• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation and performance analysis of organic Rankine cycle combined heat and power system

    2015-03-01 08:07:23LiuYulanCaoZhengChenJiufaXiongJian

    Liu Yulan  Cao Zheng  Chen Jiufa  Xiong Jian

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2Lotusland Renewable Energy Holdings Limited, Shanghai 200233, China)

    ?

    Simulation and performance analysis of organic Rankine cycle combined heat and power system

    Liu Yulan1Cao Zheng1Chen Jiufa1Xiong Jian2

    (1School of Energy and Environment, Southeast University, Nanjing 210096, China)(2Lotusland Renewable Energy Holdings Limited, Shanghai 200233, China)

    Abstract:To improve the overall thermal efficiency of the organic Rankine cycle (ORC), a simulation study was carried out for a combined heat and power (CHP) system, using the Redlich-Kuang-Soave (RKS) equation of state. In the system, R245fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency. Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures (80, 90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures (20, 25, 30, 35, 40, 45, 50, 55 ℃). Results show that in the ORC without an internal heat exchanger (IHE), the optimum cycle efficiencies are in the range of 7.0% to 7.3% when the temperature differences between the heat source and heat sink are in the range of 70 to 90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than 40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC.

    Key words:organic Rankine cycle; combined heat and power; cycle efficiency; exergy efficiency; thermal efficiency

    Received 2015-03-25.

    Biographies:Liu Yulan(1990—), female, graduate; Chen Jiufa(corresponding author), male, doctor, professor, chen.jiufa@126.com.

    Foundation item:Special Fund for Industry, University and Research Cooperation (No.2011DFR61130).

    Citation:Liu Yulan, Cao Zheng, Chen Jiufa, et al.Simulation and performance analysis of organic Rankine cycle combined heat and power system[J].Journal of Southeast University (English Edition),2015,31(4):489-495.[doi:10.3969/j.issn.1003-7985.2015.04.010]

    With increasing scarcity of non-renewable energy, the development of new energy and recovery of waste heat is increasingly important. Using a low-temperature heat source to generate power with the ORC is one of the effective ways to solve this problem. So far, much research on ORC systems has been carried out, and the form of heat source can be solar[1], geothermal[2], biomass[3], industrial waste heat[4]and so on. However, what they are most concerned about is the power efficiency. Madhawa et al.[2]compared different refrigerants in the ORC system, such as ammonia, HCFC 123, n-pentane and PF5050, however, the maximum power efficiency is not more than 10%. Li et al.[5]obtained the highest efficiency of 7.98% in the regenerative ORC with 6 kW power output. Jradi et al.[6]employed HFE7100 in an ORC system, and the maximum electric power of 500 kW has been generated with a cycle efficiency of 5.7%. Zheng et al.[7]pointed out that the cycle efficiency is steady between 5% and 6% when the heat source temperature is 90 ℃. Pei et al.[8]designed and manufactured a specifical turbine to adapt the ORC system in order to improve cycle efficiency, and obtained a maximum efficiency of 6.8%. In summary, as stated in previously mentioned studies, the present thermal efficiency is relatively low in small-scale ORC systems, both under the theoretical and experimental conditions. This phenomenon may be due to two main reasons: the first is the limitations of the research projects themselves; the second is the application limit of the low-grade heat source, which is only used for output power.

    Therefore, to compensate for this inadequacy, the discharged heat is recycled in the condenser for domestic hot water by using the CHP technology, thus improving the overall thermal efficiency and reducing the exergy destruction. According to the civil architecture standard of domestic hot water, the temperature of cooling water at the condenser outlet,Tow, should be set in the range of 50 to 60 ℃. In addition, a simulation program is developed in this paper to study the ORC and optimized under different conditions. Therefore, it can provide technical support and a theoretical basis for calculating the overall system, and give guidance to the test bench in future research.

    1System Introduction

    1.1 Organic working fluids selection

    The selection of low boiling point organic working fluid is important for optimizing the ORC system. Apart from its environmental impacts, the thermophysical property of the working fluid should be considered. Qiu[9]pointed out that R245fa was one of the best working fluids in small-scale ORC systems by proposing some evaluation standards and methods; Aghahosseini et al.[10]proved that the performance indicators of the ORC were all in the most reasonable range by using R245fa under different conditions; Saleh et al.[11]pointed out that R245fa should be considered in order to obtain a high thermal efficiency in the reheated cycle. In view of the previous studies, R245fa was chosen in this paper for a small-scale ORC system with a low-temperature heat source.

    1.2 Basic ORC system

    The schematic diagram of a basic ORC is presented in Figs.1 and 2. The refrigerant enters the condenser as superheated vapor at state 1 and leaves as subcooled liquid at state 4, and the cooling water will take away the heat, which is rejected during this vapor-liquid phase change process at condensing pressurePd. Then, the refrigerant enters the pump and is compressed to the evaporating pressurePein an isentropic efficiency which is determined by the pump. Then, it enters the evaporator as compressed liquid at state 5 and leaves as superheated vapor at state 8 by absorbing heat from the heat carrier at constantPe. The superheated vapor enters the expander and expands in an isentropic efficiency which is determined by the expansion ratio, and produces work by rotating the shaft connected to a generator. The pressure and temperature of the vapor drop during this process to the initial state 1. Then the refrigerant reenters the condenser, completing the cycle[12]. During this cycle, work can be produced in the expansion process, which can be used for generating electricity. Meanwhile, the cooling water at an appropriate temperature can be obtained by controlling the condensing temperatureTd, thus improving the overall thermal efficiency. Furthermore, instead of water, thermal oil serves as the heat carrier.

    Fig.1 Schematic diagram of the ORC system

    Fig.2 T-S diagram of the ORC system

    1.3 ORC system with IHE

    Compared with the basic ORC, the thermal load of the condenser and the cooling load of the evaporator can be reduced by adding a counter-flow IHE between the expander and pump outlet pipes, thus improving thermal efficiency. The subcooled liquid refrigerant (at state 5) absorbs heat from the superheated vapor refrigerant (at state 1) in the IHE, then they leave the IHE at state 5i and 2i, respectively, as illustrated in Figs.3 and 4.

    Fig.3 Schematic diagram of the ORC system with IHE

    Fig.4 T-S diagram of the ORC system with IHE

    2ORC Model

    A program of the ORC model is developed in this paper, which is written in VB language. The main routine connects the subroutines of working fluid, the evaporator, expander, condenser, pump and IHE. This program is simulated under ideal conditions; i.e., the pressure drops in pipes, heat exchangers and other components are ignored.

    2.1 Working fluid subroutine

    The physical parameters of R245fa in one-phase and two-phase regions are calculated by using the RKS equation of state with an elaborated thermodynamic frame. In addition, the following basic parameters are needed: an eccentric factor, molecular weight, critical temperature, critical pressure, the heat capacity of the liquid, and the heat capacity of the ideal gas.

    In the superheated or subcooled region, the physical parameters of the working fluid, such as enthalpy, entropy, internal energy, density, can be calculated according to the temperature and pressure. While in the two-phase region, either temperature or pressure is enough for the calculation. For given temperature (or pressure), the fugacity coefficients of both the liquid phase and vapor phase are calculated and compared. If the deviation between those two fugacity coefficients is smaller than a given tolerance, the equilibrium state is reached, and the iterated pressure (or temperature) can be outputted; otherwise, a new iteration process will be repeated. In addition, other physical parameters can be calculated according to the temperature and pressure.

    In short, the physical parameters of the working fluid can be calculated in this working fluid subroutine, which provides a basis for the simulation of the entire program.

    2.2 Model of evaporator and condenser

    The aim of the subroutine of the evaporator model is to output the iterated evaporating temperatureTe, heat exchangeQeand other outlet parameters. This subroutine is to perform iterative calculation by controlling the deviation between the iterated heat transfer area and the actual area of the evaporator. When the system is equipped with IHE, the heat exchange is

    Qe=(h8-h5i)qm,r

    (1)

    and without IHE, it is

    Qe=(h8-h5)qm,r

    (2)

    whereqm,ris the mass flow rate of refrigerant;h8,h5i,h5are the enthalpy per unit mass of refrigerant at state 8, 5i, and 5, respectively.

    For the chevron plate heat exchanger, the empirical correlation of heat transfer coefficientkin the single-phase region can be calculated as[13]

    (3)

    whereλis the thermal conductivity;Deqis the equivalent diameter of the single channel in the plate heat exchanger;Reis the Reynolds number;Pris the Prandtl number;βis the angle of the herringbone plate heat exchanger.

    In the two-phase region, the precise heat transfer coefficient can be calculated as[14]

    (4)

    wherekrlis the heat transfer coefficient of the liquid refrigerant;Bois the Boiling number;Cois the convection number;Frlis the Froude number of the liquid refrigerant.

    The simulation algorithm of the condenser model is similar to that of the evaporator. In the CHP system, the discharged heat in the condenser is collected for domestic hot water. When the system is equipped with IHE, the discharged heatQdis

    Qd=(h2i-h4)qm,r

    (5)

    and without IHE, it is

    Qd=(h1-h4)qm,r

    (6)

    whereh2i,h4,h1are the enthalpy per unit mass of refrigerant at state 2i, 4, and 1, respectively.

    The heat transfer coefficient of the two-phase fluid can be calculated as[13]

    (7)

    whereλlis the thermal conductivity of the liquid refrigerant;Reeqis the equivalent Reynolds number;Prlis the Prandtl number of the liquid refrigerant.

    2.3 Model of expander, pump and IHE

    For the selected scroll expander, the isentropic efficiency is maximum when the cycle pressure ratio matches the internal volume ratio of the expander, and it will be decreased in over- or under-expansion. The work outputWexpis

    Wexp=(h8-h1)qm,r

    (8)

    The working fluid pump is used for elevating the pressure of the liquid refrigerant fromPdtoPe, and its simulation algorithm is similar to that of the expander. The power consumption of the pumpWpis

    Wp=(h5-h4)qm,r

    (9)

    In the IHE, the high-pressure liquid refrigerant (at state 5) can be heated by absorbing heat from the low-pressure gas refrigerant (at state 1), and the heat transfer leads to a reduction in the thermal load of the condenser and cooling load of the evaporator, thus improving the cycle efficiency. The heat exchange in the IHEQIis

    QI=(h5i-h5)qm,r=(h1-h2i)qm,r

    (10)

    2.4 Cycle indicators

    The net work outputWnet, cycle efficiencyηcyc, exergy efficiencyηexand overall thermal efficiencyηoveare set to be the cycle indicators to evaluate the performance of the ORC system and select the optimal working conditions.

    Wnet=Wexp-Wp

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    whereQwis the heat absorbed by the cooling water;Tambis the ambient temperature;Towis the temperature of the cooling water at the condenser outlet;Ewis the exergy of the cooling water;Tiois the temperature of the thermal oil at the evaporator inlet;Qois the heat released from the thermal oil;Eois the exergy of the thermal oil.

    2.5 Main routine flowchart of system

    Fig.5 Main routine flowchart of the ORC system

    3Simulation Results

    Several graphs are plotted to show the influences ofTeandTdon cycle efficiency, exergy efficiency and overall thermal efficiency, and the effects of the CHP technology and the IHE on the basic ORC system, with a fixed flow rate of cooling water and thermal oil.

    3.1 Influences of heat source and heat sink temperatures on cycle performance

    For a non-CHP ORC without IHE, the isentropic efficiency, work output and cycle efficiency vs.Tioare plotted in Fig.6 at different condenser inlet temperatures of cooling water (Tiw).

    (a)

    (b)

    (c)Fig.6 Influences of Tio and Tiw on cycle performance. (a) Isentropic efficiency; (b) Work output; (c) Cycle efficiency

    For the selected scroll expander, its optimum isentropic efficiency appears whenTiwwell matchesTioas shown in Fig.6(a), and the cycle pressure ratio is about 2.5 under these conditions. As shown in Fig.6(b), the work output increases with the increase ofTio. As shown in Fig.6(c), whenTiwis less than 35 ℃, the cycle efficiency increases first and then decreases asTioincreases. It is mainly because the isentropic efficiency decreases rapidly with the continuous increase ofTio. Thus, the increments in work output and cycle efficiency are limited. While the cycle efficiency increases but the growth rate decreases asTioincreases whenTiwis larger than 40 ℃. The main reason is that the isentropic efficiency increases first and then decreases slowly.

    In summary, for the selected scroll expander, a better temperature match between the heat source and heat sink leads to larger isentropic efficiency, work output and cycle efficiency. Moreover, the optimum cycle efficiencies, in the range of 7.0% to 7.3%, are obtained when the temperature differences between the heat source and the heat sink are in the range of 70 to 90 ℃.

    3.2 Influences of CHP technology

    In order to improve the overall thermal efficiency and exergy efficiency, hot water can be obtained for the building by recycling the discharged heat in the condenser.

    3.2.1Influence ofTioandTiwonTow

    Since the temperature rise of cooling water is limited in the condenser, the lowestTiwis required for obtaining hot water. The influences ofTioandTiwonToware shown in Fig.7.

    Fig.7 Influences of Tio and Tiw on Tow

    It can be seen thatTowincreases asTioincreases. WhenTiwis 35 ℃,Towis less than 50 ℃ continuously with a fixed flow rate of cooling water, and water less than 50 ℃ cannot be used for domestic hot water. WhenTiwis 40 ℃,Towcan meet the standard of domestic hot water only whenTioachieves 120 ℃. Besides, the higher theTiw, the lower the temperature requirement of the heat source. Therefore, to produce hot water,Tiwrequires a minimum value of 40 ℃.

    3.2.2Influence of CHP technology on exergy and overall thermal efficiency

    As is shown in Fig.8(a), the exergy efficiency decreases asTiwincreases in the non-CHP ORC system. It is mainly because the higher the temperature, the greater the ambient heat loss, without consideration of heat recovery from cooling water. However, the exergy efficiency increases along with the increasingTiwin the CHP ORC system, and it is 29% to 56% better than that in the non-CHP system. In addition, the overall thermal efficiency is equal to the cycle efficiency in the non-CHP system, but it reaches 90% or higher in the CHP system (see Fig.8(b)). Therefore, the use of CHP technology will further improve the utilization rate of low-temperature heat sources. However, under actual conditions, the higher the temperature, the greater the heat loss; therefore, the overall thermal efficiency will decline.

    (a)

    (b)Fig.8 Influence of CHP technology on efficiency. (a) Exergy efficiency; (b) Overall thermal efficiency

    3.3 Influence of IHE on cycle indicators

    For the CHP ORC systems with and without IHE, whenTiwis 45 ℃, the cycle indicators vs.Tioare plotted in Fig.9.

    (a)

    It can be seen from the simulation results that, as the heat source temperature increases, the trends of performance curves remain unchanged by adding an IHE, and the performance improves somewhat. The work output in a cycle with an IHE is 0.06 to 0.13 kW larger than that without an IHE, and the growth of exergy efficiency and cycle efficiency are only about 1.3% and 0.6%, respectively. Therefore, from the simulation results under ideal condition, IHE has little effect on the improvement of the performance parameters of the CHP ORC system. Besides, based on heat loss, cost, complexity and other factors, IHE is not strongly recommended for an actual ORC plant.

    4Conclusions

    1) For a non-CHP ORC without IHE, optimum cycle efficiency is related to the optimum pressure ratio. For the scroll expander selected in this paper, the optimum cycle efficiencies of 7.0% to 7.3% are obtained when the temperature difference between the heat source and the heat sink is in the range of 70 to 90 ℃.

    2) For a CHP ORC, to produce hot water, the heat sink inlet temperature requires a minimum value of 40 ℃. In contrast to the non-CHP system, the use of the CHP technology will improve exergy efficiency and overall thermal efficiency by 29% to 56% and 87% to 90%, respectively.

    3) The usage of the IHE will raise the exergy efficiency and cycle efficiency of only about 1.3% and 0.6%, respectively. Therefore, IHE has little effect on the improvement of the efficiencies of the CHP ORC system. Besides, based on heat loss, cost, complexity and other factors, IHE is not strongly recommended for an actual ORC plant.

    References

    [1]Manolakos D, Kosmadakis G, Kyritsis S. On site experimental evaluation of a low temperature solar organic Rankine cycle system for RO desalination[J].SolarEnergy, 2009, 83(5): 646-656.

    [2]Madhawa H H D, Golubovic M, Worek W M, et al. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources[J].Energy, 2007, 32(9): 1698-1706.

    [3]Liu H, Shao Y J, Li J X. A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC)-thermodynamic modeling studies[J].BiomassandBioenergy, 2011, 35(9): 3985-3994.

    [4]Wei D H, Lu X S, Lu Z, et al. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J].EnergyConversionandManagement, 2007, 48(4): 1113-1119.

    [5]Li M Q, Wang J F, He W F, et al. Construction and preliminary test of a low-temperature regenerative organic Rankine cycle (ORC) using R123[J].RenewableEnergy, 2013, 57(3): 216-222.

    [6]Jradi M, Li J X, Liu H, et al. Micro-scale ORC-based combined heat and power system using a novel scroll expander[J].InternationalJournalofLow-CarbonTechnologies, 2014, 9(2): 91-99.

    [7]Zheng N, Zhao L, Wang X D, et al. Experimental verification of a rolling-piston expander that applied for low-temperature organic Rankine cycle[J].AppliedEnergy, 2013, 112(16): 1265-1274.

    [8]Pei G, Li J, Li Y Z, et al. Construction and dynamic test of a small-scale organic Rankine cycle[J].Energy, 2011, 36(5): 3215-3223.

    [9]Qiu G Q. Selection of working fluids for micro-CHP systems with ORC[J].RenewableEnergy, 2012, 48(6): 565-570.

    [10]Aghahosseini S, Dincer I. Comparative performance analysis of low-temperature organic Rankine cycle (ORC) using pure and zeotropic working fluids[J].AppliedThermalEngineering, 2013, 54(1): 35-42.

    [11]Saleh B, Koglbauer G, Wendland M, et al. Working fluids for low-temperature organic Rankine cycles[J].Energy, 2007, 32(7): 1210-1221.

    [12]Onkar Singh.Appliedthermodynamics[M]. New Delhi, India: Mechanical Engineering Department, Harcourt Butler Technological Institute, 2009.

    [13]García-Cascales J R, Vera-García F, Corberán-Salvador J M, et al. Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers[J].InternationalJournalofRefrigeration, 2007, 30(6): 1029-1041.

    [14]Quoilin S. Sustainable energy conversion through the use of organic Rankine cycles for waste heat recovery and solar applications[D]. Liège, Belgium: University of Liège, 2011.

    doi:10.3969/j.issn.1003-7985.2015.04.010

    深夜a级毛片| 中文字幕高清在线视频| 久久草成人影院| 国模一区二区三区四区视频| 精品久久久久久久末码| 免费看美女性在线毛片视频| 成人特级av手机在线观看| 久久精品影院6| 国产亚洲欧美在线一区二区| 性色av乱码一区二区三区2| 男女视频在线观看网站免费| 乱人视频在线观看| 如何舔出高潮| 人妻丰满熟妇av一区二区三区| 亚洲五月天丁香| 亚洲最大成人手机在线| 51国产日韩欧美| 国产精品伦人一区二区| 极品教师在线视频| 校园春色视频在线观看| 特大巨黑吊av在线直播| 国产精品久久电影中文字幕| 天堂影院成人在线观看| 久久久久久久亚洲中文字幕 | 欧美绝顶高潮抽搐喷水| 又黄又爽又免费观看的视频| 国产亚洲精品久久久久久毛片| 久久精品国产亚洲av涩爱 | 亚洲一区二区三区色噜噜| 网址你懂的国产日韩在线| 波多野结衣高清无吗| 亚洲精品一区av在线观看| 国产免费av片在线观看野外av| 成年女人永久免费观看视频| 欧美成人a在线观看| xxxwww97欧美| 丰满人妻熟妇乱又伦精品不卡| 窝窝影院91人妻| 网址你懂的国产日韩在线| av天堂在线播放| 长腿黑丝高跟| 中国美女看黄片| 偷拍熟女少妇极品色| 最后的刺客免费高清国语| 国产美女午夜福利| 色av中文字幕| 免费一级毛片在线播放高清视频| 国产免费男女视频| 国产爱豆传媒在线观看| 免费电影在线观看免费观看| 搡老妇女老女人老熟妇| 狂野欧美白嫩少妇大欣赏| 夜夜爽天天搞| 非洲黑人性xxxx精品又粗又长| 亚洲精品乱码久久久v下载方式| 小蜜桃在线观看免费完整版高清| 三级男女做爰猛烈吃奶摸视频| 丁香欧美五月| 九色成人免费人妻av| av在线天堂中文字幕| 啪啪无遮挡十八禁网站| 一区二区三区四区激情视频 | www.熟女人妻精品国产| 内地一区二区视频在线| 中出人妻视频一区二区| 亚洲av不卡在线观看| 亚洲精品456在线播放app | 在线播放国产精品三级| 欧洲精品卡2卡3卡4卡5卡区| 中文在线观看免费www的网站| 夜夜躁狠狠躁天天躁| 成人精品一区二区免费| 亚洲欧美日韩东京热| 成年版毛片免费区| 人妻夜夜爽99麻豆av| 大型黄色视频在线免费观看| 亚洲精品在线观看二区| eeuss影院久久| 亚洲av免费在线观看| 女生性感内裤真人,穿戴方法视频| av视频在线观看入口| 欧美黑人巨大hd| 男人和女人高潮做爰伦理| 可以在线观看的亚洲视频| 成熟少妇高潮喷水视频| 蜜桃久久精品国产亚洲av| 精品国内亚洲2022精品成人| 亚洲中文日韩欧美视频| 国产老妇女一区| 精品人妻视频免费看| 亚洲美女视频黄频| 长腿黑丝高跟| 91久久精品国产一区二区成人| 国产淫片久久久久久久久 | 三级男女做爰猛烈吃奶摸视频| 无遮挡黄片免费观看| 五月玫瑰六月丁香| 最近最新免费中文字幕在线| 老司机午夜十八禁免费视频| 成年女人毛片免费观看观看9| 亚洲人成网站高清观看| 午夜视频国产福利| 亚洲最大成人中文| 亚洲精品一卡2卡三卡4卡5卡| 99国产极品粉嫩在线观看| www.色视频.com| 我要看日韩黄色一级片| 久久九九热精品免费| 日韩 亚洲 欧美在线| 亚洲avbb在线观看| 看免费av毛片| 特级一级黄色大片| 动漫黄色视频在线观看| 国产av在哪里看| 久久婷婷人人爽人人干人人爱| av在线天堂中文字幕| 久久午夜福利片| 久9热在线精品视频| 老司机午夜十八禁免费视频| 亚洲久久久久久中文字幕| 成人精品一区二区免费| 亚洲色图av天堂| 波多野结衣高清无吗| 亚洲18禁久久av| 成人午夜高清在线视频| 欧美色视频一区免费| 如何舔出高潮| 免费人成在线观看视频色| h日本视频在线播放| 一区二区三区高清视频在线| 搡女人真爽免费视频火全软件 | 国产精品久久电影中文字幕| 国产探花在线观看一区二区| 亚洲最大成人中文| 亚洲精品亚洲一区二区| 深夜精品福利| 欧美一区二区亚洲| 成人av在线播放网站| 亚洲精品乱码久久久v下载方式| 国产精品不卡视频一区二区 | 性插视频无遮挡在线免费观看| 久久久色成人| 色综合欧美亚洲国产小说| 日日夜夜操网爽| 亚洲专区国产一区二区| 国产成人啪精品午夜网站| 中出人妻视频一区二区| 高清在线国产一区| 欧美精品啪啪一区二区三区| 成人av一区二区三区在线看| 日韩欧美一区二区三区在线观看| 美女xxoo啪啪120秒动态图 | 国产日本99.免费观看| 麻豆av噜噜一区二区三区| 亚洲不卡免费看| 国产伦在线观看视频一区| 久久国产精品影院| 大型黄色视频在线免费观看| 久久久久久久久大av| 观看美女的网站| 欧美xxxx黑人xx丫x性爽| 三级毛片av免费| 精品久久久久久久久久久久久| 欧美日韩国产亚洲二区| 欧美日韩黄片免| 免费av毛片视频| 精品免费久久久久久久清纯| 成人性生交大片免费视频hd| 日本在线视频免费播放| 国产伦精品一区二区三区四那| 欧美激情久久久久久爽电影| 精品国产亚洲在线| 精品一区二区免费观看| 18禁在线播放成人免费| 国产亚洲精品久久久com| 尤物成人国产欧美一区二区三区| 国产精品国产高清国产av| 成人国产一区最新在线观看| 深夜精品福利| 亚洲黑人精品在线| 国产美女午夜福利| 久久国产精品人妻蜜桃| 成熟少妇高潮喷水视频| 看免费av毛片| 国语自产精品视频在线第100页| 天天一区二区日本电影三级| 日本成人三级电影网站| 伦理电影大哥的女人| 国产精品一区二区三区四区免费观看 | 午夜免费男女啪啪视频观看 | 成年免费大片在线观看| 窝窝影院91人妻| 国产爱豆传媒在线观看| 精品久久国产蜜桃| 久久久色成人| 中文字幕久久专区| 99视频精品全部免费 在线| 亚洲精品成人久久久久久| 噜噜噜噜噜久久久久久91| 一本久久中文字幕| 亚洲第一电影网av| 亚洲色图av天堂| 18禁黄网站禁片免费观看直播| 观看美女的网站| 99久国产av精品| 亚洲无线观看免费| 成人av一区二区三区在线看| 国产国拍精品亚洲av在线观看| 亚洲黑人精品在线| 人妻久久中文字幕网| 人人妻人人看人人澡| 欧美+亚洲+日韩+国产| 露出奶头的视频| 久久九九热精品免费| 久久久久久久亚洲中文字幕 | 亚洲精品影视一区二区三区av| 国产日本99.免费观看| 国产精品野战在线观看| 亚洲成人久久性| 天堂√8在线中文| 99在线视频只有这里精品首页| 又爽又黄a免费视频| 小说图片视频综合网站| 97人妻精品一区二区三区麻豆| 国产精品爽爽va在线观看网站| bbb黄色大片| 国产亚洲精品综合一区在线观看| av在线观看视频网站免费| 精品久久国产蜜桃| 搡女人真爽免费视频火全软件 | 美女被艹到高潮喷水动态| 国产亚洲精品久久久久久毛片| 久久婷婷人人爽人人干人人爱| 国产精华一区二区三区| 夜夜躁狠狠躁天天躁| 久久精品人妻少妇| a级毛片免费高清观看在线播放| 少妇人妻精品综合一区二区 | 久久久精品大字幕| av天堂中文字幕网| 黄色女人牲交| 中亚洲国语对白在线视频| 日本在线视频免费播放| 变态另类成人亚洲欧美熟女| 美女黄网站色视频| 久9热在线精品视频| 国产久久久一区二区三区| 国产黄片美女视频| 日本 av在线| 精品久久久久久久末码| 欧洲精品卡2卡3卡4卡5卡区| 精品福利观看| 久久精品国产亚洲av香蕉五月| 亚洲黑人精品在线| 国产又黄又爽又无遮挡在线| 亚洲人成网站在线播放欧美日韩| 久久精品国产清高在天天线| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图av天堂| 国产成年人精品一区二区| 青草久久国产| 十八禁国产超污无遮挡网站| 熟女电影av网| 日韩欧美三级三区| 久9热在线精品视频| 午夜日韩欧美国产| 我的老师免费观看完整版| 一二三四社区在线视频社区8| 国产成人av教育| 亚洲欧美日韩东京热| 久久精品国产清高在天天线| 无人区码免费观看不卡| 好看av亚洲va欧美ⅴa在| 91av网一区二区| 毛片一级片免费看久久久久 | 在线看三级毛片| 国产精品乱码一区二三区的特点| 国产主播在线观看一区二区| 日韩欧美精品免费久久 | 亚洲综合色惰| 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| 国产精品亚洲一级av第二区| 精品午夜福利在线看| 狂野欧美白嫩少妇大欣赏| 久久久久久久久中文| 亚洲乱码一区二区免费版| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| 国语自产精品视频在线第100页| 精品一区二区免费观看| 最后的刺客免费高清国语| 精品国内亚洲2022精品成人| 欧美又色又爽又黄视频| 国产精品久久久久久精品电影| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| 亚洲精品一区av在线观看| 少妇裸体淫交视频免费看高清| 99热这里只有精品一区| 国产视频一区二区在线看| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 国产伦一二天堂av在线观看| 久久婷婷人人爽人人干人人爱| 国产精品嫩草影院av在线观看 | 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 51午夜福利影视在线观看| 精品欧美国产一区二区三| 淫妇啪啪啪对白视频| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图 | 国产免费av片在线观看野外av| 久久午夜亚洲精品久久| 久久久久久久久久成人| 国产私拍福利视频在线观看| x7x7x7水蜜桃| 欧美区成人在线视频| 国产精品爽爽va在线观看网站| 亚洲男人的天堂狠狠| 我的老师免费观看完整版| 男女之事视频高清在线观看| 精品一区二区三区av网在线观看| 亚洲成人精品中文字幕电影| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 啪啪无遮挡十八禁网站| 国产精品野战在线观看| 五月伊人婷婷丁香| 97热精品久久久久久| 赤兔流量卡办理| 一级a爱片免费观看的视频| 十八禁人妻一区二区| 搡老熟女国产l中国老女人| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 网址你懂的国产日韩在线| 一二三四社区在线视频社区8| 国产精品伦人一区二区| 午夜两性在线视频| 有码 亚洲区| 精品久久久久久成人av| 日本黄色视频三级网站网址| 亚洲av电影在线进入| 成人亚洲精品av一区二区| 久久久久久九九精品二区国产| 69人妻影院| 淫妇啪啪啪对白视频| 婷婷色综合大香蕉| 午夜精品在线福利| 国产探花极品一区二区| 99热只有精品国产| 成年女人毛片免费观看观看9| av在线蜜桃| 欧美zozozo另类| 看片在线看免费视频| 久久欧美精品欧美久久欧美| 美女cb高潮喷水在线观看| 老熟妇乱子伦视频在线观看| 深夜精品福利| 欧美黄色淫秽网站| 国产精品久久久久久久电影| 欧美性感艳星| 男女那种视频在线观看| 日韩欧美国产一区二区入口| 久久久久国内视频| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区| 97超级碰碰碰精品色视频在线观看| 免费无遮挡裸体视频| 国产一区二区三区在线臀色熟女| 在线播放国产精品三级| 日韩欧美 国产精品| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频| 亚洲欧美日韩无卡精品| 亚洲五月婷婷丁香| 国产伦一二天堂av在线观看| 国产不卡一卡二| 能在线免费观看的黄片| 成人国产综合亚洲| 欧美精品国产亚洲| 精品午夜福利视频在线观看一区| 精品一区二区三区视频在线观看免费| 舔av片在线| 乱码一卡2卡4卡精品| 亚洲精品一区av在线观看| 97热精品久久久久久| 欧美日韩国产亚洲二区| 国产精品免费一区二区三区在线| 非洲黑人性xxxx精品又粗又长| 久久香蕉精品热| 在线观看美女被高潮喷水网站 | 国产亚洲精品久久久久久毛片| 九色成人免费人妻av| 中文字幕精品亚洲无线码一区| 黄色一级大片看看| 欧美黑人欧美精品刺激| 一本一本综合久久| 麻豆一二三区av精品| 精品午夜福利在线看| 亚洲久久久久久中文字幕| 欧美又色又爽又黄视频| 国产亚洲精品久久久com| 欧美乱色亚洲激情| 亚洲自偷自拍三级| 色综合欧美亚洲国产小说| 国产爱豆传媒在线观看| 免费人成视频x8x8入口观看| 中文字幕av在线有码专区| 亚洲自偷自拍三级| 精品久久久久久成人av| 国产男靠女视频免费网站| 久久久久九九精品影院| 国产精品99久久久久久久久| 九色成人免费人妻av| 高清在线国产一区| 国产三级在线视频| 一本一本综合久久| 国产精品98久久久久久宅男小说| 我要看日韩黄色一级片| 真实男女啪啪啪动态图| 少妇丰满av| 99热6这里只有精品| 久久国产精品影院| 欧美成人性av电影在线观看| 小蜜桃在线观看免费完整版高清| 国产高清激情床上av| 在线免费观看不下载黄p国产 | 动漫黄色视频在线观看| 搡老妇女老女人老熟妇| 脱女人内裤的视频| 九九久久精品国产亚洲av麻豆| 久久久国产成人精品二区| 成人国产一区最新在线观看| 给我免费播放毛片高清在线观看| 亚洲最大成人中文| a级毛片a级免费在线| 亚洲在线观看片| 丁香欧美五月| 成人性生交大片免费视频hd| 国产精品亚洲一级av第二区| 日本a在线网址| 精品一区二区三区av网在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲国产日韩欧美精品在线观看| 国产高清视频在线观看网站| 别揉我奶头 嗯啊视频| 国产野战对白在线观看| 成人av在线播放网站| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| 成人永久免费在线观看视频| 国产欧美日韩精品亚洲av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲av.av天堂| 一卡2卡三卡四卡精品乱码亚洲| 国产三级中文精品| 亚洲成av人片免费观看| 国产精品一区二区三区四区免费观看 | 亚洲国产色片| 国产老妇女一区| 亚洲五月天丁香| 欧美激情国产日韩精品一区| 久久久久久大精品| 日韩大尺度精品在线看网址| 国产欧美日韩一区二区三| 亚洲av电影不卡..在线观看| 国产三级在线视频| 国产人妻一区二区三区在| 国产精品亚洲一级av第二区| 欧美zozozo另类| 一个人看视频在线观看www免费| 嫩草影院精品99| 18+在线观看网站| 精品久久国产蜜桃| 可以在线观看毛片的网站| 美女黄网站色视频| 国产大屁股一区二区在线视频| 国产蜜桃级精品一区二区三区| 精品久久久久久成人av| 美女大奶头视频| 最新在线观看一区二区三区| 国产精品影院久久| 精品人妻熟女av久视频| 精品人妻偷拍中文字幕| 亚洲av免费高清在线观看| 亚洲成人免费电影在线观看| 欧美成人a在线观看| 看十八女毛片水多多多| 日韩欧美免费精品| 91狼人影院| 免费看美女性在线毛片视频| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女| 中文字幕高清在线视频| 女生性感内裤真人,穿戴方法视频| 国产在线男女| 琪琪午夜伦伦电影理论片6080| 成人一区二区视频在线观看| 亚洲激情在线av| 乱码一卡2卡4卡精品| 国产精品久久久久久精品电影| 亚洲不卡免费看| 一进一出好大好爽视频| 国产av一区在线观看免费| 婷婷六月久久综合丁香| 亚洲不卡免费看| 国内揄拍国产精品人妻在线| 亚洲av不卡在线观看| 精华霜和精华液先用哪个| 精品日产1卡2卡| 婷婷色综合大香蕉| 亚洲欧美精品综合久久99| 欧美bdsm另类| 蜜桃久久精品国产亚洲av| 一区福利在线观看| 日本在线视频免费播放| 免费av毛片视频| 亚洲avbb在线观看| 欧美bdsm另类| 免费黄网站久久成人精品 | 精品日产1卡2卡| 一区福利在线观看| 国产久久久一区二区三区| 久久这里只有精品中国| 99热这里只有精品一区| 婷婷六月久久综合丁香| www.熟女人妻精品国产| 久久久成人免费电影| 男女那种视频在线观看| 亚洲熟妇中文字幕五十中出| 精品一区二区三区av网在线观看| 波多野结衣高清作品| 丁香六月欧美| 午夜福利免费观看在线| 99久久成人亚洲精品观看| 美女黄网站色视频| 久久久精品大字幕| 国产一区二区亚洲精品在线观看| 成人精品一区二区免费| 舔av片在线| 搞女人的毛片| 亚洲黑人精品在线| 亚洲av二区三区四区| 日韩av在线大香蕉| 99热精品在线国产| 久久久久久大精品| 熟妇人妻久久中文字幕3abv| 最近中文字幕高清免费大全6 | 九色国产91popny在线| 亚洲av免费在线观看| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 18+在线观看网站| 国产精品女同一区二区软件 | 又紧又爽又黄一区二区| 午夜福利视频1000在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产探花在线观看一区二区| 在线免费观看的www视频| 99热精品在线国产| a级毛片免费高清观看在线播放| 91在线观看av| а√天堂www在线а√下载| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久末码| 亚洲 欧美 日韩 在线 免费| 能在线免费观看的黄片| 欧美又色又爽又黄视频| 成人鲁丝片一二三区免费| 午夜福利欧美成人| 真实男女啪啪啪动态图| 99热只有精品国产| 国产 一区 欧美 日韩| 亚洲熟妇中文字幕五十中出| 国产激情偷乱视频一区二区| 亚洲狠狠婷婷综合久久图片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲黑人精品在线| 亚洲国产高清在线一区二区三| 欧美乱妇无乱码| 久久精品人妻少妇| 久久久国产成人精品二区| www日本黄色视频网| 尤物成人国产欧美一区二区三区| 国产成年人精品一区二区| 国产在线男女| 一个人免费在线观看电影| 三级男女做爰猛烈吃奶摸视频| 欧美乱妇无乱码| 欧美+亚洲+日韩+国产| 特大巨黑吊av在线直播| 久久99热这里只有精品18| 脱女人内裤的视频| 偷拍熟女少妇极品色| 成年版毛片免费区| 青草久久国产| 精品人妻1区二区| 99热这里只有精品一区| 97超视频在线观看视频| 真人做人爱边吃奶动态| 男女之事视频高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久com| 国产三级中文精品| 人妻久久中文字幕网| 欧美黄色片欧美黄色片| 看黄色毛片网站| 91在线精品国自产拍蜜月| 久久香蕉精品热|