• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network

    2015-02-24 07:37:50HongchunQUYuanqiangHUANG
    機(jī)床與液壓 2015年18期

    Hong-chun QU,Yuan-qiang HUANG

    (Aeronautical Engineering College of Civil Aviation University of China,Tianjin 300300,China)

    1 Introduction

    The fault diagnosis of aero-engine has very important significance for the airlines.If we can identify potential faults rapidly and accurately through analyzing the change of engine monitoring parameters,we can not only effectively avoid in-flight shut down and flight delays caused by the fault of the engine,but also make the maintenance plan better,shorten the troubleshooting time,reduce the maintenance cost,and increase the time on-wing of the engine,so as to improve the overall benefits of the airline.Recently,the common methods used for the aero-engine gas path fault diagnosis are based on the small deviations fault equation linear model,nonlinear steady-state model or artificial intelligence methods[1].

    Neural network has been considered as the most research potential diagnostic tool in artificial intelligence methods.The BP neural network has been widely applied in the field of fault diagnosis,which belongs to the gradient descent algorithm.The network initial connection weights and thresholds generally generate randomly,and the network structure and learning rate are mainly determined by experience.If the initial connection weights are valued improperly,the network can cause oscillation,misconvergence or too long in training time[2 -4],giving rise to the fault recognition result being not ideal.Besides,it is complicated in practical diagnosis problems of the aero-engine.All of these make BP network exist many deficiencies in application of the field[1].Genetic algorithm is a highly efficient parallel global search algorithm,which is developed from biological evolution theory.The algorithm has very good robustness and it succeeded in solving global optimization problems[5-6].

    Genetic algorithm not only can be used to design the neural network well,but also is benefit to obtain the global optimal solution and improve the generalization performance of neural network[2,7].Therefore,this article would take use of the genetic algorithm to optimize the initial weights and thresholds of BP neural network,and then retrain the results according to gradient descent algorithm and put the optimized network into the field of fault diagnosis of engine gas path.

    2 The brief introduction of BP neural networks and genetic algorithm

    Back-propagation network referred to as the BP network and is a multi-layer network which generalizes the W-H learning rules and makes weights training for nonlinear differentiable function.In the practical application of the artificial neural network,80%-90%of network models employ BP network or its modified forms,on behalf of the most essential part of the artificial neural network.

    Fig.1 The structure of BP network

    The BP network is a multi-layer forward feedback neural network and adjusts its weights by using back propagation learning algorithms.It consists of input layer,output layer,and a number of hidden layers,the data spread from the input layer to the output layer through hidden layers.When training the network weights,the data go along the direction of reducing error,which starts from the output layer then acrosses through the middle layers to correct the network connection weights forward and thresholds layer by layer.This process will be circled which begins from the former results until meets the network’s stable error[4,8].

    A classic three-layer BP network is shown in Fig.1.(p1,p2,…,pn)represents then-dimensional fault eigenvalue input.The number of the hidden layer neurons iss1;the transfer function isF1j(j=1,2,…,s1);the threshold isb1j.The number of the output layer neurons iss2;the transfer function isF1k(k=1,2,…,s2);the threshold isb2k.w1jirepresents the weight between thej-th hidden neuron and thei-th input neuron;w2kjrepresents the weight between thekth output neuron and thej-th hidden neuron.The output values of the hidden layery1jand of the output layery2kcan be calculated by formula(1)and formula(2).

    The target of each output neuron istk,so the total output errorEcan be calculated by formula(3).

    Utilizing the gradient descent algorithm and error back propagation to adjust the weights of output layer,the amount of change Δw2kjcan be shown as formula(4),where δ is the network learning rate.

    Similarly,the variable quantity of each layer’s weights and thresholds could be deduced,as shown in formula(5).

    The weights and thresholds can be adjusted in this way until the output results meet the convergence condition.

    Genetic algorithm is an advanced random method in global search,and which can simulate the selection of bio natural evolution,the process of mutation and natural selection through the computer programming.This kind of method employs the coding space instead of questioning space,and utilizes coding population as its evolutionary basis;the fitness function is its access judgment which can evaluate the selection of gene by the operation of individual gene bit string inside of the population.Thanks to the production of many initial points and the start of researching which is guided by the fitness function,the research owns extensive area and efficient operation.This result helps realize the automatic obtainment and accumulation of valuable information existed in research space and approaches to the best solution of the target function efficiently and adaptively[10-12].

    3 The theory of BP neural networks based on genetic algorithms

    3.1 Basic theory

    The basic thinking of optimizing the net work through Genetic Algorithm takes advantages of its global quick researching feature and does quick research according to the relations between input training samples and output targets.This process would find and optimize the BP network structural parameters to meet the acquirement of fitness function and improve not only the convergence speed but also the convergence accuracy of BP network.The calculating process is shown in Fig.2.

    Fig.2 The training process of BP network basis on genetic algorithm

    3.2 Algorithm steps

    The calculation steps of genetic algorithm to optimize BP neural network are as follows.

    Step 1:building up structure of the network:according to the actual problem to determine BP neural network layers,the number of neurons in each layer and transfer functions.

    Step 2:the input training samples and testing samples data are normalized to eliminate the effects of different dimension between the different parameters.

    Step 3:coding:The initial weights and thresholds of BP network are encoded by order based on binary code method,and connect them together to form a chromosome,namely an individual.The value of weights and thresholds ranges from-1 to 1.

    Step 4:the generation of initial population:individual gene code is generated randomly,and the initial populationis composed.

    Step 5:decoding:decode the gene bit string of every individual in initial population,and calculate the outputs of networky2kwith training samples.

    Step 6:calculating the fitness value of individuals:the fitness value size is the evaluation standard for genetic algorithm to evaluate the individual quality,and the individual with a higher fitness value has a greater probability to inherit by the next generation [5],where the reciprocal of the mean square error(MSE)is used as the fitness function.The calculation formula is shown as formula(6),so if the network output error is smaller,the fitness value is greater.

    Step 7:the genetic operation:to generate a higher fitness group including selection,crossover and mutation operation[5].

    Selection:the probability value of each individual to the next generation is equal to the ratio of its fitness value with the sum of all individuals by using roulette wheel method,and pick out new species group with the same population numbers.

    Crossover:according to the crossover probabilitypc,choicepc*Psizeindividuals randomly from the new group and make chromosomes one-point crossover randomly.

    Mutation:the individuals of new group make basic bit mutation operation with the set of mutation probabilitypm,to realize the small probability turning of the genetic code,namely 0 to 1 or 1 to 0.

    Step 8:the judgment of termination condition:if the maximum genetic algebra reaches or the mean square error(MSE)meets the requirements,the evolution is terminated.

    Step 9:the weights and thresholds are decoded by the best individual serve as the initial weights and thresholds of BP network,and make the second training.If they reach the required performance,the learning process end.

    Step 10:input test sample data and check the network diagnosis results.

    4 Fault diagnosis applications

    Take the deviation of the EGT(exhaust gas temperature),F(xiàn)F(fuel flow),N1(low pressure rotor speed)and N2(high pressure rotor speed)by four typical faults of PW4164(100 inch)engine as fault sample data and compile fault identification target vectors shown in table.1.These four faults are difficult to distinguish in practice because the characteristic parameter data are similar and susceptible to noise.

    Table1 The characteristic parameters data of four typical faults

    Compile the MATLAB program to build the threelayer BP neural network by using genetic algorithm,namely GA-BP network;design four input layer neuron,five hidden layer neuron,transfer function by adopting tansig function[4],and four output layer neuron and transfer function by applying purelin [4]function.Set learning rate as 0.1 and network training target MSE≦10-5.

    The parameters of genetic algorithm are set as follow,evolution generation is 50,population is 20,and crossover rate is 0.7.Use the method of one-point crossover and set mutation rate as 0.1.Use the reciprocal of the mean square error as the fitness function.Use forty groups of characteristic parameter data from four typical faults as the training data for GA-BP network,and another ten groups of data from table 2 to testify the GA-BP network,which were historical data recorded by the engine monitoring department of airline.

    The comparisons of fitness value between initial population and the population after evolution fifty generations by genetic algorithm optimization are indicated in Fig.3(a).It’s obvious that the fitness value of individual have significantly improved and more stabilized.The fitness value of the best individual in population increases rapidly with the evolution and after evolution twelve generation,it is not only closing to the best fitness value,but also each generation is gradually stabilized,as shown in Fig.3(b).

    Fig.3 Thecomparisonsof fitnessvaluebetween initial population and the population after evolution fifty generations by genetic algorithm optimization

    Diagnosis results of GA-BP network are showen in Table 3.Comparing to the diagnostic output results of common BP network under the same network structure,both methods correctly detecte all the faults and the results are consistent with the actual monitoring situation,and the output precision of GA-BP network is better than that of common BP network.The comparisons of diagnosis results’error value of those two kinds of method are indicated in Fig.4(a).And the comparison of convergence curve in Fig.4(b)shows that GA-BP network outputs are in smaller error,higher precision,converge faster and better.The BP network optimized by genetic algorithm is only trained 5 times to meet performance goals,while the common BP network needs to be trained 37 times to achieve the same performance targets.The process of the common BP network training is likely to fall into local optimum,and the performance convergence curve may not be smooth.

    Table3 Network outcomes comparison

    Fig.4 Comparison of two methods

    5 Conclusions

    This paper combines genetic algorithm and BP neural network,which forms an individual firstly from initial weights and thresholds coding of the BP neural network.Then optimizes its best solution in its range by using genetic algorithm,and finally reinvests the network with optimized weights and thresholds.This method can not only make full use of the better global searching ability and convergence speed of the genetic algorithm,but also overcome the shortcomings brought by the BP algorithm as the initial weights and thresholds are selected random.The fault diagnosis example of application on aero-engine indicates that the GA-BP network is better than common BP network in the network output precision,convergence speed and smoothness.This result provides a new idea and method for the study on the field of fault diagnosis of aero-engine,and is benefit to solve many problems in practical engineering such as when fault diagnosis result is not ideal and the network convergence speed is slow.

    [1]Qu Hongchun.Study on civil turbofan engine health intelligent monitoring technologies[D].Tianjin:Tianjin University,2010.

    [2]Liu Yongjian.Research on Modified Neural Network for Fault Diagnosis and Performance Prediction of Aeroengine[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.

    [3]Cui Zhiquan.Civil Aeroengine Gas Path Parameter Deviation Mining Method with Application[D].Harbin:Harbin Institute of Technology,2013.

    [4]Zhang Defeng.MATLAB Neural Network Design[M].Beijing:China Machine Press,2012.

    [5]Lei Yingjie,Zhang Shanwen,Li Xuwu.MATLAB Genetic algorithm toolbox and application[M].Xi’an:Xi’an University of Electronic Science and Technology Press,2005.

    [6]CHEN Guo,HAO Tengfei,CHENG Xiaoyong,et al.Sensitivity analysis of fault diagnosis of aero-engine rolling bearing based on vibration signal measured on casing[J].Journal of Aerospace Power,2014,29(12):2874-2884.

    [7]HE Chen,ZHANG Xiaodong,Patton R J.Robust fault diagnosis for aero-engine compressor sensor based on LMI and discrete model[J].Journal of Aerospace Power,2014,29(4):965-972.

    [8]Chen Ming.MATLAB Examples of neural network theory and refined analysis[M].Beijing:Tsinghua University Press,2013.

    [9]HUANG Yuanqiang,QU Hongchun,ZHAO Yuechao.Research on aero-engine performance ranking by principa components analysis[J].Aviation maintenance and engineering,2015,1:75-77.

    [10]Chen Guo.Rough Set-Genetic Algorithm-Neural Network Compositive Classifier and Its Application in Rotor Faults Diagnosis[J].Chinese Mechanical Engineering,2008,19(1):85-89.

    [11]Meng Dong,F(xiàn)an Zhongjun,Wang Jiazhen.An Improvement to the BP Neural Network Algorithm Based on the Chaos Genetic Algorithm[J].Mathematical Theory and Applications,2014,34(1):102-110.

    [12]Yang Mei,Qing Xiaoxia,Wang Bo.Optimization of Neural Network Based on Improved Genetic Algorithm[J].Computer Simulation,2009,26(5):198-201.

    [13]Yan Taishan.Research on Neural Network Training Algorithm Based on Genetic Algorithm[J].Journal of Hunan Institute of Science and Technology(Natural Sciences),2007,20(1):31-34.

    欧美日韩中文字幕国产精品一区二区三区| 亚洲在线自拍视频| 国产99白浆流出| 人人妻,人人澡人人爽秒播| 亚洲熟妇中文字幕五十中出| 真人一进一出gif抽搐免费| 欧美大码av| 亚洲午夜精品一区,二区,三区| 女人高潮潮喷娇喘18禁视频| 床上黄色一级片| 久久精品91无色码中文字幕| 亚洲精品国产一区二区精华液| 中文字幕av在线有码专区| 在线十欧美十亚洲十日本专区| 日日夜夜操网爽| 舔av片在线| 在线观看美女被高潮喷水网站 | 日本三级黄在线观看| 天天一区二区日本电影三级| 巨乳人妻的诱惑在线观看| 国产精品av久久久久免费| 热99re8久久精品国产| 高潮久久久久久久久久久不卡| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 最近最新免费中文字幕在线| 熟女少妇亚洲综合色aaa.| 亚洲av成人精品一区久久| 一本综合久久免费| 999久久久精品免费观看国产| 无遮挡黄片免费观看| 免费高清视频大片| 亚洲国产欧美一区二区综合| 欧美丝袜亚洲另类 | 亚洲欧美一区二区三区黑人| 欧美日韩亚洲国产一区二区在线观看| 天堂av国产一区二区熟女人妻 | 国产高清视频在线观看网站| 在线观看日韩欧美| 美女扒开内裤让男人捅视频| 欧美中文综合在线视频| 可以在线观看毛片的网站| 久久香蕉精品热| 在线观看www视频免费| 国产亚洲欧美98| 免费在线观看成人毛片| 成人国语在线视频| 国产成人一区二区三区免费视频网站| 在线播放国产精品三级| 一级毛片女人18水好多| 超碰成人久久| 国产黄片美女视频| 五月伊人婷婷丁香| 国产精品一及| 五月玫瑰六月丁香| 亚洲精品美女久久久久99蜜臀| 成在线人永久免费视频| 国产精品av视频在线免费观看| 宅男免费午夜| 久久久精品欧美日韩精品| 国产精品久久久久久人妻精品电影| 又大又爽又粗| 精品一区二区三区四区五区乱码| 成人亚洲精品av一区二区| 正在播放国产对白刺激| 丁香六月欧美| 免费无遮挡裸体视频| 亚洲专区中文字幕在线| 午夜a级毛片| АⅤ资源中文在线天堂| 午夜亚洲福利在线播放| 男插女下体视频免费在线播放| 久久久国产成人免费| www.熟女人妻精品国产| 亚洲国产日韩欧美精品在线观看 | 国产黄色小视频在线观看| 欧美成人性av电影在线观看| 一边摸一边抽搐一进一小说| 可以免费在线观看a视频的电影网站| 制服人妻中文乱码| 亚洲精品av麻豆狂野| 麻豆一二三区av精品| 国产乱人伦免费视频| 在线观看免费视频日本深夜| 妹子高潮喷水视频| 日韩欧美国产一区二区入口| 免费看a级黄色片| 亚洲国产精品sss在线观看| 18禁黄网站禁片免费观看直播| 久久天堂一区二区三区四区| 1024手机看黄色片| 中文资源天堂在线| 在线观看一区二区三区| 国产成人影院久久av| 观看免费一级毛片| 日韩精品青青久久久久久| 久久久久久大精品| aaaaa片日本免费| 人人妻人人看人人澡| 欧美日本亚洲视频在线播放| 精品免费久久久久久久清纯| 熟女少妇亚洲综合色aaa.| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| av福利片在线| 国产伦一二天堂av在线观看| 美女午夜性视频免费| 一个人观看的视频www高清免费观看 | 毛片女人毛片| 国产精品野战在线观看| 久久国产乱子伦精品免费另类| 嫩草影院精品99| 可以免费在线观看a视频的电影网站| 国产精品国产高清国产av| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品亚洲精品国产色婷小说| 久久99热这里只有精品18| 两性夫妻黄色片| 日日夜夜操网爽| 日本五十路高清| 制服丝袜大香蕉在线| 老司机福利观看| 一级毛片高清免费大全| 久久久久久久久中文| 一级作爱视频免费观看| 少妇的丰满在线观看| 日本一本二区三区精品| netflix在线观看网站| 免费无遮挡裸体视频| 久久久久久人人人人人| 国产91精品成人一区二区三区| 久久性视频一级片| 亚洲中文日韩欧美视频| 国产高清激情床上av| 久久九九热精品免费| 真人做人爱边吃奶动态| 一区福利在线观看| 99精品久久久久人妻精品| netflix在线观看网站| 色噜噜av男人的天堂激情| www.www免费av| 精品国内亚洲2022精品成人| 日韩 欧美 亚洲 中文字幕| 麻豆av在线久日| 一级毛片女人18水好多| 国产又色又爽无遮挡免费看| 国产真实乱freesex| 久久久久免费精品人妻一区二区| 免费电影在线观看免费观看| 亚洲一区高清亚洲精品| 国产午夜福利久久久久久| 亚洲av电影在线进入| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2| 亚洲无线在线观看| 亚洲avbb在线观看| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 黄色丝袜av网址大全| 欧美一区二区精品小视频在线| 制服丝袜大香蕉在线| 一本精品99久久精品77| 久久精品人妻少妇| 免费看十八禁软件| 亚洲av成人一区二区三| 在线免费观看的www视频| 精品无人区乱码1区二区| 岛国在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 91在线观看av| 中文字幕人妻丝袜一区二区| 99久久综合精品五月天人人| 不卡一级毛片| 精品国产乱码久久久久久男人| 级片在线观看| 国产精品久久久av美女十八| 毛片女人毛片| 日韩精品中文字幕看吧| 免费高清视频大片| 老司机午夜福利在线观看视频| 一边摸一边做爽爽视频免费| 亚洲七黄色美女视频| 最近最新中文字幕大全电影3| 国产三级中文精品| 久久天躁狠狠躁夜夜2o2o| 国产1区2区3区精品| 啦啦啦免费观看视频1| 青草久久国产| 欧美不卡视频在线免费观看 | xxx96com| 色噜噜av男人的天堂激情| 麻豆国产av国片精品| 少妇熟女aⅴ在线视频| 国产高清视频在线观看网站| 精品久久蜜臀av无| 天天躁夜夜躁狠狠躁躁| 国产精华一区二区三区| 国产乱人伦免费视频| 琪琪午夜伦伦电影理论片6080| 亚洲av电影不卡..在线观看| 日本五十路高清| a在线观看视频网站| 久久精品国产综合久久久| 国产精品久久久久久精品电影| 非洲黑人性xxxx精品又粗又长| 亚洲av五月六月丁香网| 久久人妻福利社区极品人妻图片| 怎么达到女性高潮| 国产不卡一卡二| 久99久视频精品免费| 老熟妇乱子伦视频在线观看| 在线观看美女被高潮喷水网站 | 国产欧美日韩一区二区三| 热99re8久久精品国产| 久热爱精品视频在线9| 欧美日韩中文字幕国产精品一区二区三区| 九色国产91popny在线| 久久国产乱子伦精品免费另类| 国产亚洲av嫩草精品影院| 国产伦一二天堂av在线观看| 一二三四社区在线视频社区8| 成人三级做爰电影| 免费看a级黄色片| 91国产中文字幕| 无限看片的www在线观看| 亚洲熟妇中文字幕五十中出| www.精华液| 久久欧美精品欧美久久欧美| 国产av又大| 亚洲午夜精品一区,二区,三区| 亚洲中文av在线| 伦理电影免费视频| 美女免费视频网站| 97超级碰碰碰精品色视频在线观看| 成人特级黄色片久久久久久久| 久久人妻福利社区极品人妻图片| 中文字幕高清在线视频| 哪里可以看免费的av片| 欧美中文综合在线视频| 五月伊人婷婷丁香| 首页视频小说图片口味搜索| 欧美又色又爽又黄视频| 俺也久久电影网| 免费在线观看视频国产中文字幕亚洲| 国产一区二区三区在线臀色熟女| 怎么达到女性高潮| 亚洲av美国av| 高清在线国产一区| 在线观看一区二区三区| 国产成人欧美在线观看| 99国产极品粉嫩在线观看| 在线观看免费日韩欧美大片| 亚洲专区国产一区二区| 国产精品久久久久久人妻精品电影| 亚洲av成人一区二区三| 欧美一区二区国产精品久久精品 | 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器 | 哪里可以看免费的av片| 精品久久久久久成人av| 国产成人系列免费观看| 桃色一区二区三区在线观看| 伊人久久大香线蕉亚洲五| 男插女下体视频免费在线播放| 日韩精品中文字幕看吧| a级毛片a级免费在线| 亚洲天堂国产精品一区在线| 久久亚洲精品不卡| 欧美极品一区二区三区四区| 亚洲精品一区av在线观看| 成人手机av| 国产乱人伦免费视频| 国产精品av久久久久免费| 国产精品电影一区二区三区| 国产成年人精品一区二区| 欧美日韩亚洲国产一区二区在线观看| 18禁黄网站禁片免费观看直播| 美女 人体艺术 gogo| 久久久久久免费高清国产稀缺| 夜夜爽天天搞| 成年版毛片免费区| 69av精品久久久久久| 中文资源天堂在线| 成在线人永久免费视频| 黑人操中国人逼视频| АⅤ资源中文在线天堂| 日韩大尺度精品在线看网址| 宅男免费午夜| 国产aⅴ精品一区二区三区波| 色噜噜av男人的天堂激情| 桃色一区二区三区在线观看| av中文乱码字幕在线| 欧美成狂野欧美在线观看| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 亚洲精品av麻豆狂野| 亚洲男人天堂网一区| 国产精品永久免费网站| 欧美黑人精品巨大| 精品久久久久久成人av| avwww免费| 欧美丝袜亚洲另类 | 久久精品综合一区二区三区| 国产激情欧美一区二区| 天堂√8在线中文| 久久国产精品人妻蜜桃| 国产精品,欧美在线| 美女扒开内裤让男人捅视频| 美女午夜性视频免费| 国产区一区二久久| 国产野战对白在线观看| 国产69精品久久久久777片 | 狠狠狠狠99中文字幕| 国产亚洲精品综合一区在线观看 | 国产精品乱码一区二三区的特点| 一夜夜www| 亚洲一区二区三区不卡视频| 亚洲人成77777在线视频| 国产探花在线观看一区二区| 19禁男女啪啪无遮挡网站| 欧美久久黑人一区二区| 深夜精品福利| 中文在线观看免费www的网站 | 看免费av毛片| 亚洲精品粉嫩美女一区| 怎么达到女性高潮| 黄色视频不卡| 精品久久久久久久人妻蜜臀av| 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| 久久天堂一区二区三区四区| 国产aⅴ精品一区二区三区波| 在线永久观看黄色视频| 国产又黄又爽又无遮挡在线| 亚洲精品色激情综合| 亚洲天堂国产精品一区在线| 99热只有精品国产| 99热这里只有是精品50| 亚洲国产欧洲综合997久久,| 啦啦啦观看免费观看视频高清| 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 久久婷婷人人爽人人干人人爱| 99热这里只有精品一区 | 亚洲熟妇中文字幕五十中出| 国产探花在线观看一区二区| 久久久久久久午夜电影| 亚洲成av人片在线播放无| videosex国产| 国产亚洲精品av在线| 精品久久久久久久毛片微露脸| 国产精品野战在线观看| or卡值多少钱| 韩国av一区二区三区四区| 午夜福利免费观看在线| 一本综合久久免费| 欧美成人性av电影在线观看| 激情在线观看视频在线高清| 中亚洲国语对白在线视频| 老司机在亚洲福利影院| 这个男人来自地球电影免费观看| 精品国产亚洲在线| 欧美色视频一区免费| 欧美日韩黄片免| tocl精华| 男人舔女人的私密视频| 桃色一区二区三区在线观看| 巨乳人妻的诱惑在线观看| 99久久综合精品五月天人人| 亚洲美女视频黄频| 久久久久精品国产欧美久久久| 国产精品av视频在线免费观看| 日本三级黄在线观看| 99久久精品热视频| 观看免费一级毛片| 国产黄a三级三级三级人| 国产激情欧美一区二区| 国产精品爽爽va在线观看网站| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 又黄又粗又硬又大视频| 一个人观看的视频www高清免费观看 | 无限看片的www在线观看| 午夜亚洲福利在线播放| 欧美日韩精品网址| 日韩大码丰满熟妇| 久久婷婷成人综合色麻豆| 国产av又大| 一进一出抽搐gif免费好疼| 可以在线观看的亚洲视频| 午夜福利高清视频| 两人在一起打扑克的视频| 色在线成人网| 亚洲国产中文字幕在线视频| 国产私拍福利视频在线观看| 国产99久久九九免费精品| 黄色视频不卡| 国产午夜精品论理片| 精品免费久久久久久久清纯| 国产精品免费视频内射| 在线观看免费日韩欧美大片| 精品电影一区二区在线| 亚洲一区高清亚洲精品| 亚洲片人在线观看| 制服人妻中文乱码| 黄色视频不卡| 一本综合久久免费| 夜夜爽天天搞| 欧美日韩黄片免| 日韩有码中文字幕| 久久久国产欧美日韩av| 国产久久久一区二区三区| 日韩欧美一区二区三区在线观看| 黄色a级毛片大全视频| 日韩三级视频一区二区三区| 欧美乱码精品一区二区三区| 欧美zozozo另类| 午夜激情av网站| 高清毛片免费观看视频网站| 日本免费一区二区三区高清不卡| 亚洲免费av在线视频| 国产一区在线观看成人免费| 国产人伦9x9x在线观看| 亚洲精品粉嫩美女一区| 国产成+人综合+亚洲专区| а√天堂www在线а√下载| 精品福利观看| 欧美色视频一区免费| 天堂√8在线中文| 一级毛片精品| 99国产综合亚洲精品| 日本熟妇午夜| 日韩大码丰满熟妇| 精品电影一区二区在线| 久久草成人影院| 久久精品夜夜夜夜夜久久蜜豆 | 午夜a级毛片| 久久午夜综合久久蜜桃| 久久精品综合一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧美一区二区综合| 我的老师免费观看完整版| 黄色女人牲交| 欧美最黄视频在线播放免费| 国产一区二区激情短视频| 好看av亚洲va欧美ⅴa在| 久久久久久久精品吃奶| 一区二区三区激情视频| 精品一区二区三区四区五区乱码| 亚洲国产看品久久| 两个人看的免费小视频| a级毛片a级免费在线| 欧美性长视频在线观看| 黄片大片在线免费观看| 欧美又色又爽又黄视频| 国产激情久久老熟女| 免费在线观看完整版高清| 久久 成人 亚洲| 午夜亚洲福利在线播放| 亚洲人成网站在线播放欧美日韩| 黄色片一级片一级黄色片| 亚洲国产精品sss在线观看| 日本在线视频免费播放| 国产黄a三级三级三级人| 香蕉久久夜色| 麻豆av在线久日| 少妇粗大呻吟视频| 中文字幕精品亚洲无线码一区| 天天躁狠狠躁夜夜躁狠狠躁| 正在播放国产对白刺激| 色综合站精品国产| 成人国产综合亚洲| 午夜精品在线福利| 色在线成人网| 国产又黄又爽又无遮挡在线| 国产精品爽爽va在线观看网站| 成人国产综合亚洲| 国产欧美日韩一区二区精品| 久久久国产欧美日韩av| 亚洲天堂国产精品一区在线| 九九热线精品视视频播放| 久久久久国产精品人妻aⅴ院| 在线观看免费日韩欧美大片| av中文乱码字幕在线| 日韩欧美在线二视频| 一二三四社区在线视频社区8| 久久久久免费精品人妻一区二区| 久久精品成人免费网站| 91字幕亚洲| 校园春色视频在线观看| 国产av不卡久久| 搞女人的毛片| 给我免费播放毛片高清在线观看| 亚洲乱码一区二区免费版| 国内久久婷婷六月综合欲色啪| 九色成人免费人妻av| 无限看片的www在线观看| 18禁裸乳无遮挡免费网站照片| 又粗又爽又猛毛片免费看| 午夜福利成人在线免费观看| 99在线人妻在线中文字幕| 一本大道久久a久久精品| 1024视频免费在线观看| 男人舔奶头视频| 午夜成年电影在线免费观看| 19禁男女啪啪无遮挡网站| 在线十欧美十亚洲十日本专区| 亚洲成av人片免费观看| 色在线成人网| 99热这里只有是精品50| 制服丝袜大香蕉在线| 亚洲电影在线观看av| 国产视频内射| 1024香蕉在线观看| 中文资源天堂在线| 午夜免费激情av| 欧美又色又爽又黄视频| 久久久久精品国产欧美久久久| 久久久国产精品麻豆| 欧美精品亚洲一区二区| 热99re8久久精品国产| 亚洲美女视频黄频| 亚洲中文日韩欧美视频| 中国美女看黄片| 国产精品久久久久久亚洲av鲁大| 日本在线视频免费播放| 一个人免费在线观看的高清视频| 日本成人三级电影网站| 免费在线观看成人毛片| 18禁国产床啪视频网站| 女人爽到高潮嗷嗷叫在线视频| 十八禁人妻一区二区| 婷婷精品国产亚洲av在线| 在线播放国产精品三级| 最近视频中文字幕2019在线8| 精品少妇一区二区三区视频日本电影| 亚洲人成伊人成综合网2020| 国产精品一及| 无限看片的www在线观看| 成年人黄色毛片网站| 丁香欧美五月| 日日夜夜操网爽| 一个人观看的视频www高清免费观看 | 国产亚洲av高清不卡| 97超级碰碰碰精品色视频在线观看| 国产精品一及| 特级一级黄色大片| 后天国语完整版免费观看| 18禁黄网站禁片免费观看直播| 免费在线观看日本一区| 99久久无色码亚洲精品果冻| 日韩精品青青久久久久久| 天堂影院成人在线观看| 免费观看人在逋| 身体一侧抽搐| 国产激情久久老熟女| 欧美性猛交黑人性爽| 小说图片视频综合网站| 成年免费大片在线观看| www.999成人在线观看| 成人高潮视频无遮挡免费网站| 一级作爱视频免费观看| 男女做爰动态图高潮gif福利片| 99久久99久久久精品蜜桃| 俺也久久电影网| 久久国产乱子伦精品免费另类| 人妻丰满熟妇av一区二区三区| av视频在线观看入口| 大型黄色视频在线免费观看| 高清在线国产一区| 久久人妻福利社区极品人妻图片| 久久婷婷成人综合色麻豆| 蜜桃久久精品国产亚洲av| or卡值多少钱| 999久久久精品免费观看国产| 老司机福利观看| 久久久国产精品麻豆| 中文亚洲av片在线观看爽| 亚洲第一欧美日韩一区二区三区| 亚洲精品美女久久av网站| 国产精品99久久99久久久不卡| xxxwww97欧美| 亚洲av成人av| 黄色成人免费大全| 国产区一区二久久| 99在线人妻在线中文字幕| 亚洲欧美精品综合一区二区三区| 亚洲免费av在线视频| 久久精品影院6| 久热爱精品视频在线9| 性欧美人与动物交配| 麻豆国产97在线/欧美 | 欧美成人性av电影在线观看| 亚洲全国av大片| 久久午夜综合久久蜜桃| 两个人视频免费观看高清| 亚洲专区中文字幕在线| 最新美女视频免费是黄的| 亚洲欧美一区二区三区黑人| 又粗又爽又猛毛片免费看| 欧美久久黑人一区二区| 欧美在线一区亚洲| 国产精品影院久久| 亚洲欧美日韩高清在线视频| 男女视频在线观看网站免费 | 欧美大码av| av视频在线观看入口| 人人妻,人人澡人人爽秒播| 黄色a级毛片大全视频| a级毛片在线看网站| 国产男靠女视频免费网站| 亚洲欧美日韩高清在线视频|