白林利,韓文嬌,李昌曉
(西南大學(xué) 生命科學(xué)學(xué)院 三峽庫(kù)區(qū)生態(tài)環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
前期水淹對(duì)水杉樹(shù)苗響應(yīng)干旱脅迫的影響
白林利,韓文嬌,李昌曉
(西南大學(xué) 生命科學(xué)學(xué)院 三峽庫(kù)區(qū)生態(tài)環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
水分脅迫;水杉;生理生化;消落帶;三峽庫(kù)區(qū)
三峽工程建成蓄水后,由于其“冬蓄夏排”的反季節(jié)水位調(diào)度管理方式,使庫(kù)岸消落帶處于被淹沒(méi)與出水暴露的周期性更替變化環(huán)境之中[1-2]。消落帶水分條件的周期性變化使原有植被消失殆盡。因此,修復(fù)與重建消落帶植被要求所栽種的植物不僅具有適應(yīng)水分飽和與過(guò)剩的能力,還要具有適應(yīng)水分虧缺與干旱的能力。水杉(Metasequoiaglyptostroboides)是三峽庫(kù)區(qū)庫(kù)岸消落帶典型的鄉(xiāng)土樹(shù)種,別稱(chēng)水沙,是中國(guó)特有孑遺珍貴樹(shù)種。水杉根系發(fā)達(dá),耐寒且耐受多種水分逆境的能力較強(qiáng),是亞熱帶地區(qū)平原綠化的優(yōu)良樹(shù)種,為園林植物造景中的精品[3]。目前,關(guān)于水杉的研究主要集中在基因結(jié)構(gòu)[4-6]、無(wú)性繁殖[7]、苗木營(yíng)養(yǎng)特性[3]、葉片化學(xué)成分[8-9]和光合作用[10-11]等方面。而關(guān)于水杉如何應(yīng)對(duì)水分脅迫,尤其是自然生長(zhǎng)或人工栽植于三峽庫(kù)岸的水杉,其所經(jīng)歷的水淹脅迫是否會(huì)對(duì)隨后的干旱脅迫耐受性產(chǎn)生影響,至今未見(jiàn)相關(guān)報(bào)道。
本研究以水杉樹(shù)苗為試驗(yàn)材料,通過(guò)模擬三峽庫(kù)區(qū)消落帶土壤水分的變化格局,研究水杉樹(shù)苗各項(xiàng)生理生化指標(biāo)在水分脅迫處理下的變化規(guī)律,探討其對(duì)水分脅迫的生理生化響應(yīng)及耐受程度,旨在揭示水分脅迫對(duì)水杉樹(shù)苗生理生化特性的傷害機(jī)制及植株自身的抗逆機(jī)制,為三峽庫(kù)區(qū)庫(kù)岸消落帶的植被恢復(fù)與重建提供候選植物材料。
1.1 材料及處理
考慮到三峽庫(kù)區(qū)庫(kù)岸防護(hù)林體系建設(shè)多采用2年生苗木,因此,本試驗(yàn)以2年生水杉(Metasequoiaglyptostroboides)樹(shù)苗為材料。2012-11-20將生長(zhǎng)基本一致的72株樹(shù)苗帶土盆栽,土壤性質(zhì)為:pH 8.26±0.04,有機(jī)質(zhì)(11.62±0.56) g/kg,全氮(1.11±0.04) g/kg,全磷(1.11±0.10) g/kg,全鉀(53.61±5.24) g/kg,堿解氮(76.70±3.78) mg/kg,有效磷(0.85±0.16) mg/kg,速效鉀(161.02±4.08) mg/kg,每盆1株(盆中央內(nèi)徑20 cm,盆高17 cm),置于西南大學(xué)三峽庫(kù)區(qū)生態(tài)環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室實(shí)驗(yàn)基地大棚(海拔249 m)內(nèi)進(jìn)行相同的光照和水分管理。2013-01-18開(kāi)始試驗(yàn),此時(shí)水杉苗高為(97.05±1.53) cm。
1.2 試驗(yàn)設(shè)計(jì)
結(jié)合三峽庫(kù)區(qū)消落帶水位變化的實(shí)際情況,將試驗(yàn)分為3個(gè)階段。第1階段為淹水處理期,共設(shè)3個(gè)處理組,分別為對(duì)照組(Control,C)、半淹組(Half-submersion,HS)和全淹組(Full-submersion,FS),每組試驗(yàn)苗木24株,共72株。其中,C組為常規(guī)供水,保持土壤含水量為田間持水量的75%~80%[12];HS組苗盆放入水池中,池水保持淹沒(méi)至植物中段;FS組苗盆也放入水池中,但池水保持沒(méi)過(guò)植物頂端20 cm。75 d后,進(jìn)行第2階段試驗(yàn)。
第2階段為干旱處理期,將第1階段每組的24株苗木再隨機(jī)均分為2組,其中1組進(jìn)行輕度干旱脅迫處理,另1組則繼續(xù)保持第1階段的水分處理。故第2階段共有對(duì)照-干旱組(Control followed by drought,CD)、半淹-干旱組(Half-submersion followed by drought,HSD)、全淹-干旱組(Full-submersion followed by drought,FSD)及對(duì)照組(C)、半淹組(HS)、全淹組(FS)6個(gè)處理,每組苗木12株,共72株。輕度干旱處理組土壤含水量為田間持水量的47%~50%[13]。為監(jiān)測(cè)輕度干旱處理的效果,于清晨06:00-07:00測(cè)定水杉樹(shù)苗上部成熟葉的葉水勢(shì)(用美國(guó)Wescor公司生產(chǎn)的露點(diǎn)水勢(shì)儀Psypro測(cè)定),以小于-0.5 MPa為標(biāo)準(zhǔn)(圖1)。60 d后,每組各取6株水杉葉片用于生理指標(biāo)的測(cè)定,其余6株用于后續(xù)試驗(yàn)(第3階段試驗(yàn))。
圖1 輕度干旱處理階段水杉的清晨葉水勢(shì)
Fig.1 Changes of predawn leaf water potential ofM.glyptostroboidesduring drought stress
第3階段為恢復(fù)處理期,將HS與FS處理組苗盆從水池中取出,所有處理組均參照對(duì)照組(C)進(jìn)行常規(guī)供水,時(shí)間為21 d。第3階段試驗(yàn)結(jié)束后,各組分別取6株水杉葉片用于生理指標(biāo)的測(cè)定。
1.3 生理指標(biāo)的測(cè)定
1.4 數(shù)據(jù)統(tǒng)計(jì)分析
利用SPSS 16.0軟件進(jìn)行單因素方差分析(One-way ANOVA),揭示水分處理對(duì)水杉生理生化特性的影響;并用Tukey檢驗(yàn)法檢驗(yàn)每個(gè)指標(biāo)在同一階段不同處理間(P=0.05)的差異顯著性。
2.1 前期水淹對(duì)水杉響應(yīng)干旱脅迫的影響
2.1.1 滲透調(diào)節(jié)物質(zhì) 水淹及干旱脅迫對(duì)水杉樹(shù)苗滲透調(diào)節(jié)物質(zhì)的影響如圖2所示。
圖2顯示,與C組相比,HS、FS組水杉樹(shù)苗脯氨酸含量顯著升高,而CD、HSD、FSD組與C組之間均無(wú)顯著性差異;CD、HSD、FSD組可溶性糖含量顯著高于C組,但與HS組之間均無(wú)顯著性差異,而FS組顯著低于C組;與C組相比,HS、FS、CD組的可溶性蛋白含量分別增加了63%,88%,48%(P<0.05),而HSD、FSD組與C組之間均無(wú)顯著性差異。就滲透調(diào)節(jié)物質(zhì)而言,CD、HSD、FSD組的脯氨酸、可溶性糖含量之間均無(wú)顯著性差異,說(shuō)明前期的水淹并未增加水杉樹(shù)苗后期對(duì)干旱脅迫的敏感性。
圖3顯示,HS組水杉樹(shù)苗的MDA、超氧根離子含量顯著高于其他處理組,與C組相比分別升高了96%,24%,這與FS組顯著低于其他處理組形成鮮明對(duì)照;不同的是,與C組相比,CD、HSD、FSD組的MDA含量均顯著降低,且CD、HSD、FSD組之間均無(wú)顯著性差異;而CD、HSD、FSD組的超氧根離子與C組均無(wú)顯著差異,說(shuō)明前期的水淹并未對(duì)水杉樹(shù)苗后期在干旱脅迫下的MDA、超氧根離子含量變化造成影響。
與C組相比,F(xiàn)S、CD、HSD組的SOD、POD活性均顯著升高;就SOD而言,HS組與C組之間無(wú)顯著性差異,F(xiàn)SD組顯著低于C組;HS 組的POD活性顯著低于其他各組。與C組相比,HS、FS、HSD、FSD組的ASP活性均顯著降低,而CD與C組之間無(wú)顯著性差異。HS、FS、CD、HSD、C組的CAT活性均無(wú)顯著性差異,而FSD組顯著高于其他各組。就抗氧化酶活性而言,CD、HSD組的SOD、POD、CAT活性之間均無(wú)顯著性差異,說(shuō)明對(duì)照干旱組與半淹干旱組前期的水淹并未影響水杉樹(shù)苗后期抗氧化酶對(duì)干旱脅迫的響應(yīng)。
2.2 干旱脅迫后水杉對(duì)復(fù)水的生理響應(yīng)
2.2.1 滲透調(diào)節(jié)物質(zhì) 由圖4可見(jiàn),在恢復(fù)正常供水之后,各個(gè)處理組水杉樹(shù)苗的脯氨酸含量之間均無(wú)顯著性差異。HS組的可溶性糖含量在所有處理中居于最高,CD、FSD組與C組及HS組與HSD組之間可溶性糖含量無(wú)顯著性差異。HS組的可溶性蛋白含量在所有處理中居于最高,HS、HSD組與C組及CD組與FSD組之間可溶性蛋白含量均無(wú)顯著性差異。
3.1 水杉對(duì)水淹脅迫的響應(yīng)
滲透調(diào)節(jié)是植物適應(yīng)逆境的重要生理機(jī)制[18]。脯氨酸作為一種重要的非酶抗氧化物質(zhì),在穩(wěn)定亞細(xì)胞結(jié)構(gòu)、清除活性氧自由基中具有重要作用[19]。本研究中,水淹脅迫下,HS、FS組水杉樹(shù)苗游離脯氨酸含量顯著增加,說(shuō)明水杉樹(shù)苗通過(guò)產(chǎn)生脯氨酸來(lái)適應(yīng)水分脅迫[20],保護(hù)酶活性。同時(shí),HS、FS組可溶性蛋白含量均顯著高于C組,說(shuō)明水淹期間水杉樹(shù)苗能夠維持正常的氮代謝過(guò)程,這也可能是水杉樹(shù)苗對(duì)水淹逆境的一種內(nèi)在生理適應(yīng)機(jī)制[21]。在本研究中,F(xiàn)S組水杉樹(shù)苗可溶性糖含量顯著降低,說(shuō)明全淹脅迫干擾了水杉樹(shù)苗正常的糖代謝,抑制了糖的合成并誘導(dǎo)糖的降解,從而使植株體內(nèi)的可溶性糖含量降低[22];也可能是由于水杉樹(shù)苗從有氧到無(wú)氧轉(zhuǎn)換的過(guò)程中,需要消耗大量的糖來(lái)維持發(fā)酵代謝活動(dòng)的完成[23]。脯氨酸、可溶性糖與可溶性蛋白綜合作用,調(diào)節(jié)水杉樹(shù)苗的滲透勢(shì),從而保護(hù)細(xì)胞膜免受損害[24]。
3.2 水杉對(duì)水淹后干旱脅迫的響應(yīng)
在三峽庫(kù)區(qū)水文變動(dòng)條件下,庫(kù)區(qū)消落帶植被在冬季會(huì)遭受水淹脅迫;而在夏季水位下降后,由于氣溫和降雨的關(guān)系又可能面臨短暫的輕度干旱脅迫。干旱是限制植物生長(zhǎng)的重要非生物因子[33],了解鄉(xiāng)土樹(shù)種對(duì)干旱脅迫的生理響應(yīng)有益于植被恢復(fù)工作的進(jìn)行[34]。
滲透調(diào)節(jié)是植物對(duì)干旱的關(guān)鍵響應(yīng)之一[35]。在干旱脅迫條件下,游離脯氨酸的積累對(duì)植物的適應(yīng)能力起到關(guān)鍵作用,其是有效的滲透調(diào)節(jié)物質(zhì)之一[36]。本研究中,CD、HSD、FSD組水杉樹(shù)苗脯氨酸含量與C組無(wú)顯著性差異,這與Gao等[37]對(duì)高山松的研究結(jié)果相似,說(shuō)明水杉樹(shù)苗對(duì)干旱脅迫的耐受有一定的局限性[38]。而CD、HSD、FSD組可溶性糖含量顯著高于C組,說(shuō)明在干旱脅迫下,水杉樹(shù)苗通過(guò)升高可溶性糖含量來(lái)調(diào)節(jié)滲透勢(shì),維持膨壓,從而使體內(nèi)各種與膨壓有關(guān)的生理過(guò)程可以正常進(jìn)行[39]。同時(shí),CD、HSD、FSD組可溶性蛋白含量高于C或與C組相當(dāng),說(shuō)明干旱并未干擾水杉樹(shù)苗的正常氮代謝[40]。從脯氨酸含量相對(duì)較低且在干旱脅迫后并未明顯增加可知,可溶性糖是水杉樹(shù)苗應(yīng)對(duì)水分脅迫的主導(dǎo)性滲透調(diào)節(jié)物質(zhì),其可以降低水勢(shì),提高植物的吸水與保水能力[41]。
本研究發(fā)現(xiàn),雖然CD與HSD組水杉樹(shù)苗的SOD、POD活性均顯著高于C組,但CD與HSD組的SOD、POD活性無(wú)顯著差異;同樣,干旱脅迫提高了CD與HSD組的脯氨酸和可溶性糖含量,但CD與HSD組之間無(wú)顯著差異,說(shuō)明前期水淹并未影響水杉樹(shù)苗后期對(duì)干旱脅迫的生理生化響應(yīng)。
3.3 水杉對(duì)干旱脅迫后復(fù)水的響應(yīng)
一個(gè)物種對(duì)脅迫的忍耐性取決于脅迫時(shí)間、脅迫強(qiáng)度以及去除脅迫后的恢復(fù)能力[48],恢復(fù)過(guò)程對(duì)物種緩解前期脅迫的影響至關(guān)重要。本試驗(yàn)第3階段,移除水分脅迫后,CD、HS、HSD、FSD組水杉樹(shù)苗的CAT、ASP活性顯著降低或與C組相當(dāng),MDA含量顯著低于C組,與木果楝(Carapaguianensis)[46]的表現(xiàn)相似,表明水杉樹(shù)苗在恢復(fù)供水階段H2O2的形成量下降,對(duì)水分脅迫表現(xiàn)出良好的適應(yīng)能力[46]。
水分脅迫去除后,恢復(fù)的程度及幅度取決于脅迫的強(qiáng)度、持續(xù)時(shí)間以及受脅迫的物種種類(lèi)[49]。本試驗(yàn)中,在干旱脅迫下,各個(gè)處理組水杉樹(shù)苗的存活率均達(dá)100%。在去除干旱脅迫后,不同處理的水杉樹(shù)苗抗氧化酶活性及滲透調(diào)節(jié)物質(zhì)含量顯著降低或與C組相當(dāng),這與Verma等[50]對(duì)麻瘋樹(shù)(Jatrophacurcas)的研究結(jié)果相似,其原因可能是前期的干旱脅迫時(shí)間過(guò)長(zhǎng)或是恢復(fù)時(shí)間不夠[51],具體原因還有待于進(jìn)一步研究。
本研究發(fā)現(xiàn),前期水淹并未影響水杉樹(shù)苗對(duì)后期干旱脅迫的生理生化響應(yīng)。水杉樹(shù)苗對(duì)土壤水分變化具有較強(qiáng)的生理生化響應(yīng)能力,不僅表現(xiàn)出耐水濕的特點(diǎn),而且表現(xiàn)出一定的耐旱性。在水分脅迫下,水杉樹(shù)苗能有效誘導(dǎo)體內(nèi)的保護(hù)酶系統(tǒng),清除體內(nèi)的活性氧等自由基,在一定程度上維持了植株正常的生理代謝活動(dòng)。同時(shí),其還通過(guò)體內(nèi)滲透調(diào)節(jié)物質(zhì)的積累,降低了細(xì)胞的水勢(shì),起到了滲透調(diào)節(jié)的作用。正是保護(hù)酶系活性的啟動(dòng)以及滲透調(diào)節(jié)物質(zhì)的產(chǎn)生,使得水杉樹(shù)苗的耐淹性和耐旱性得以提高,從而具有較強(qiáng)的滲透脅迫耐受能力。因此,在三峽庫(kù)區(qū)植被恢復(fù)建設(shè)中,可以考慮將水杉樹(shù)苗作為候選樹(shù)種之一。
[1] 類(lèi)淑桐,曾 波,徐少君,等.水淹對(duì)三峽庫(kù)區(qū)秋華柳抗性生理的影響 [J].重慶師范大學(xué)學(xué)報(bào):自然科學(xué)版,2009,26(3):30-33.
Lei S T,Zeng B,Xu S J,et al.Effects of submergence on resistance physiology ofSalixvaregataFranch in Three Gorges Reservoir Region [J].Journal of Chongqing Normal University:Natural Science Edition,2009,26(3):30-33.(in Chinese)
[2] Jiang H T,Xu F F,Cai Y,et al.Weathering characteristics of sloping fields in the Three Gorges Reservoir area,China [J].Pedosphere,2006,16(1):50-55.
[3] 白 禎,黃建國(guó).三峽庫(kù)區(qū)護(hù)岸林主要樹(shù)種的耐濕性和營(yíng)養(yǎng)特性 [J].貴州農(nóng)業(yè)科學(xué),2011,39(6):166-169.
Bai Z,Huang J G.Waterlogging tolerance and nutritional characteristics of main tree species in bank forest in Three Gorges Reservoir Area [J].Guizhou Agricultural Sciences,2011,39(6):166-169.(in Chinese)
[4] Chen X Y,Li Y Y,Wu T Y,et al.Size-class differences in genetic structure ofMetasequoiaglyptostroboidesHu et Cheng (Taxodiaceae) plantations in Shanghai [J].Silvae Genetica,2003,52(3/4):107-109.
[5] Cui M Y,Yu S,Liu M,et al.Isolation and characterization of polymorphic microsatellite markers inMetasequoiaglyptostro-boides(Taxodiaceae) [J].Conservation Genetics Resources,2010,2(1):19-21.
[6] Zhao Y,Thammannagowda S,Staton M,et al.An EST dataset forMetasequoiaglyptostroboidesbuds:The first EST resource for molecular genomics studies in Metasequoia [J].Planta,2013,237(3):755-770.
[7] Kolasinski M.How can we propagate theMetasequoiaglyptostroboidesHu et Cheng [J].Horticulture,2012,15(2):1-7.
[8] Bajpai V K,Rahman A,Kang S C.Chemical composition and anti-fungal properties of the essential oil and crude extracts ofMetasequoiaglyptostroboidesMiki ex Hu [J].Industrial Crops and Products,2007,26(1):28-35.
[9] Mou X L,Fu C,Wu H K,et al.Composition of essential oil from seeds ofMetasequoiaglyptostroboidesgrowing in China [J].Chemistry of Natural Compounds,2007,43(3):334-335.
[10] Equiza M A,Day M E,Jagels R.Physiological responses of three deciduous conifers (Metasequoiaglyptostroboides,TaxodiumdistichumandLarixlaricina) to continuous light:Adaptive implications for the early tertiary polar summer [J].Tree Physiology,2006,26(3):353-364.
[11] Equiza M A,Day M E,Jagels R,et al.Photosynthetic down-regulation in the coniferMetasequoiaglyptostroboidesgrowing under continuous light:The significance of carbohydrate sinks and paleo-ecophysiological implications [J].Canadian Journal of Botany,2006,84(9):1453-1461.
[12] 李昌曉,魏 虹,呂 茜,等.不同水分處理對(duì)濕地松幼苗生長(zhǎng)與根部次生代謝物含量的影響 [J].生態(tài)學(xué)報(bào),2010,30(22):6154-6162.
Li C X,Wei H,Lü Q,et al.Effects of different water treatments on growth and contents of secondary metabolites in roots of slashpine (PinuselliottiiEngelm.) seedlings [J].Acta Ecologica Sinica,2010,30(22):6154-6162.(in Chinese)
[13] Li C X,Zhong Z C,Geng Y,et al.Comparative studies on ph-ysiological and biochemical adaptation ofTaxodiumdistichumandTaxodiumascendensseedlings to different soil water regimes [J].Plant and Soil,2010,329(1/2):481-494.
[14] 李合生,孫 群,趙世杰,等.植物生理生化實(shí)驗(yàn)原理和技術(shù) [M].北京:高等教育出版社,2000.
Li H S,Sun Q,Zhao S J,et al.Principle and technology of plant physiological and biochemical experiments [M].Beijing:Higher Education Press,2000.(in Chinese)
[15] 張志良.植物生理學(xué)實(shí)驗(yàn)指導(dǎo) [M].北京:高等教育出版社,1990.
Zhang Z L.Plant physiology experiment instruction [M].Beijing:Higher Education Press,1990.(in Chinese)
[16] 高俊鳳.植物生理學(xué)實(shí)驗(yàn)指導(dǎo) [M].北京:高等教育出版社,2006.
Gao J F.Plant physiology experiment instruction [M].Beijing:Higher Education Press,2006.(in Chinese)
[17] 張以順,黃 霞,陳云鳳.植物生理學(xué)實(shí)驗(yàn)教程 [M].北京:高等教育出版社,2009.
Zhang Y S,Huang X,Chen Y F.Plant physiology experiment tutorial [M].Beijing:Higher Education Press,2009.(in Chinese)
[18] Li X,Yan X,Yu T.Effects of water stress on protective enzyme activities and lipid peroxidation inPhellodendronamurenseseedlings [J].Journal of Applied Ecology,2005,16(12):2353-2356.
[19] Ashraf M,Foolad M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance [J].Environmental and Experimental Botany,2007,59(2):206-216.
[20] 蔣明義,郭紹川,張學(xué)明.氧化脅迫下稻苗體內(nèi)積累的脯氨酸的抗氧化作用 [J].植物生理學(xué)報(bào),1997,23(4):347-352.
Jiang M Y,Guo S C,Zhang X M.Proline accumulation in rice seedlings exposed to oxidative stress in relation to antioxidation [J].Acta Phytoghysiologica Sinica,1997,23(4):347-352.(in Chinese)
[21] 湯玉喜,劉友全,吳 敏,等.淹水脅迫下美洲黑楊無(wú)性系生理生化指標(biāo)的變化 [J].中國(guó)農(nóng)學(xué)通報(bào),2008,24(8):156-161.
Tang Y X,Liu Y Q,Wu M,et al.The variation of inner physiological and biochemical characters under flooding stress ofPopulusdeltoidesclones [J].Chinese Agricultural Science Bulletin,2008,24(8):156-161.(in Chinese)
[22] 王義強(qiáng),谷文眾,姚水攀,等.淹水脅迫下銀杏主要生化指標(biāo)的變化 [J].中南林學(xué)院學(xué)報(bào),2006,25(4):78-80.
Wang Y Q,Gu W Z,Yao S P,et al.Variation of the main biochemistry index ofGinkgounder flooding stress [J].Journal of Central South Forestry University,2006,25(4):78-80.(in Chinese)
[23] Sairam R K,Kumutha D,Ezhilmathi K,et al.Physiology and biochemistry of waterlogging tolerance in plants [J].Biologia Plantarum,2008,52(3):401-412.
[24] 張 烈,沈秀瑛,孫彩霞.脯氨酸對(duì)玉米抗旱性影響的研究 [J].華北農(nóng)學(xué)報(bào),1999,14(1):38-41.
Zhang L,Shen X Y,Sun C X.Studies on effects of proline on drought resistance in maize [J].Acta Agriculturae Boreali-Sinica,1999,14(1):38-41.(in Chinese)
[25] Peng Y,Dong Y,Tu B,et al.Roots play a vital role in flood-tolerance of poplar demonstrated by reciprocal grafting [J].Flora-Morphology,Distribution,Functional Ecology of Plants,2013,208(8):479-487.
[26] Yin D,Chen S,Chen F,et al.Morpho-anatomical and physiological responses of twoDendranthemaspeciesto waterlogging [J].Environmental and Experimental Botany,2010,68(2):122-130.
[27] Alves J D,Zanandrea I,Deuner S,et al.Antioxidative responses and morpho-anatomical adaptations to waterlogging inSesbaniavirgata[J].Trees,2013,27(3):717-728.
[28] Pyngrope S,Bhoomika K,Dubey R S.Oxidative stress,protein carbonylation,proteolysis and antioxidative defense system as a model for depicting water deficit tolerance inIndicarice seedlings [J].Plant Growth Regulation,2013,69(2):149-165.
[29] 蔡志全,曹坤芳.遮蔭下2種熱帶樹(shù)苗葉片光合特性和抗氧化酶系統(tǒng)對(duì)自然降溫的響應(yīng) [J].林業(yè)科學(xué),2004,40(1):47-51.
Cai Z Q,Cao K F.The response of photosynthetic characteristics and enzymatic antioxidant system in leaves of two tropical seedlings growing in shade conditions as temperature fall [J].Scientia Silvae Sinicae,2004,40(1):47-51.(in Chinese)
[30] Hossain A,Uddin S N.Mechanisms of waterlogging tolerance in wheat:Morphological and metabolic adaptations under hypoxia or anoxia [J].Australian Journal of Crop Science,2011,5(9):1094-1101.
[31] Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J].Plant Physiology and Biochemistry,2010,48(12):909-930.
[32] Blokhina O,Virolainen E,Fagerstedt K V.Antioxidants,oxidative damage and oxygen deprivation stress:A review [J].Annals of Botany,2003,91(2):179-194.
[33] Riaz A,Younis A,Hameed M,et al.Morphological and biochemical responses of turf grasses to water deficit conditions [J].Pakistan Journal of Botany,2010,42(5):3441-3448.
[34] Liu C C,Liu Y G,Guo K,et al.Comparative ecophysiological responses to drought of two shrub and four tree species from karst habitats of southwestern China [J].Trees,2011,25(3):537-549.
[35] Corcuera L,Gil-Pelegrin E,Notivol E.Aridity promotes diffe-rences in proline and phytohormone levels inPinuspinasterpopulations from contrasting environments [J].Trees,2012,26(3):799-808.
[36] Molinari H B C,Marur C J,Bespalhok J C,et al.Osmotic adjustment in transgenic citrus rootstockCarrizocitrange(CitrussinensisOsb.×PoncirustrifoliateL.Raf.) overproducing proline [J].Plant Science,2004,167:1375-1381.
[37] Gao D,Gao Q,Xu H Y,et al.Physiological responses to gradual drought stress in the diploid hybridPinusdensataand its two parental species [J].Trees,2009,23(4):717-728.
[38] Shvaleva A L,Costa E,Silva F,et al.Metabolic responses to water deficit in twoEucalyptusglobulusclones with contrasting drought sensitivity [J].Tree Physiology,2006,26(2):239-248.
[39] Hsiao T C.Plant responses to water stress [J].Annual Review of Plant Physiology,1973,24(1):519-570.
[40] 魏良民.幾種旱生植物碳水化合物和蛋白質(zhì)變化的研究 [J].干旱區(qū)研究,1991,8(4):38-41.
Wei L M.A study on carbohydrate and protein of several xerophytes [J].Research in Arid Areas,1991,8(4):38-41.(in Chinese)
[41] Dure L.Plant responses to cellular dehydration during environment tress [J].Plant Physiology,1993,103(10):91-93.
[42] Yildiz-Aktas L,Dagnon S,Gurel A,et al.Drought tolerance in cotton:Involvement of non-enzymatic ROS-scavenging compounds [J].Journal of Agronomy and Crop Science,2009,195(4):247-253.
[43] Bacelar E A,Santos D L,Moutinho-Pereira J M,et al.Immediate responses and adaptive strategies of three olive cultivars under contrasting water availability regimes:Changes on structure and chemical composition of foliage and oxidative damage [J].Plant Science,2006,170:596-605.
[44] Lima A L S,DaMatta F M,Pinheiro H A,et al.Photochemical responses and oxidative stress in two clones ofCoffeacanephoraunder water deficit conditions [J].Environmental and Experimental Botany,2002,47(3):239-247.
[45] Wolkerstorfer S V,Wonisch A,Stankova T,et al.Seasonal variations of gas exchange,photosynthetic pigments,and antioxidants in Turkey oak (QuercuscerrisL.) and Hungarian oak (QuercusfrainettoTen.) of different age [J].Trees,2011,25(6):1043-1052.
[46] Costa M A,Pinheiro H A,Shimizu E S C,et al.Lipid peroxidation,chloroplastic pigments and antioxidant strategies inCarapaguianensis(Aubl.) subjected to water-deficit and short-term rewetting [J].Trees,2010,24(2):275-283.
[47] Ma C,Wang Z,Kong B,et al.Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery [J].Plant Growth Regulation,2013,70(3):275-285.
[48] Finin A,Bellasio C,Pollastri S,et al.Water relations,growth,and leaf gas exchange as affected by water stress inJatrophacurcas[J].Journal of Arid Environments,2013,89(2):21-29.
[49] Xu Z,Zhou G,Shimizu H.Plant responses to drought and rewatering [J].Plant Signaling and Behavior,2010,5(6):649-654.
[50] Verma K K,Singh M,Gupta R K,et al.Photosynthetic gas exchange,chlorophyll fluorescence,antioxidant enzymes,and growth responses ofJatrophacurcasduring soil flooding [J].Turkish Journal of Botany,2013,38(1):130-140.
[51] Galle A,Haldimann P,Feller U.Photosynthetic performance and water relations in young pubescent oak (Quercuspubescens) trees during drought stress and recovery [J].New Phytologist,2007,174(4):799-810.
Effects of flooding on responses ofMetasequoiaglyptostroboidessaplings to drought
BAI Lin-li,HAN Wen-jiao,LI Chang-xiao
(KeyLaboratoryfortheEco-EnvironmentoftheThreeGorgesReservoirRegionoftheMinistryofEducation,CollegeofLifeSciences,SouthwestUniversity,Chongqing400715,China)
water stress;Metasequoiaglyptostroboides;physiology and biochemistry;the hydro-fluctuation belt;the Three Gorges Reservoir Area
2014-07-16
重慶市基礎(chǔ)與前沿研究計(jì)劃重點(diǎn)項(xiàng)目(CSTC2013JJB00004);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(XDJK2013A011);國(guó)家林業(yè)公益性行業(yè)科研專(zhuān)項(xiàng)(201004039);留學(xué)回國(guó)人員科研啟動(dòng)基金項(xiàng)目(教外司留[2010-1561])
白林利(1990-),女,山西呂梁人,在讀碩士,主要從事環(huán)境生態(tài)學(xué)研究。E-mail:895845358@qq.com
李昌曉(1972-),男,重慶人,教授,博士生導(dǎo)師,主要從事生態(tài)修復(fù)研究。E-mail:lichangx@swu.edu.cn
時(shí)間:2015-04-13 12:59
10.13207/j.cnki.jnwafu.2015.05.023
S718.51+2.3;Q945.78
A
1671-9387(2015)05-0042-09
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20150413.1259.023.html