• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distribution algorithm of entangled particles for wireless quantum communication mesh networks

    2015-03-01 08:07:19WangXiaojunShiLihuiZhanHaitaoXiangRuiqingYuXutao

    Wang Xiaojun Shi Lihui Zhan Haitao Xiang Ruiqing Yu Xutao

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China)

    ?

    Distribution algorithm of entangled particles for wireless quantum communication mesh networks

    Wang Xiaojun1Shi Lihui2Zhan Haitao2Xiang Ruiqing1Yu Xutao2

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China)

    Abstract:With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree (MST)-based quantum distribution algorithm (QDMST) is presented to construct the mesh backbone network. First, the articulation points are found, and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an MST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.

    Key words:wireless quantum communication networks; entangled particles distribution; wireless mesh networks; minimum spanning tree

    Received 2015-07-09.

    Biography:Wang Xiaojun (1975—), male, doctor, professor, wxj@seu.edu.cn.

    Foundation item:Prospective Research Project on Future Networks of Jiangsu Province, China ( No.BY2013095-1-18).

    Citation:Wang Xiaojun, Shi Lihui, Zhan Haitao, et al. Distribution algorithm of entangled particles for wireless quantum communication mesh networks[J].Journal of Southeast University (English Edition),2015,31(4):450-456.[doi:10.3969/j.issn.1003-7985.2015.04.004]

    In the traditional research of quantum physics, the study of entangled particle distribution focuses on how to produce high quality and high intensity entangled particles, and to distribute them onto two nodes with maximum distance between them[1-4]. During the research of wireless quantum networks[5-10], it is necessary to study the entangled particle distribution in terms of the entire network. Future wireless quantum networks based on entangled states may be large scale, which makes it impossible to distribute high quality entangled particles directly between the source and destination because of the long distance. Instead, the quantum path needs to be constructed with several quantum channels hop by hop via intermediate nodes. Therefore, in order to determine the nodes’ capability of producing entangled particles, investigation on transmission speed and fidelity of entangled particles in the network becomes necessary, which is usually referred to as an entangled particles distribution problem.

    For wireless quantum networks, one of the essential requirements for quantum information transmission between two nodes is the existence of the quantum path. The path can be either a direct quantum channel between them or a quantum path between them via entanglement swapping. Generally in the network, the entangled particles can be produced by nodes involved in the communication or by dedicated devices.

    In a quantum communication network based on the backbone mesh structure[11-13], each node has the capability of quantum teleportation. They are able to exchange routing information and quantum measurement information with traditional radio communication transceivers. The backbone of the quantum network is composed of backbone nodes with extra capability of producing and distributing entangled particles. While each non-backbone node is connected to one or more backbone nodes, and it has no capability of producing and distributing entangled particles for saving cost and reducing complexity. Thus, the entangled particles distribution issue in large-scale quantum communication networks with the mesh structure can be regarded as a quantum backbone node selection problem while ensuring the network connectivity of quantum channels.

    1The Model of QDMST Algorithm

    There are two kinds of channels, i.e. quantum channels and radio channels in a wireless quantum communication network. While in a traditional radio communication network, there may be no direct quantum channel between two neighbor nodes, and vice versa, as shown in Fig.1. Due to the variations with entangled particles in quantum channels, the topology of a quantum network varies much more significantly than that of a traditional radio network. Therefore, it is necessary to develop a dedicated algorithm to construct the backbone network for producing and distributing entangled particles. This paper presents a quantum distribution algorithm based on a minimum spanning tree (QDMST) to reconstruct a backbone network when network outage occurs due to topology change.

    Fig.1 Wireless quantum communication network based on mesh structure

    Assume thatNquantum nodes are randomly distributed within a square region, which includesMbackbone nodes andN-Mnon-backbone nodes. Each non-backbone network node acts as a source and/or a destination node, which is connected to at least one backbone node via a quantum channel and a radio channel. In the case of a fixed number of nodes, fewer nodes in the backbone network means fewer nodes capable of generating and distributing entangled particles. Thus, the algorithm focuses on minimizing the number of backbone nodes in order to reduce network cost and complexity. Also, to directly ensure high-quality, low-cost teleportation[14-16]between the two quantum nodes, the distance between them cannot be too long[16-17]where a threshold is assumed to beR. In order to ensure network connectivity and that each terminal node can transfer quantum information through the backbone network, the distance between each terminal node and at least one backbone node must be less than the effective teleportation distance threshold. The objective of the QDMST algorithm is to minimize the number of backbone nodes:

    minM

    (1)

    s.t.M

    (2)

    whereriis the shortest distance between the terminal nodeiand backbone nodes, and 1≤i≤N-M.

    2Implementation of QDMST Algorithm

    In this paper, the mesh network architecture model is constructed based on the graph theory, and the QDMST algorithm is implemented. Assume that the square area of the model is denoted asG(V,E), whereV={v1,v2,…vN} is the quantum node set. Only if the distance between the pair of nodes is less thanR, there is an edge between them, namely the existence of a quantum channel. The edge set is defined asE={e1,e2,…,en} (n

    1) First a connected graphG(V,E) is randomly generated.

    2) The articulation points (if they exist) of the connected graph are labelled as the initial nodes of the backbone network.

    3) If all nodes are covered by backbone nodes, directly go to Step 6).

    4) Connected components composed by nodes not belonging to the backbone network are found.

    5) The general center of each connected block is obtained and classified as the backbone nodes. Go to Step 3).

    6) The minimum spanning tree (MST) of the backbone network is formed according to the distance weights.

    7) If there is a quantum channel between any two adjacent nodes on the MST, the algorithm stops; otherwise go to Step 8).

    8) The shortest path inGbetween the two nodes is found, and the corresponding nodes on the path are classified as the backbone nodes. Go to Step 6).

    The steps concerned in the algorithm include four sub-algorithms: the shortest distance algorithm, the articulation point algorithm, the general center algorithm and the MST algorithm.

    First, the algorithm needs to obtain the shortest path between any two nodes in the network. The success probability of single-hop teleportation will decrease exponentially as distance increases due to the loss or distortion of entangled particles caused by environmental noise in free space. Therefore, the shortest distance algorithm is the basis of the QDMST algorithm, and it is used to calculate the articulation points and general centers. The Warshall-Floyd algorithm[18]is a classic shortest distance algorithm which takes advantage of dynamic programming by using an adjacency matrix to describe the topology. Combined with the structure characteristics of the quantum network, the shortest distance algorithm used in this paper is described as follows:

    Algorithm 1Shortest distance algorithm

    Input: W=(wij)N×Nis the adjacency matrix of graphG;wijis the weight ofeij;k1andk2are the two nodes.

    Output:Pis the shortest path betweenk1andk2, and nodes on the path are sorted by sequence order; min D is the distance of the shortest path.

    D=(dij);//dijis the shortest distance fromvitovj.

    for eachI,j,//Initializedij.

    dij=wij,k=1;

    for eachi,j//Updatedij.

    ifdik+dkj

    dij=dik+dkj;

    ifk=Nthen

    stop;

    min D=D(k1,k2);

    kx=k2, 0=1,P(s)=k2;

    for eachi

    ifD(k1,i)=D(k1,kx)-W(i,kx) then

    kx=i,P(s+1)=i,s=s+1;

    Ifkx=k1then

    stop;

    A connected graph without articulation points[19]is called a biconnected graph. Deleting any node of the biconnected graph will not damage the network connectivity. If articulation points exist, they are classified as backbone nodes to reduce the number of them and meanwhile ensure network connectivity. According to their characteristics, the steps of the algorithm to determine articulation points are presented in Algorithm 2.

    Algorithm 2Articulation point determining algorithm

    Input: W=(wij)N×N, the adjacency matrix of graphG;

    Output: Articulation pointvi.

    for eachi

    //Find the adjacency matrix Aiof the subgraphG-vi.

    Delete thei-th row and thej-th column from W→Ai;

    do Algorithm 1//Find the shortest distance matrix Diof subgraphG-vi.

    input Ai;

    output Di;

    //Determine whetherviis the articulation point by Di.

    If there is non-zero element in Diin addition to the main diagonal element then

    vi?Articulation points;

    elsevi∈Articulation points;

    The initially selected backbone nodes may not be able to cover all nodes in the network. For the uncovered nodes, they are divided into various connected components and their centers are then nominated as backbone nodes for completing the coverage. The object of the QDMST is to construct a mesh quantum network with the minimum number of backbone nodes, each of which can cover more other nodes. The general center is the node that has a minimum distance to the most remote node among all nodes in the network[20]. Therefore, it is appropriate to select general centers as backbone nodes. The general center algorithm is presented as follows:

    Algorithm 3General center determining algorithm

    Input: W=(wij)N×N, the adjacency matrix of graphG,wherewijis the weight ofeij;

    Output: The general centeri0of the graph.

    //Find the shortest distance matrix of each node D(di,k), wherei,k=1,2,…,N;

    do Algorithm 1

    input W

    output D(di,k);

    //Calculate the farthest distance for each node to each edge, wherek1andk2are two nodes onej;

    for eachI,j

    //Find the node whose distance to the farthest node is the minimum

    for eachi,j

    i0←the SN of this node.

    After selecting necessary backbone nodes, a connected graph is formed based on these nodes by an MST algorithm. The MST is the tree that the sum of all edge weights is minimized among all of the spanning trees of the connected graph. The Prim algorithm and Kruskal algorithm[21]are the most popular MST algorithms. The Kruskal MST algorithm used in this paper is presented as follows:

    Algorithm 4Minimum spanning tree

    Input: W=(wij)N×N, adjacency matrix of graphG,wherewijis the weight ofeij;

    Output: Adjacency matrix of MSTb.

    T=φ//Set the tree empty

    for eachi//Join all nodes inT

    T=T∪{vi} //Tincludes all nodes without edge

    for eachi,j

    doei,j(∈E) sorting by the weightswijascending

    for eachei,j(∈E)

    ifviandvjare not in the same connected component

    T=T∪{eij};//JoineijinT

    Combine the two connected component;

    b←adjacency matrix ofT

    For the MST obtained by Algorithm 4, the constraint in (2) thatri

    Based on the above algorithms, the proposed algorithm QDMST can be summarized as follows:

    Algorithm 5QDMST algorithm

    Randomly generate a connected graphG(V,E);

    F=φ//Set backbone nodes set empty

    do Algorithm 2 //Set articulation nodes as initial backbone

    input W(G)

    output articulation nodes ofG

    F=F∪{articulation nodes ofG}

    Step 1for eachvi(∈V)

    ifviis not covered by backbone nodes then

    goto Step 2;

    goto Step 3; //All nodes covered by backbone

    Step 2do find {Tn}, the connected components composed by the nodes uncovered by backbone;

    for eachTn//get general center of connected components into backbone

    do Algorithm 3

    input W(Tn)

    output general center

    F=F∪{general center}

    goto Step 1;

    Step 3do Algorithm 4//get the MST of backbone network

    input W(F)

    output MSTB(VB,EB)

    for eachei,j(∈EB) //determine whether a quantum channel exists between any two adjacent nodes on the MST

    if the quantum channel does not exist betweenviandvjthen

    goto Step 4;

    end //If quantum channels exist for all edge, the algorithm ends

    Step 4do Algorithm 1 //Find the shortest path

    input W(G)

    output nodes on the shortest path

    F=F∪{nodes on the shortest path} //Join nodes on shortest path in the backbone

    goto Step 3;

    3Performance Analysis and Simulation

    To demonstrate algorithm procedures and verify their effectiveness, the steps of an exemplified QDMST algorithm are shown in Fig.2 to Fig.5. A connected graph is randomly generated within a square area of 1 000 m×1 000 m, as shown in Fig.2. The quantum teleportation distance thresholdRis 250 m, and the total number of nodesNis 30. Each black line indicates the existence of a reliable quantum channel and a radio channel between two relevant quantum nodes.

    Fig.2 Randomly generated connected graph

    In the case of a connected graph in Fig.2, the set of articulation points is first determined as {1,10,23,28}, which does not cover all nodes, as shown in Fig.3. The radius of the circle isR, and the small squares denote the backbone nodes. Uncovered nodes {{7,18}, {5,11,12,19,22,24,25}} are separated into two connected components. Subsequently, the general centers {7,12} of two uncovered connected components are added into the backbone nodes set as {1,7,10,12,23,28}. There are still some uncovered nodes, which require the algorithm to further calculate the general centers of the uncovered connected components, and to expand the backbone network to {1,7, 10,12,23,24,28}. Now all the nodes are covered by the backbone network. An MST is formed by these backbone nodes, as shown in Fig.4.

    Fig.3 Articulation points as initial backbone nodes

    Fig.4 MST formed by backbone nodes

    Fig.5 Quantum mesh network obtained by QDMST

    Checking the topology in Fig.2, it can be seen that on this tree there may be no quantum channel between two neighbor nodes, such as that between nodes 1 and 10.

    The pair of neighbor nodes on the tree without direct quantum channel are connected using the shortest distance algorithm. The results are shown in Fig.5. The dotted lines show the final connection of the backbone network. The final backbone nodes are {1,3,6,7,10,11,12,17,23,24,28,30}, 12 in total. Each non-backbone node can be connected via one or more backbone nodes.

    To evaluate the performance of the algorithm, the QDMST is compared with the random selection algorithm, by which a node is chosen to be a backbone node randomly, followed by determining whether the backbone structure mesh network can be composed in ensuring the connectivity currently. If not, one more node is randomly chosen to join the backbone node set until the backbone covers all nodes. One result of random selection is exemplified in Fig.6, where the number of backbone nodes is larger than that of the QDMST.

    Fig.6 Wireless quantum communication mesh network obtained by random selection algorithm

    To evaluate the performance of the above algorithm more accurately, the average backbone nodes numberABNand average quantum channel distanceAQCDare defined as two performance parameters.

    (3)

    (4)

    The QDMST performance variations vs. node numberNand communication radius thresholdRare presented and compared with that of the random selection algorithm. 100 connected graphs are randomly generated, and the performance curves are shown in the following figures.

    Fig.7 shows thatABNincreases with the increasing total node numberNand a fixed communication radiusR. The QDMST obtains more obvious gain with a greaterN. Fig.8 shows thatABNdecreases whileRincreases with a fixedN. The QDMST obtains a more pronounced performance gain with a smallerR.ABNtends to be at the same level whenRis large. It can be seen from both the two figures that the QDMST always performs better than the random selection algorithm.

    Fig.7 Influences on ABN with variation of N and fixed R

    Fig.8 Influences on ABN with variation of R and fixed N

    Fig.9 shows thatAQCDdecreases whileNincreases with a fixedR. Fig.10 shows thatAQCDincreases whileRincreases with a fixedN. By comparing the two configures, it can be seen that communication radiusRis the dominant factor influencing the variation ofAQCD, and the performance of QDMST is superior to that of the random selection algorithm in both cases.

    4Conclusion

    In summary, the QDMST algorithm can generate a topology for quantum communication networks based on the backbone mesh structure while ensuring the networks connectivity. It makes the distribution of entangled particles effective with cost saving and complexity reduction. Under the same network scenarios, the QDMST algorithm outperforms the random selection algorithm in terms of the backbone nodes numbers and quantum channel distance.

    Fig.9 Influences on AQCD with variation of N and fixed R

    Fig.10 Influences on AQCD with variation of R and fixed N

    References

    [1]Lo H K, Ma X, Chen K. Decoy state quantum key distribution [J].PhysicalReviewLetters, 2005, 94(23): 230504.

    [2]Chapuran T E, Toliver1 P, Peters N A, et al. Optical networking for quantum key distribution and quantum communications [J].NewJournalofPhysics, 2009, 11(10): 1884-2016.

    [3]Guan J Y, Cao Z, Liu Y, et al. Experimental passive round-robin differential phase-shift quantum key distribution [J].PhysicalReviewLetters, 2015, 114(18): 180502.

    [4]Ciurana A, Martin V, Martinez-Mateo J, et al. Entanglement distribution in optical networks [J].IEEEJournalofSelectedTopicsinQuantumElectronics, 2015, 21(3): 1-12.

    [5]Cheng S T, Wang C Y, Tao M H. Quantum communication for wireless wide-area networks [J].IEEEJournalonSelectedAreasinCommunications, 2005, 23(7): 1424-1432.

    [6]Hanzo L, Haas H, Imre S, et al. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless [J].ProceedingsoftheIEEE, 2012, 100(Special Centennial Issue): 1853-1888.

    [7]Yu X T, Xu J, Zhang Z S. Distributed wireless quantum communication networks [J].ChinesePhysicsB, 2013, 22(9): 090311.

    [8]Wang K, Yu X T, Lu S L, et al. Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation [J].PhysicalReviewA, 2014, 89(2): 022329.

    [9]Metwally N. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems [J].PhysicaScripta, 2014, 89(12): 125103.

    [10]Xu T Y, Zhang Z S, X J. Distributed wireless quantum communication networks with partially entangled pairs [J].ChinesePhysicsB, 2014, 23(1): 010303.

    [11]Ju H J, Rubin I. Backbone topology synthesis for multiradio mesh networks [J].IEEEJournalonSelectedAreasinCommunications, 2006, 24(11): 2116-2126.

    [12]Ashraf U, Abdellatif S, Juanole G. Gateway selection in backbone wireless mesh networks [C]//2009IEEEWirelessCommunications&NetworkingConference. Budapest, Hungary, 2009: 1-6.

    [13]Cao Y, Yu X, Cai Y. Wireless quantum communication networks with mesh structure [C]//2013IEEEInternationalConferenceonInformationScienceandTechnology(ICIST). Yangzhou, China, 2013: 1485-1489.

    [14]Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].PhysicalReviewLetters, 1993, 70(13): 1895.

    [15]Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels [J].PhysicalReviewLetters, 1996, 76(5): 722.

    [16]Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: the role of imperfect local operations in quantum communication [J].PhysicalReviewLetters, 1998, 81(26): 5932.

    [17]Borregaard J, Kómár P, Kessler E M, et al. Long-distance entanglement distribution using individual atoms in optical cavities [J].PhysicalReviewA, 2015, 92(5): 012307.

    [18]Hougardy S. The Floyd-Warshall algorithm on graphs with negative cycles [J].InformationProcessingLetters, 2010, 110(8): 279-281.

    [19]Gao S X.Graphtheoryandnetworkflowtheory[M]. Beijing: Higher Education Press, 2009:53-56. (in Chinese)

    [20]Wang H Y.GraphtheoryanditsMATLABimplementation[M]. Beijing: Beihang University Press, 2010: 42-46. (in Chinese)

    [21]Gao S X.Graphtheoryandnetworkflowtheory[M]. Beijing: Higher Education Press, 2009:20-23. (in Chinese)

    doi:10.3969/j.issn.1003-7985.2015.04.004

    а√天堂www在线а√下载| 亚洲人成网站高清观看| av福利片在线观看| 成人国产麻豆网| 淫秽高清视频在线观看| 国产欧美日韩一区二区精品| 老女人水多毛片| 国产免费男女视频| 男人舔奶头视频| 亚洲人成网站在线播放欧美日韩| 一区二区三区四区激情视频 | www日本黄色视频网| 国产精品久久久久久精品电影| 变态另类丝袜制服| 亚洲av第一区精品v没综合| 在线观看午夜福利视频| 国产成人影院久久av| 美女内射精品一级片tv| 亚洲婷婷狠狠爱综合网| 国产成人影院久久av| 久久精品国产亚洲网站| 亚洲精品456在线播放app| 色视频www国产| 晚上一个人看的免费电影| 中国美女看黄片| 亚洲国产精品成人久久小说 | 久久久国产成人免费| 国产精品嫩草影院av在线观看| 岛国在线免费视频观看| 18禁在线播放成人免费| 日本免费a在线| 在线观看美女被高潮喷水网站| 国模一区二区三区四区视频| 亚洲高清免费不卡视频| 一区二区三区四区激情视频 | 国产精华一区二区三区| 一本一本综合久久| 亚洲av免费高清在线观看| 久久国内精品自在自线图片| 国产黄a三级三级三级人| 免费高清视频大片| 午夜福利18| 日韩中字成人| 搡老岳熟女国产| 深夜精品福利| 狂野欧美激情性xxxx在线观看| 亚洲熟妇熟女久久| 91久久精品国产一区二区三区| 亚洲无线在线观看| a级毛片a级免费在线| 日韩成人av中文字幕在线观看 | 小蜜桃在线观看免费完整版高清| 国产在线男女| 大香蕉久久网| 一进一出抽搐gif免费好疼| 久久久午夜欧美精品| 寂寞人妻少妇视频99o| 亚洲精品日韩av片在线观看| 久久99热这里只有精品18| 久久久久久久久久黄片| 国产亚洲91精品色在线| 亚洲无线在线观看| 观看美女的网站| 岛国在线免费视频观看| 乱系列少妇在线播放| 国产美女午夜福利| 色尼玛亚洲综合影院| 99精品在免费线老司机午夜| av专区在线播放| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品合色在线| 久久精品91蜜桃| 午夜福利高清视频| 一区福利在线观看| www.色视频.com| 亚洲自偷自拍三级| 亚洲自偷自拍三级| 免费观看人在逋| 国产黄色小视频在线观看| 97热精品久久久久久| 国产91av在线免费观看| 国产精品一区二区三区四区免费观看 | 国产一区二区激情短视频| 在线免费十八禁| 亚洲欧美日韩高清在线视频| 欧美日本视频| 少妇高潮的动态图| 欧美最新免费一区二区三区| 精品一区二区三区视频在线观看免费| 悠悠久久av| 国产精品无大码| 丰满的人妻完整版| АⅤ资源中文在线天堂| 嫩草影院新地址| av卡一久久| 久久人人爽人人片av| 淫妇啪啪啪对白视频| 午夜免费男女啪啪视频观看 | 国产精品日韩av在线免费观看| 久久综合国产亚洲精品| 久久午夜福利片| 麻豆成人午夜福利视频| 美女高潮的动态| 国产aⅴ精品一区二区三区波| 国产亚洲精品av在线| 亚洲欧美日韩东京热| 亚洲经典国产精华液单| 波多野结衣高清无吗| 精品一区二区免费观看| 91久久精品国产一区二区成人| 久久国内精品自在自线图片| 韩国av在线不卡| 国产单亲对白刺激| 联通29元200g的流量卡| 少妇熟女aⅴ在线视频| 欧美一区二区精品小视频在线| avwww免费| 精品乱码久久久久久99久播| 日韩av在线大香蕉| 亚洲成a人片在线一区二区| 亚洲久久久久久中文字幕| 国产亚洲精品av在线| 欧美日韩一区二区视频在线观看视频在线 | 日韩精品青青久久久久久| 色在线成人网| 日日撸夜夜添| 国产精品日韩av在线免费观看| 一区二区三区免费毛片| 非洲黑人性xxxx精品又粗又长| 又爽又黄无遮挡网站| 成人精品一区二区免费| 精品少妇黑人巨大在线播放 | 如何舔出高潮| 看片在线看免费视频| 在线a可以看的网站| 99国产极品粉嫩在线观看| 深夜精品福利| 久久天躁狠狠躁夜夜2o2o| 一级av片app| 免费人成在线观看视频色| 黄色一级大片看看| 此物有八面人人有两片| 我的女老师完整版在线观看| 91午夜精品亚洲一区二区三区| av天堂在线播放| 91麻豆精品激情在线观看国产| 国产亚洲91精品色在线| 毛片一级片免费看久久久久| 久99久视频精品免费| 午夜久久久久精精品| 欧美激情久久久久久爽电影| 大型黄色视频在线免费观看| 丰满的人妻完整版| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 一级毛片aaaaaa免费看小| 亚洲最大成人中文| 成人毛片a级毛片在线播放| 久久精品久久久久久噜噜老黄 | 亚洲在线观看片| 国产亚洲精品av在线| 国产精品综合久久久久久久免费| 精品乱码久久久久久99久播| 国产成人a∨麻豆精品| 非洲黑人性xxxx精品又粗又长| 九九爱精品视频在线观看| 国产av麻豆久久久久久久| 在线a可以看的网站| 香蕉av资源在线| 亚洲欧美清纯卡通| 亚洲人成网站在线播| 天堂av国产一区二区熟女人妻| 亚洲最大成人中文| 又粗又爽又猛毛片免费看| 99久久中文字幕三级久久日本| 国产黄色小视频在线观看| 午夜精品国产一区二区电影 | 久久久久久久久大av| 我要搜黄色片| 成年女人毛片免费观看观看9| 中文字幕久久专区| 夜夜看夜夜爽夜夜摸| 我的女老师完整版在线观看| 成人午夜高清在线视频| 国产人妻一区二区三区在| 久久精品国产鲁丝片午夜精品| 精品国内亚洲2022精品成人| 又黄又爽又免费观看的视频| 国产三级中文精品| 国产精品三级大全| 少妇猛男粗大的猛烈进出视频 | 久久久久久大精品| aaaaa片日本免费| 91在线观看av| 中文字幕av成人在线电影| 国产精品人妻久久久影院| 一区二区三区四区激情视频 | 在线免费十八禁| 日本一本二区三区精品| 两性午夜刺激爽爽歪歪视频在线观看| 此物有八面人人有两片| 有码 亚洲区| 俺也久久电影网| 九九爱精品视频在线观看| 久久久久国产精品人妻aⅴ院| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 性欧美人与动物交配| 波多野结衣巨乳人妻| 亚洲一区二区三区色噜噜| 亚洲综合色惰| 国产精品久久久久久av不卡| 91精品国产九色| 99热精品在线国产| 国产极品精品免费视频能看的| 久久婷婷人人爽人人干人人爱| 亚洲av第一区精品v没综合| 99热这里只有是精品在线观看| 欧美潮喷喷水| 国产视频一区二区在线看| 久久亚洲精品不卡| 一个人免费在线观看电影| 在线看三级毛片| 亚洲人成网站在线观看播放| 欧美三级亚洲精品| 色吧在线观看| 91久久精品国产一区二区成人| 老女人水多毛片| 精品不卡国产一区二区三区| 综合色丁香网| 亚洲中文日韩欧美视频| 长腿黑丝高跟| 亚洲人成网站在线播| 亚洲精品亚洲一区二区| 亚洲精品国产av成人精品 | 69人妻影院| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| 免费看日本二区| 免费在线观看影片大全网站| 成人无遮挡网站| 国产午夜精品论理片| 97超视频在线观看视频| 久久精品国产亚洲av天美| 亚洲激情五月婷婷啪啪| 99在线视频只有这里精品首页| 人妻制服诱惑在线中文字幕| 噜噜噜噜噜久久久久久91| 久久人妻av系列| www日本黄色视频网| 亚洲成人久久爱视频| 婷婷精品国产亚洲av| 国产精品女同一区二区软件| 国产色爽女视频免费观看| 亚洲国产精品sss在线观看| 国产片特级美女逼逼视频| 婷婷亚洲欧美| 校园人妻丝袜中文字幕| 国产亚洲精品综合一区在线观看| 国产成人福利小说| 国内精品久久久久精免费| 久久亚洲精品不卡| 成人亚洲精品av一区二区| 波多野结衣高清无吗| 男人的好看免费观看在线视频| 特级一级黄色大片| 国产成人福利小说| 丰满人妻一区二区三区视频av| 人妻少妇偷人精品九色| 亚洲一区二区三区色噜噜| 天天躁日日操中文字幕| 日韩,欧美,国产一区二区三区 | 99热只有精品国产| 精品久久久久久成人av| 婷婷色综合大香蕉| 久久精品国产99精品国产亚洲性色| 久久精品91蜜桃| 亚洲国产精品成人综合色| 久久久欧美国产精品| 深夜精品福利| 真实男女啪啪啪动态图| 一进一出好大好爽视频| 直男gayav资源| 午夜影院日韩av| 亚洲国产色片| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线 | 99视频精品全部免费 在线| 免费看美女性在线毛片视频| 少妇的逼水好多| 免费电影在线观看免费观看| 成人av在线播放网站| 亚洲丝袜综合中文字幕| 国产免费一级a男人的天堂| 亚洲av成人av| 老司机午夜福利在线观看视频| 日本成人三级电影网站| a级毛片免费高清观看在线播放| 三级毛片av免费| 久久久久国产精品人妻aⅴ院| 免费高清视频大片| 麻豆精品久久久久久蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 99久久中文字幕三级久久日本| 国产黄色视频一区二区在线观看 | 午夜爱爱视频在线播放| 内射极品少妇av片p| 日日撸夜夜添| 在线免费观看不下载黄p国产| 大香蕉久久网| 变态另类丝袜制服| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品自产自拍| 99国产精品一区二区蜜桃av| 久久久久久久久久久丰满| 国产乱人视频| 免费搜索国产男女视频| 久久久精品大字幕| 久久欧美精品欧美久久欧美| 综合色丁香网| 亚洲久久久久久中文字幕| 亚洲一区二区三区色噜噜| 男女边吃奶边做爰视频| 国产69精品久久久久777片| 国产伦一二天堂av在线观看| 亚洲乱码一区二区免费版| 岛国在线免费视频观看| 精品久久久久久久久久久久久| 精品不卡国产一区二区三区| 亚洲熟妇熟女久久| 国产视频内射| 国产白丝娇喘喷水9色精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美日韩卡通动漫| 中文资源天堂在线| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华液的使用体验 | 亚洲人与动物交配视频| 男人舔奶头视频| 精品人妻熟女av久视频| 国产高清视频在线播放一区| 亚洲成人久久爱视频| 99久久久亚洲精品蜜臀av| 99久久精品国产国产毛片| 插逼视频在线观看| 久久九九热精品免费| 中文亚洲av片在线观看爽| 亚洲精品久久国产高清桃花| 国产精品亚洲一级av第二区| 久久天躁狠狠躁夜夜2o2o| h日本视频在线播放| 色播亚洲综合网| 亚洲欧美日韩东京热| 日韩成人av中文字幕在线观看 | 一级毛片我不卡| 三级经典国产精品| 日韩欧美精品免费久久| 亚洲国产高清在线一区二区三| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 男女视频在线观看网站免费| 免费无遮挡裸体视频| 色播亚洲综合网| 欧美不卡视频在线免费观看| 97热精品久久久久久| 欧美日韩综合久久久久久| 中国美女看黄片| 日本成人三级电影网站| 国产亚洲精品久久久com| 高清午夜精品一区二区三区 | 老女人水多毛片| 免费电影在线观看免费观看| 欧美一级a爱片免费观看看| 国产亚洲91精品色在线| 麻豆一二三区av精品| a级毛片免费高清观看在线播放| 成人精品一区二区免费| 欧美一区二区亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 日本爱情动作片www.在线观看 | 99riav亚洲国产免费| 免费av不卡在线播放| 男女视频在线观看网站免费| 99视频精品全部免费 在线| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 国内精品宾馆在线| 日韩一本色道免费dvd| 午夜激情福利司机影院| 亚洲欧美日韩无卡精品| 亚洲美女搞黄在线观看 | 国产精品电影一区二区三区| 精品久久国产蜜桃| 日日摸夜夜添夜夜添av毛片| 岛国在线免费视频观看| 亚洲成人av在线免费| 一边摸一边抽搐一进一小说| 精品一区二区三区视频在线观看免费| 能在线免费观看的黄片| 亚洲av中文av极速乱| 麻豆精品久久久久久蜜桃| 国产午夜精品久久久久久一区二区三区 | 色5月婷婷丁香| 校园人妻丝袜中文字幕| 网址你懂的国产日韩在线| videossex国产| 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 两个人的视频大全免费| 免费在线观看成人毛片| 国产 一区精品| 校园春色视频在线观看| 色综合亚洲欧美另类图片| 男女那种视频在线观看| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 亚洲七黄色美女视频| 国产精品国产高清国产av| 美女内射精品一级片tv| 三级国产精品欧美在线观看| 秋霞在线观看毛片| 欧美日韩精品成人综合77777| 欧美高清性xxxxhd video| 香蕉av资源在线| 淫妇啪啪啪对白视频| 国产一区二区激情短视频| 亚洲成av人片在线播放无| 日韩欧美免费精品| 国产精品1区2区在线观看.| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 可以在线观看的亚洲视频| 男人舔奶头视频| 性欧美人与动物交配| 成人国产麻豆网| 久久人妻av系列| 国产黄a三级三级三级人| 亚洲成av人片在线播放无| 欧美极品一区二区三区四区| 亚洲美女视频黄频| 亚洲精品乱码久久久v下载方式| 一进一出好大好爽视频| 国产精品电影一区二区三区| 综合色丁香网| 欧美日韩综合久久久久久| 日韩亚洲欧美综合| 最好的美女福利视频网| 中文字幕免费在线视频6| 91麻豆精品激情在线观看国产| 日韩大尺度精品在线看网址| 中国国产av一级| 国产激情偷乱视频一区二区| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 午夜老司机福利剧场| 免费在线观看影片大全网站| 最新在线观看一区二区三区| 婷婷六月久久综合丁香| 99热精品在线国产| 欧美性猛交╳xxx乱大交人| 国产精品国产高清国产av| 高清毛片免费观看视频网站| 嫩草影视91久久| 久久久国产成人精品二区| 国产伦精品一区二区三区视频9| 国产 一区 欧美 日韩| 国产精品三级大全| 日韩,欧美,国产一区二区三区 | 日本a在线网址| 国产精品1区2区在线观看.| 久久久色成人| 久久人人精品亚洲av| 国产久久久一区二区三区| 国产亚洲91精品色在线| 伦精品一区二区三区| 一个人观看的视频www高清免费观看| 你懂的网址亚洲精品在线观看 | 男人的好看免费观看在线视频| 国产乱人视频| 中文字幕免费在线视频6| 在线免费观看的www视频| 小蜜桃在线观看免费完整版高清| 丝袜美腿在线中文| 三级国产精品欧美在线观看| 亚洲一区高清亚洲精品| 日日撸夜夜添| 18+在线观看网站| 少妇猛男粗大的猛烈进出视频 | 亚洲内射少妇av| 国产免费男女视频| 男插女下体视频免费在线播放| 精品人妻偷拍中文字幕| 欧美极品一区二区三区四区| 免费高清视频大片| 不卡视频在线观看欧美| 亚洲欧美清纯卡通| 亚洲精品一区av在线观看| 精品久久久久久成人av| 国产黄a三级三级三级人| 国产成人freesex在线 | 午夜福利18| 日韩欧美国产在线观看| 国产一区二区三区在线臀色熟女| 波野结衣二区三区在线| 久99久视频精品免费| eeuss影院久久| 国产高清三级在线| 听说在线观看完整版免费高清| 黄色日韩在线| 最近2019中文字幕mv第一页| 看非洲黑人一级黄片| 亚洲欧美日韩高清在线视频| 精品免费久久久久久久清纯| 午夜福利在线观看免费完整高清在 | 亚洲精品456在线播放app| 美女黄网站色视频| 尾随美女入室| 午夜免费激情av| 亚洲av中文av极速乱| 日本三级黄在线观看| 国产精品日韩av在线免费观看| 国产精品国产高清国产av| 99在线视频只有这里精品首页| 深夜a级毛片| 国产精品一区二区免费欧美| 欧美日韩乱码在线| 日本黄大片高清| 91精品国产九色| 波多野结衣高清作品| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 无遮挡黄片免费观看| 国产在线精品亚洲第一网站| 日韩成人av中文字幕在线观看 | 干丝袜人妻中文字幕| 我的女老师完整版在线观看| av在线亚洲专区| 男插女下体视频免费在线播放| 免费看a级黄色片| 最近最新中文字幕大全电影3| 18禁在线播放成人免费| 成年女人看的毛片在线观看| 久久草成人影院| 亚洲av成人av| 日韩精品中文字幕看吧| 国产成人aa在线观看| 久久精品久久久久久噜噜老黄 | 真实男女啪啪啪动态图| 一个人免费在线观看电影| 亚洲中文字幕一区二区三区有码在线看| 色视频www国产| 黑人高潮一二区| 国产成人freesex在线 | 美女免费视频网站| 免费人成在线观看视频色| 亚洲国产精品成人综合色| 亚洲激情五月婷婷啪啪| 天堂影院成人在线观看| 成人漫画全彩无遮挡| 精品熟女少妇av免费看| 亚洲精品456在线播放app| 免费高清视频大片| 精品福利观看| 午夜激情福利司机影院| 免费电影在线观看免费观看| 精品少妇黑人巨大在线播放 | 在线观看午夜福利视频| 午夜影院日韩av| 黄色欧美视频在线观看| 亚洲国产精品成人综合色| 欧美+亚洲+日韩+国产| 中文字幕人妻熟人妻熟丝袜美| 国产精品女同一区二区软件| 色哟哟哟哟哟哟| 校园春色视频在线观看| 国产精品爽爽va在线观看网站| 在线a可以看的网站| 成人鲁丝片一二三区免费| 欧美精品国产亚洲| 免费无遮挡裸体视频| 久久精品国产亚洲网站| 国产成年人精品一区二区| 日本熟妇午夜| 国产麻豆成人av免费视频| 国产私拍福利视频在线观看| 欧美绝顶高潮抽搐喷水| 能在线免费观看的黄片| 久久久久久久久大av| 久久精品国产亚洲av涩爱 | 亚洲丝袜综合中文字幕| videossex国产| 国产午夜精品久久久久久一区二区三区 | 国产一级毛片七仙女欲春2| 一卡2卡三卡四卡精品乱码亚洲| 淫秽高清视频在线观看| 国产午夜福利久久久久久| 校园春色视频在线观看| 噜噜噜噜噜久久久久久91| 国产午夜福利久久久久久| 亚洲人成网站在线播| 我要看日韩黄色一级片| 精品熟女少妇av免费看| 亚洲久久久久久中文字幕| 最近视频中文字幕2019在线8| 国产一级毛片七仙女欲春2| 免费黄网站久久成人精品| av在线天堂中文字幕| 精品一区二区三区人妻视频| 国产91av在线免费观看| 国产精品精品国产色婷婷| 1000部很黄的大片| 亚洲美女搞黄在线观看 | 在线天堂最新版资源| 欧美成人免费av一区二区三区|