| 自拍偷自拍亚洲精品老妇| 丰满饥渴人妻一区二区三| 91aial.com中文字幕在线观看| 欧美3d第一页| 成人黄色视频免费在线看| 免费黄频网站在线观看国产| 国产精品女同一区二区软件| av.在线天堂| 另类精品久久| 久久精品国产自在天天线| 国产深夜福利视频在线观看| 3wmmmm亚洲av在线观看| 一级av片app| 国产精品国产三级专区第一集| 欧美xxxx性猛交bbbb| 亚洲av国产av综合av卡| 建设人人有责人人尽责人人享有的| 少妇人妻一区二区三区视频| 免费黄网站久久成人精品| 精品国产乱码久久久久久小说| 极品教师在线视频| 看非洲黑人一级黄片| 久久久久久久国产电影| 国内揄拍国产精品人妻在线| 成人二区视频| 欧美日韩在线观看h| 在线亚洲精品国产二区图片欧美 | 街头女战士在线观看网站| 老司机影院成人| 国产成人精品无人区| 狂野欧美激情性bbbbbb| 22中文网久久字幕| 精品一区二区三区视频在线| 三级经典国产精品| 能在线免费看毛片的网站| 国产精品一区二区性色av| 99热这里只有是精品在线观看| 国产一区二区在线观看日韩| 国产亚洲av片在线观看秒播厂| 国产精品国产三级国产av玫瑰| 午夜免费男女啪啪视频观看| 91在线精品国自产拍蜜月| 高清午夜精品一区二区三区| 乱系列少妇在线播放| 亚洲美女黄色视频免费看| 国产爽快片一区二区三区| 美女国产视频在线观看| 中文字幕久久专区| 国产亚洲91精品色在线| 少妇精品久久久久久久| 国产一区亚洲一区在线观看| 又爽又黄a免费视频| 一级毛片 在线播放| 久久久国产欧美日韩av| 18禁裸乳无遮挡动漫免费视频| 国产免费又黄又爽又色| 日韩三级伦理在线观看| 成人美女网站在线观看视频| 国产精品人妻久久久影院| 两个人免费观看高清视频 | 男人添女人高潮全过程视频| 男女边吃奶边做爰视频| 日韩成人伦理影院| 国产av国产精品国产| 久久久久久久久久人人人人人人| 美女内射精品一级片tv| 你懂的网址亚洲精品在线观看| 熟女人妻精品中文字幕| 69精品国产乱码久久久| 久久久a久久爽久久v久久| 国产男女内射视频| 午夜视频国产福利| 综合色丁香网| .国产精品久久| 国产精品久久久久久精品电影小说| 在线看a的网站| 国产精品99久久99久久久不卡 | 男男h啪啪无遮挡| 国产成人freesex在线| 热99国产精品久久久久久7| 精品人妻偷拍中文字幕| 亚洲精品中文字幕在线视频 | 久久国内精品自在自线图片| 在线天堂最新版资源| 曰老女人黄片| 亚洲熟女精品中文字幕| av在线老鸭窝| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 久久青草综合色| 欧美日韩综合久久久久久| 国产精品99久久99久久久不卡 | av在线老鸭窝| 男女边吃奶边做爰视频| kizo精华|