• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BLOWING UP AND MULTIPLICITY OF SOLUTIONS FOR A FOURTH-ORDER EQUATION WITH CRITICAL NONLINEARITY?

    2015-02-10 08:37:42

    Department of mathematics,University of Monastir,Tunisia

    E-mail:siwar ammar84@yahoo.fr

    Mokhles HAMMAMI

    Department of mathematics,Faculty of Sciences of sfax,University of Sfax,Tunisia

    E-mail:Mokhless.Hammami@fss.rnu.tn

    BLOWING UP AND MULTIPLICITY OF SOLUTIONS FOR A FOURTH-ORDER EQUATION WITH CRITICAL NONLINEARITY?

    Siwar AMMAR

    Department of mathematics,University of Monastir,Tunisia

    E-mail:siwar ammar84@yahoo.fr

    Mokhles HAMMAMI

    Department of mathematics,Faculty of Sciences of sfax,University of Sfax,Tunisia

    E-mail:Mokhless.Hammami@fss.rnu.tn

    fourth order elliptic equations;critical Sobolev exponent;blow up solution

    2010 MR Subject Classifcation35J20;35J60

    1 Introduction and Statement of Results

    This paper concerns the concentration phenomena for the following nonlinear equation under the Navier boundary conditions,

    The motivation for investigating(Pμ)comes from its resemblence some geometric equations involving Paneitz operator(see for instance[6,13,17]).

    In the last decades,there have been many works in the study of concentration phenomena for second order elliptic equation with critical Sobolev exponent;see for example[1,4,7,11,12,15,16,21,25-31]and the references therein.In sharp contrast to this,very little is known for fourth order elliptic equations.

    Existence and multiplicity of solutions of(Pμ)have been studied intensively by many authors with the exponents p and q.In[33],Van Der Vorst proved that if q∈[1,p[andμ≤0 then(Pμ)has no solution in starshaped domains Ω?Rn,whereas Ebobisse and Ould Ahmedou proved in[18]that(P0)has a solution provided that some homology group of Ω is nontrivial in the sense Hk(Ω,Z2)/=0 for some integer k.Nevertheless,Gazzola,Grunau and Squassina[19] gave the example of contractible domains on which a solution still exists,showing that both topology and geometry of the domains play a role.

    In case n≥8 and 1≤q<p or n=5,6,7 and(12-n)/(n-4)<q<(n+4)/(n-4),Melo and Santos[24],proved that if Ω has a rich topology,described by its Lusternik-Schnirelmann category,then multiple solutions to problem(Pμ)exist providedμ>0 is sufciently small.The approach used on[24]is diferent to our method.It is based on some analysis on the Nehari manifold associated with the problem(Pμ).

    Note that,the most results are concerning the large dimensions.The purpose of the present paper is to study solutions for(Pμ)for the critical dimensions n=5,6,7 and q∈]4/(n-4),(12-n)/(n-4)[.More precisely,for all positive solutions which concentrate around two points of Ω,we prove that the concentration speeds are of the same order and the distance of the concentration points from each other and from the boundary are bounded.We will also establish the existence of positive solution which concentrate at two points of Ω,where Ω=(Ωa)ais a smooth ringshaped open set and we will prove if Ω has a rich topology,described by its Lusternik-Schnirelmann category,then multiple solutions to problem(Pμ)exist provided μ>0 large enough.We note that the choose of the variableμ(in Theorem 1.4)depends on the remainder termμ-(n-4)(q+1)/(12-n-(n-4)q)which appears in our expansions(see section 5, equation(5.4)).In fact,since we assume that q<(12-n)/(n-4),thenμhas to be large enough to obtain that the previous term is small enough with respect to the principal terms in our expansions.Furthermore,this remainder term gives us an idea on the choose of[24](since in their case q>(12-n)/(n-4)and thenμhas to be small enough).In Theorem 1.2,the remainder term which appears in Proposition 4.4 is ρ(X)(n-4)(q-2)/(12-n-(n-4)q),where ρ(X)is the frst eigenvalue of the Matrix M(X)defned in(1.4),since we assume that q<(12-n)/(n-4) to obtain that the previous term is small enough with respect to the principal terms in our expansions.

    We remarque that our method works also to prove the result of[24].The proof of our resultsis inspired by Rey[28].Compared with the second-order case,further technical problems arise which are overcome by careful and delicate expansions of the Euler functional associated to (Pμ)and its gradient near a neighborhood of highly concentrated functions.In fact,in our case we cannot use,as in the laplacien case,the method of moving planes in order to show that the distances of the blow up points from each other and from the boundary of the domain are bounded.This is due to the fact that the Navier boundary condition is not invariant under the Kelvin transformation of the biharmonic operator.To overcome this difculty,we use the techniques developed by Bahri[2]and Rey[29]in the framework of the theory of critical points at infnity.

    To state our results,we need to introduce some notations.We denote by G the Green’s function of Δ2,that is,for all x∈Ω:

    where δxdenotes the Dirac mass at x and c=(n-4)(n-2)|Sn-1|.We also denote by H the regular part of G,that is,

    and H satisfes

    For λ>0 and x∈Rn,let

    It is well known(see[22])that δ(x,λ)are the only solutions of

    They are also the only minimizers of the Sobolev inequality on the whole space,that is

    The frst part of this paper is devoted to study the solution which concentrate around two points of Ω

    2.d(xi,?Ω)≥d0,for i=1,2.

    3.|x1-x2|≥d0.

    To state the existence result,we need to introduce some notations.

    For X=(x1,x2)∈Ω2Γ,with Γ={(y,y),y∈Ω},we denote by M(X)the matrix defned by

    Let ρ(X)be the least eigenvalue of M(X)and r(X)the eigenvector corresponding to ρ(X) whose norm is 1 and whose components are all strictly positive(see Appendix A of[4]).

    We denote by Ω=(Ωa)a>0is a ringshaped open sets in Rn.More precisely,let f be any smooth function

    which is periodic of period π with respect to the θ1,.,.,θn-2and of period 2π with respect to θn-1.We set

    where(r,θ1,···,θn-1)are the polar coordinates of x.

    For each f we obtain an increasing family of smooth ringshaped open sets.In the following, Ha,Ga,ρadenote the functions H,G,ρ defned on Ωa×Ωa.

    where the xikdenote here the k-th component of xi.

    where η0,λ0,d0,k0are some suitable positive constants.

    Now we state the result.

    Theorem 1.2Let n=5,6 and assume thatμ>0(resp.μ<0).There exist(a0,a1)∈R2,0<a1<a0(resp 0<a0<a1)such that for any a∈[a1,a0[(resp.a∈]a0,a1]),there exists uaa solution of(Pμ)in Ωa,such that

    where v∈EΛ,X,(A,Λ,X,v)∈M and 0<ρ(X)<ρ0(resp.ρ0<ρ(X)<0).

    Concerning the sign-changing solution,we prove that(Pμ)has no sign-changing solutions which blows up at tow points.More precisely,we have

    Theorem 1.3Let Ω be any smooth bounded domain in Rn,n∈{5,6,7}and let A be a fxed positive constant.For each|μ|≤A,the problem(Pμ)has no sign-changing solutions uμwhich satisfes

    Next,we want to state a multiplicity result for problem(Pμ).For this purpose,we say that the category of F?Ω is k,denoted Cat(F,Ω),if F may be covered by k closed sets in Ω,each one contractible in Ω,but not by(k-1)such sets.We call category of Ω the positive integer Cat(Ω,Ω)(see[14]).

    Theorem 1.4Let n=5,6 and Ω be any smooth and bounded domain in Rnof Ljusternik-Schnirelmann category k and let q∈]4/(n-4),(12-n)/(n-4)[.Forμ>0,large enough,there are at least k+1 positive solutions of(Pμ).

    Remark 1.5The dimension n=7 is excluded from Theorems 1.2 and 1.4.The reason is that in some expansions it appears(q-2)on some powers which we need to be positive(see Proposition 4.4).However,for n=7 the variable q∈]4/3,5/3[and this prove(q-2)becomes negative in the case n=7.

    The remainder of the present paper is organized as follows.In the next,we prove Theorems 1.1 and 1.3.In Section 3,we develop the expansion of the functional associated to(Pμ)and its gradient,needed in the proof of Theorems 1.2 and 1.4.Section 4,is devoted to the proof of Theorem 1.2,while Theorem 1.4 is proved in Section 5.Lastly,we give in Appendix some useful estimates.

    2 Proof of Theorems 1.1 and 1.3

    This Section is devoted to the proof of Theorems 1.1 and 1.3.We will us some ideas introduced by Bahri[2]and some technical estimates.

    We assume that there exists solution uμof(Pμ)as in(1.3)and(1.6).Arguing as in[2,3] and[29],we see that,there is a unique way to choose αi,xi,λiand v such that

    where v∈EΛ,X.

    In order to simplify the notations,in the remainder we write δi,Pδiand u instead of δ(xi,λi), Pδ(xi,λi)and uμ.

    As usual in these types of problems,we frst deal with the v-part of u,in order to show that it is negligible with respect to the concentration phenomenon.Namely,we have the following estimate.

    Lemma 2.1The function v defned in(2.1),satisfes the following estimate

    where di:=d(xi,?Ω)for i=1,2.

    ProofSince u=α1Pδ1+γα2Pδ2+v is a solution of(Pμ)and v∈EΛ,X.Multiplying (Pμ)by v and integrating on Ω,we obtain

    Hence,we have

    where

    According to[3]and[6],there exists a positive constant c such that

    Using the Holder’s inequality and the Sobolev embedding theorem,we fnd

    On another hand,for any v∈EΛ,X,we have

    Now,we are able to obtain the following result which is a crucial point in the proof of our Theorems.

    Proposition 2.2Assume that,u=α1Pδ1+γα2Pδ2+v is a solution of(Pμ).We have the following estimate:

    ProofIt sufces to prove the proposition for i=1.Multiplying(Pμ)by Pδ1and integrating on Ω,we obtain

    By Lemma 2.1,we write

    Proof of Theorem 1.3Arguing by contradiction,let us suppose that the problem (Pμ)has a solution u as stated in Theorem 1.3.This solution has to satisfy(2.1),and from Proposition 2.2,we have

    where i=1,2.

    Without loss of generality,we can assume that λ2≥λ1.We distinguish two cases and we will prove that they cannot occur.This implies our theorem.

    which implies that

    Then from(2.10)and(2.12),we get

    Using the fact that

    which gives a contradiction.Hence this case cannot occur.

    Now,using the fact that λ2≥λ1,an easy computation shows that

    Using(2.13),(2.14)and(2.15)we have

    Then we derive a contradiction and therefore this case cannot occur.Hence Theorem 1.3 is proved.?

    Proof of Theorem 1.1Let us assume that problem(Pμ)has a solution u as stated in Theorem 1.1.We will proceed to proof the result in four steps:

    The proof will be by contradiction.Assume that d1/d2→0.In this case,we have

    Using Proposition 2.2,we derive

    We deduce from(2.16)and(2.17)that

    a contradiction.In the same way,we prove that d2/d1/→0.Hence the proof of Claim 1 is completed.

    Assume that λ1/λ2→0.By Claim 1,we have(λ2d2)-1=o((λ1d1)-1).

    Using the fact that λ1≤λ2,we have

    By Proposition 2.2,we have

    Using Claim 1 and(2.19),we derive

    Hence,by(2.20)and Proposition 2.2,we obtain

    We deduce that

    Two cases may occur.

    Using Proposition 2.2,we obtain

    which gives a contradiction in this case.

    a contradiction.

    Claim 4There exist a constant d0such that di=d(xi,?Ω)≥d0,for i=1,2.

    By Claims 1,2 and 3,we know that λ1and λ2are of the same order,|x1-x2|,d1and d2are of the same order.Assume that d1→0 and d1≤d2.Let νibe the outward normal vector at xi.Since d1,d2and|x1-x2|are of the same order,we have(see[4]and[8])

    By Proposition 2.2,

    then(2.22)implies

    Then the Theorem follows for n∈{6,7}.In this case n=5,regarding the estimate of‖v‖,it is of the same order as the principle part of Proposition 2.2.We use an idea due to Rey[32], we have a better estimates of the integrals involving v,namely we write

    where Bi=B(xi,di/4).

    The estimate of Claim 3 in Proposition 2.2,becomes

    Therefore the proof of the theorem follows in this case.

    3 Expansion of the Functional and Its Gradient

    If u is a positive critical point of J,u satisfes on Ω the problem(Pμ).Conversely,we see that any solution of(Pμ)is a critical point of J.

    Let us defne the functional

    where M is defned in(1.5).

    As usual in this types of problems,we frst deal with the v-part of u,in order to show that is negligible with respect to the concentration phenomenon.Namely,we prove the following.

    Moreover,there exists(Bi,Ci,Di)∈R2×R2×(R2)nsuch that

    where the xikis the k-th component of xi.

    ProofK has been defned in(3.2),we write

    Now,we will estimate‖f(A,Λ,X)‖.

    Then using the Holder’s inequality,and the fact that n<12,we have

    According to[3]and[6],there exists a positive constant c such that

    Next,we prove a useful expansion of the derivative of the function K associated to(3.2), with respect to αi,λi,xi.

    ProofTo prove Claim 1,using(2.6),(3.3)and(3.9),we write

    Now,using the fact that,for k/=j

    From(3.14),(3.15),Lemma A.1 and Proposition 3.1,Claim 1 follows.

    Now,we prove Claim 2.As in Claim 1 we have

    Using the fact that|xi-xj|>d0,then

    The Claim 2 follows from(3.14),(3.15),(3.16),(3.17),Lemma A.2 and Proposition 3.1.

    Regarding Claim 3,its proof is similar to Claim 2,so we will omit it.?

    Lemma 3.3Assume that(A,Λ,X,0)∈M,then the following expansion holds

    ProofK has been defned in(3.2),we have

    Now,using Lemma A.1,this lemma follows.

    Now,setting

    Proposition 3.4The coefcients Bi,Ciand Dikwhich occur in Proposition 3.1 satisfy the estimates

    The left side is given by

    By Proposition 3.2,we have

    The solution of the system in Bi,Ci,Dikshows the result.?

    4 Proof of Theorem 1.2

    In Section 3,we minimizes the functional K with respect to v∈EΛ,X.

    Let M1={(A,Λ,X)such that(A,Λ,X,0)∈M}.Our aim in this section is to optimize the C2-map

    with respect to A=(α1,α2)and Λ=(λ1,λ2),i.e.,to fnd,for given X,AXand ΛXsuch that

    For X∈Ω2Γ the matrix M(X)have two eigenvalues ρ(X)<ρ′(X)corresponding respectively to the eigenvectors r(X)=(r1,r2)and r′(X)=(-r2,r1)(see[4]).One can choose r1and r2such that

    Setting

    We prove the following result

    Proposition 4.1Assume thatμ>0.For each d0>0 there exist ρ0>0 and a C1-map

    (i)(S)is satisfed with(A,Λ,X)=(AX,ΛX,X),

    (ii)

    ProofFor X∈M2,we fnd AXand ΛXsuch that

    Taking the derivatives with respect to αiof the equalities

    Using Proposition 3.1,therefore

    On another hand,we write

    In order to estimate ξik,ζikand θikl,we take the scalar product of(4.5)with Pδk,λk?Pδk/?λkand(λk)-1?Pδk/?xkl.On the left side,using the derivative with respect to λiof the equalities (4.3),we obtain

    Therefore

    We have also,

    On the right side we use again(4.6),(4.8),(4.9),(3.21),(3.22),(3.23),(3.24)and from the linear system that we obtain,we derive

    We fnd

    Let us treat now the terms?K/?αiand?K/?λi.Observe that δ′=o(δ)and δ~‖Λ‖as ρ→0.

    With the notation(3.19),(4.1)from Proposition 3.2,we derive

    In the same way we prove that

    Then,from(4.1)and(4.2),we derive

    We have also,

    Then,we set

    with∈,∈′→0.With these notations,taking account of(4.4),(4.11),(4.12),(4.13),(4.14), (4.15),(4.16),(4.17)then(S1)may be written under the form

    Where V′s and W′s are C1-functions which satisfy

    Proposition 4.2The points(AX,ΛX)which occurs in Proposition 4.1 is a non degenerate critical point of the map w.

    ProofNow,we will proof that the point(AX,ΛX)is a non-degenerate critical point of the map w.

    Then we need to prove that the determinant Δ of the matrix is nonzero for(A,Λ)=(AX,ΛX).

    We have

    On the other hand,we have

    Replacing(4.25),(4.26),(4.27),(4.28)and(4.29)in equality(4.24),we obtain

    Finally,we have

    Thus,using(4.5),(4.10),(3.21),(3.22),(3.23),(3.24)and(4.31),we fnd

    In the same way we prove that

    We derive(4.23)with respect to αi,we obtain

    and

    Lastly,let us write

    with wij∈EΛ,X.

    On the left side we fnd

    We deduce fnally that

    Coming back to(C2),the terms that we still have to estimate is the second derivatives of K with respect to αi’s and λi’s.The computations give us

    where δijis the Kronecker symbol.

    Then,equations(4.36)-(4.39)become,for(A,Λ)=(AX,ΛX)

    Then we can compute the determinant△and we obtain

    hence the result follows.

    Now,we consider the following map defned by

    where

    ρ0being small enough in function of d0.

    To complete the proof of this theorem we need to optimize K with respect to X.Each critical point X∈M2of K provides us with a critical point of J,hence a solution of(Pμ)if the function

    is positive.In order to fnd such a critical point,we are going to use a min-max method based upon the special shape and properties of the domains Ωa.We will need the following Proposition.

    Proposition 4.3We have the following expansions

    ProofUsing Proposition 3.1,Lemma 3.3 and the fact that η=(η1,η2)=(α1-1,α2-1), we have

    From(4.1)and Proposition 4.1,we derive

    We get fnally

    Hence,Proposition 4.3 follows.

    Proposition 4.4We have the following expansions

    Using(2.19),we obtain

    On another hand,(2.20)becomes

    Using the Holder’s inequality and the Sobolev embedding theorem,we obtain

    So that fnally,

    Note that,we have

    where

    On another hand,diferentiating ρ with respect to x1k,we fnd

    Thus,we see that

    and we have the same expression for?ρ/?x2kintroverting the indices.Then,taking account of (4.1),we can write

    We have also,

    Since

    On the right hand side we use(3.21),(3.22),(3.23)and(3.24)and solving a linear system wefnd

    From(3.4)we derive

    Note that for(A,Λ)=(AX,ΛX),we have

    so that,using(3.21),(3.22),(3.23),(3.24)to solve the linear system that we obtain by taking the scalar product of(3.4)with Pδi,?K/?λi,and(λi)-1?K/?xik,we get

    Then,using again(3.21),(3.22),(3.23)and(3.24),we obtain the result.?

    Thus,setting

    where c is a positive constant.

    We denote by σathe embedding

    Finally,we set

    Let us frst state some results about m.We already know that

    m has also the following properties:

    ii)if m(a)<c,then m is continuous at a,

    The proof of this proposition is done in page 836 of[28].

    We need the following lemma to proof that the vector feld-gradKais pointing inward Ωa×Ωa.

    we have also,Ga(x1,x2)>0 et?Ga/?x1k(x1,x2)ν1<0,

    Thus,the lemma follows.

    ProofWe start by proving that for a∈]a?,a0[close enough to a0and ε>0,Kahas a critical point between the levels m(a)-ε and m(a)+ε.Without loss of generality we may assume that ε<m(a).We deduce from the defnition of Kaand Proposition 4.3 that

    implies 0<ρa(X)≤ρ0.

    Therefore,if Kahas no critical value in[m(a)-ε,m(a)+ε],it is possible,using the fow

    in contradiction with the defnition of m(a).

    This ends the proof.

    Since,by construction,(AXa,ΛXa,Xa,v)is a critical point of the functional Ka,ua∈H10(Ωa)∩H2(Ωa)defned by

    with AXa=(α1,α2),ΛXa=(λ1,λ2),Xa=(x1,x2),et v=va=v(AXa,ΛXa,Xa),uais a critical point of the functional J,i.e.,a solution of the equation

    5 Proof of Theorem 1.4

    In this last section,Ω is any smooth and bounded domain in Rn,n=5,6 and our aim is to show that forμlarge enough,Problem(Pμ)has multiple solutions,in connection with the category of Ω.

    We use the same method as in sections 3 and 4,with only one concentration point instead of two.We suppose,a priori,that x∈Ωd={x∈Ω/d(x,?Ω)>d},where d is a positive constant.

    Step 1Optimization with respect to v.

    Then,with a suitable choice of the positive constants η0,λ0,v0,(i.e,η0and v0,small enough, λ0large enough),we have

    Moreover,there exists(B,C,D)∈R×R×(R)nsuch that

    where the xkis the k-th component of x.

    The proof is exactly the same as the proof of Proposition 3.1.The fact thatμis assumed to be variable and large makes the condition(5.2)necessary to prove that the quadratic form Qα,λ,xis coercive on Eλ,x.

    As in Proposition 3.4,the variables B,C and D satisfy the following estimates

    Step 2Optimization with respect to α and λ.

    Now we have to fnd,x∈Ωdbeing fxed,αxand λxsuch that

    We have

    If we set

    where∈is assumed to be small,(5.3)is satisfed forμlarge enough,and system(S1)turns out to be equivalent to

    V and W are C1-functions which satisfy

    Then,similarly to the results of Proposition 4.1,we obtain the following proposition

    Proposition 5.2There exists a C1-map which to each x∈Ωdassociates(αx,λx)such that

    (i)(S1)is satisfed

    (ii)

    Step 3Optimization with respect to x.

    This is the last step.We fnd

    on Ωd.

    We see that for d small enough,and then forμlarge enough,there exists cd,μsuch that the level set

    satisfes

    Then,applying the Ljusternik-Schnirelmann theory to the function K defned on Kc,we obtain, since the gradient of-K is pointing inward on the boundary of Kc,then K has at least as many critical points in Ωdas the category of Kc.Moreover

    for d small enough,since Ω is assumed to be smooth.Thus there exist at least k=cat(Ω) distinct points x1,···,xkof Ω such that K′(xi)=0.As a consequence,the functions

    are solutions of(Pμ).

    [1]Atkinson F V,Peletier L A.Elliptic equations with near critical growth.J DifEqu,1987,70:349-365

    [2]Bahri A.Critical Point at Infnity in Some Variational Problems.Pitman Res Notes Math,Ser 182.Harlow: Longman Sci Tech,1989

    [3]Bahri A,Coron J M.On a nonlinear elliptic equation involving the critical Sobolev exponent:the efect of topology of the domain.Comm Pure Appl Math,1988,41:255-294

    [4]Bahri A,Li Y Y,Rey O.On a variational problem with lack of compactness:the topological efect of the critical points at infnity.Calc Var Partial Difer Equ,1995,3:67-94

    [5]Ben Ayed M,Hammami M.On a fourth order elliptic equation with critical nonlinearity in dimension six. Nonlinear Anal,2006,64(5):924-957

    [6]Ben Ayed M,El Mehdi K.The Paneitz Curvature problem on lower dimentional spheres.Ann Global Anal Geom,2007,31(1):1-36

    [7]Ben Ayed M,El Mehdi K,Grossi M,Rey O.A nonexistence result of single peaked solutions to a supercritical nonlinear problem.Comm Contemp Math,2003,5:179-195

    [8]Ben Ayed M,Chtioui H,Hammami M.A Morse lemma at infnity for Yamabe type problems on domains. Ann Inst Henri Poincar′e(Analyse non-lin′eaire),2003,20(4):543-577

    [9]Ben Ayed M,El Khalil M,Hammami M.Some existence results for a Paneits type problem via the theory of critical points at infnity.J Math Pures Appl,2005,84:247-278

    [10]Brezis H,Nirenberg L.Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math,1983,36:437-477

    [11]Brezis H,Peletier L A.Asymptotics for elliptic equations involving the critical growth//Colombani F, Modica L,Spagnolo S,eds.Partial Diferential Equations and the Calculus of Variations.Birkhauser,1989: 149-192

    [12]Chabrowski J,Yan S.Concentration of solutions for a nonlinear elliptic problem with nearly critical exponent.Top Methods Nonl Anal,1999,13:199-233

    [13]Chang Sun-Yung A.On Paneitz operator-a fourth order diferential operator in conformal geometry//Christ M,Kenig C,Sadorsky C,eds.Harmonic Analysis and Partial Diferential Equations;Essays in Honor of Alberto P.Calderon.Chicago Lectures in Mathematics,1999:127-150

    [14]Chow S N,Hale J K.Methods of bifurcation theory.Grundl Math Wiss,Vol 251.Berlin:Springer,1982

    [15]Del Pino M,Felmer P,Musso M.Two bubles solutions in the supercritical Bahri-Coron’s problem.Calc Var Partial Difer Equ,2003,16:113-145

    [16]Del Pino M,Felmer P,Musso M.Multi-peak solutions for supercritical elliptic problems in domains with small holes.J Difer Equ,2002,182:511-540

    [17]Djadli Z,Hebey E,Ledoux M.Paneitz type operators and applications.Duke Math J Partial Difer Equ, 2000,104:129-169

    [18]Ebobisse F,Ahmedou M O.On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent.Nonlinear Anal TMA,2003,52:1535-1552

    [19]Gazzola F,Grunau H C,Squassina M.Existence and nonexistence results for critical growth biharmonic elliptic equations.Calc Var Partial Difer Equ,2003,18:117-143

    [20]Hammami M.Concentration Phenomena for Fourth order elliptic equations with critical exponent.Elec J Difer Equ,2004,2004:1-22

    [21]Han Z C.Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent.Ann Inst Henri Poincar′e(Analyse non-lin′eaire),1991,8:159-174

    [22]Lin C S.Classifcation of solutions of a conformally invariant fourth order eqution in Rn.Comm Math Helv,1998,73:206-231

    [23]Mehdi K,Selmi A.Concentration and multiplicity of solutions for Fourth order equation with critical nonlinearity.Nonlinear Anal TMA,2006,64:417-439

    [24]Melo J L F,Santos E M D.Positive solutions to a fourth-order elliptic problem by the Lusternik-Schnirelmann category.J Math Anal Appl,2014,420:532-550

    [25]Micheletti A M,Pistoia A.Existence of blowing-up solutions for a slightly subcritical or slightly supercritical nonlinear elliptic equation on Rn.Nonlinear Anal TMA,2003,52:173-195

    [26]Musso M,Pistoia A.Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent.Indiana Univ Math J,2002,51:541-579

    [27]Musso M,Pistoia A.Dowble Blow-up solutions for a Brezis-Nirenberg type problem.Comm Contemp Math,2003,5:775-802

    [28]Rey O.Bifurcation from infnity in a nonlinear elliptic equation involving the limiting Sobolev exponent. Duke Math J,1990,60:815-861

    [29]Rey O.The role of Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J Funct Anal,1990,89:1-52

    [30]Rey O.Proof of two conjectures of H.Brezis and L.A.Peletier.Manuscripta Math,1989,65:19-37

    [31]Rey O.Blow-up points of solutions to elliptic equations with limiting nonlinearity.Difer Integral Equ, 1991,4:1155-1167

    [32]Rey O.The topological impact of critical points at infnity in a variational problem with lack of compactness: the dimension 3.Adv Difer Equ,1999,4:581-516

    [33]Van der Vorst R C A M.Variational identitie and applications to diferential systems.Arch Rational Mech Anal,1991,116(4):375-398

    [34]Van der Vorst R C A M.Fourth order elliptic equations with critical growth.C R Acad Sci Paris,1995, 320:295-299

    Appendix

    In this appendix,we collect the estimates of the diferent integral quantities presented in the paper.These estimates are originally introduced by Bahri[2]and Bahri and Coron[3].For the proof,we refer the interested reader to the literature[2,3,5,29].In this appendix,we suppose that λidiis large enough and εijis small enough.

    Lemma A.1We have the following estimates:

    where Sn,c2and c3are defned in Proposition 2.2.

    Lemma A.2The following estimates holds:

    ?Received April 8,2014;revised October 18,2014.

    18禁观看日本| 伦理电影免费视频| 国精品久久久久久国模美| 美女国产高潮福利片在线看| 亚洲欧美色中文字幕在线| 欧美日本中文国产一区发布| 国产黄频视频在线观看| av一本久久久久| 欧美精品啪啪一区二区三区 | 久久久久久人人人人人| 一区二区日韩欧美中文字幕| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 欧美乱码精品一区二区三区| 老司机靠b影院| 国产一卡二卡三卡精品| 这个男人来自地球电影免费观看| 国产男女内射视频| 又黄又粗又硬又大视频| 欧美97在线视频| 中文字幕另类日韩欧美亚洲嫩草| 国产成人一区二区三区免费视频网站 | 国产精品 欧美亚洲| 亚洲国产最新在线播放| tube8黄色片| 老司机影院毛片| 女警被强在线播放| 99九九在线精品视频| 午夜精品国产一区二区电影| 90打野战视频偷拍视频| 首页视频小说图片口味搜索 | 国产成人精品久久二区二区91| 国产成人av教育| 日日夜夜操网爽| 婷婷色av中文字幕| 国产欧美亚洲国产| 国产成人一区二区三区免费视频网站 | 黄网站色视频无遮挡免费观看| videos熟女内射| 波野结衣二区三区在线| 可以免费在线观看a视频的电影网站| 国产成人免费无遮挡视频| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 亚洲熟女精品中文字幕| 久久人人爽av亚洲精品天堂| 久久久久久久大尺度免费视频| 国产又色又爽无遮挡免| 国产精品偷伦视频观看了| 国产高清国产精品国产三级| 热re99久久精品国产66热6| 亚洲第一青青草原| av福利片在线| 91九色精品人成在线观看| 精品人妻1区二区| 色94色欧美一区二区| 又大又黄又爽视频免费| 国语对白做爰xxxⅹ性视频网站| 少妇粗大呻吟视频| 欧美日韩亚洲综合一区二区三区_| 亚洲熟女精品中文字幕| 好男人视频免费观看在线| 韩国精品一区二区三区| 99精国产麻豆久久婷婷| 免费不卡黄色视频| 午夜福利影视在线免费观看| 一区福利在线观看| 国产色视频综合| 黑人欧美特级aaaaaa片| 免费在线观看影片大全网站 | 2018国产大陆天天弄谢| 精品少妇一区二区三区视频日本电影| 1024香蕉在线观看| 国产黄频视频在线观看| 黄色a级毛片大全视频| 欧美亚洲日本最大视频资源| 日本黄色日本黄色录像| av片东京热男人的天堂| 美女国产高潮福利片在线看| 深夜精品福利| 国产成人91sexporn| 无限看片的www在线观看| 搡老岳熟女国产| 国产成人精品无人区| 多毛熟女@视频| 国产精品免费视频内射| 亚洲av美国av| 日本wwww免费看| av国产久精品久网站免费入址| 91字幕亚洲| 国产免费现黄频在线看| 亚洲综合色网址| 亚洲国产精品成人久久小说| 国产精品国产av在线观看| 免费看十八禁软件| 中文字幕av电影在线播放| 欧美+亚洲+日韩+国产| 老司机影院毛片| 国产精品亚洲av一区麻豆| 99国产精品一区二区三区| 美女午夜性视频免费| 一级,二级,三级黄色视频| 制服人妻中文乱码| 日韩中文字幕欧美一区二区 | 9191精品国产免费久久| 国产免费又黄又爽又色| 免费高清在线观看视频在线观看| 欧美久久黑人一区二区| 黑人巨大精品欧美一区二区蜜桃| 你懂的网址亚洲精品在线观看| 国产一区二区三区av在线| 国产有黄有色有爽视频| 国产片内射在线| 国产精品一二三区在线看| 国产欧美日韩精品亚洲av| 亚洲人成电影免费在线| 夜夜骑夜夜射夜夜干| avwww免费| 欧美亚洲 丝袜 人妻 在线| 国产精品三级大全| 自线自在国产av| 免费观看人在逋| 亚洲国产中文字幕在线视频| 纯流量卡能插随身wifi吗| 人人妻人人澡人人爽人人夜夜| 亚洲欧美成人综合另类久久久| 黑人欧美特级aaaaaa片| 97在线人人人人妻| 亚洲七黄色美女视频| 国产成人啪精品午夜网站| 亚洲中文字幕日韩| 最近中文字幕2019免费版| 狂野欧美激情性xxxx| 老司机在亚洲福利影院| 男女床上黄色一级片免费看| 少妇人妻 视频| 一本大道久久a久久精品| 久久亚洲精品不卡| 国产精品秋霞免费鲁丝片| 无限看片的www在线观看| 人妻 亚洲 视频| 在线观看免费日韩欧美大片| 亚洲自偷自拍图片 自拍| 两个人免费观看高清视频| 成人手机av| 免费一级毛片在线播放高清视频 | 日韩中文字幕欧美一区二区 | 亚洲欧美清纯卡通| 午夜福利,免费看| 精品一区二区三区四区五区乱码 | 欧美日本中文国产一区发布| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 久久精品人人爽人人爽视色| 亚洲国产欧美在线一区| 悠悠久久av| 久久中文字幕一级| 欧美久久黑人一区二区| 欧美在线黄色| 日本午夜av视频| 午夜福利影视在线免费观看| 十八禁网站网址无遮挡| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说| 亚洲人成网站在线观看播放| 黄色片一级片一级黄色片| 老司机影院成人| 精品国产乱码久久久久久小说| 久久久精品94久久精品| 人人妻人人澡人人看| 性高湖久久久久久久久免费观看| 亚洲男人天堂网一区| 男女免费视频国产| av片东京热男人的天堂| 亚洲av片天天在线观看| 少妇精品久久久久久久| 大型av网站在线播放| xxx大片免费视频| 国产1区2区3区精品| 99热全是精品| 精品国产一区二区三区四区第35| 91精品三级在线观看| 丝袜人妻中文字幕| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久午夜乱码| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 一区在线观看完整版| 国产在视频线精品| 在线精品无人区一区二区三| 成年女人毛片免费观看观看9 | 80岁老熟妇乱子伦牲交| 国产麻豆69| 曰老女人黄片| 大香蕉久久网| 欧美中文综合在线视频| 91成人精品电影| 亚洲五月婷婷丁香| 亚洲午夜精品一区,二区,三区| 免费看不卡的av| 国产国语露脸激情在线看| 手机成人av网站| 欧美激情极品国产一区二区三区| www.精华液| 午夜精品国产一区二区电影| 国产成人影院久久av| 色播在线永久视频| 一二三四社区在线视频社区8| 99精品久久久久人妻精品| 国产1区2区3区精品| 日本91视频免费播放| 天天操日日干夜夜撸| 搡老乐熟女国产| 男人爽女人下面视频在线观看| 精品国产一区二区三区四区第35| 亚洲美女黄色视频免费看| 一区二区三区乱码不卡18| 亚洲视频免费观看视频| 2018国产大陆天天弄谢| 日本91视频免费播放| 欧美成狂野欧美在线观看| 午夜福利影视在线免费观看| 性高湖久久久久久久久免费观看| 久久久精品94久久精品| 免费少妇av软件| av福利片在线| 热re99久久精品国产66热6| 男女之事视频高清在线观看 | 男女无遮挡免费网站观看| 久9热在线精品视频| 五月天丁香电影| 国产欧美日韩精品亚洲av| 2018国产大陆天天弄谢| 天天躁狠狠躁夜夜躁狠狠躁| 国产国语露脸激情在线看| 久久国产精品影院| 亚洲av日韩在线播放| 久久精品久久精品一区二区三区| 少妇被粗大的猛进出69影院| 操美女的视频在线观看| 男人舔女人的私密视频| 成人黄色视频免费在线看| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 久久国产亚洲av麻豆专区| 国产精品久久久人人做人人爽| 久久性视频一级片| netflix在线观看网站| 精品视频人人做人人爽| 亚洲精品日韩在线中文字幕| 免费在线观看日本一区| 精品人妻1区二区| 人成视频在线观看免费观看| 9色porny在线观看| 极品少妇高潮喷水抽搐| 伊人亚洲综合成人网| 中文精品一卡2卡3卡4更新| 中文乱码字字幕精品一区二区三区| 国产成人a∨麻豆精品| 久久久精品区二区三区| 亚洲久久久国产精品| 国产国语露脸激情在线看| 一区二区三区乱码不卡18| 久久国产精品男人的天堂亚洲| 欧美变态另类bdsm刘玥| 91国产中文字幕| 免费一级毛片在线播放高清视频 | 电影成人av| 国产人伦9x9x在线观看| 少妇粗大呻吟视频| 欧美激情高清一区二区三区| 国产男女内射视频| 精品国产超薄肉色丝袜足j| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 真人做人爱边吃奶动态| 极品少妇高潮喷水抽搐| 国产成人精品久久二区二区91| 啦啦啦在线观看免费高清www| 国产片特级美女逼逼视频| 热99久久久久精品小说推荐| 午夜av观看不卡| 91九色精品人成在线观看| 国产精品二区激情视频| 伦理电影免费视频| 考比视频在线观看| 黑人猛操日本美女一级片| 少妇精品久久久久久久| 成人国语在线视频| 十八禁高潮呻吟视频| 美女主播在线视频| 欧美成人精品欧美一级黄| 国产黄色免费在线视频| 一边摸一边抽搐一进一出视频| 岛国毛片在线播放| xxxhd国产人妻xxx| 91精品三级在线观看| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三 | 国产片内射在线| 婷婷成人精品国产| 91国产中文字幕| 水蜜桃什么品种好| 男女下面插进去视频免费观看| 亚洲成人手机| 91精品三级在线观看| 精品一区在线观看国产| 涩涩av久久男人的天堂| 国产精品国产三级专区第一集| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 又大又黄又爽视频免费| 日韩中文字幕欧美一区二区 | 亚洲精品国产区一区二| 91国产中文字幕| 97精品久久久久久久久久精品| 国产av精品麻豆| av在线播放精品| 国产成人一区二区在线| 国产精品三级大全| 国产av一区二区精品久久| 高清av免费在线| 无遮挡黄片免费观看| 少妇人妻 视频| 午夜视频精品福利| 久久精品久久久久久噜噜老黄| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 日韩一区二区三区影片| 久久性视频一级片| 超碰97精品在线观看| 男女边摸边吃奶| 美女国产高潮福利片在线看| 美女大奶头黄色视频| 男人爽女人下面视频在线观看| 成人亚洲欧美一区二区av| av国产精品久久久久影院| 中文字幕人妻丝袜一区二区| 久久99热这里只频精品6学生| 两个人免费观看高清视频| 成人三级做爰电影| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 亚洲精品一区蜜桃| 日韩制服骚丝袜av| 精品亚洲成国产av| 亚洲精品乱久久久久久| 国产真人三级小视频在线观看| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 狂野欧美激情性xxxx| 国产亚洲av片在线观看秒播厂| 亚洲欧洲国产日韩| 老熟女久久久| 精品国产一区二区久久| 亚洲国产精品国产精品| 两人在一起打扑克的视频| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 亚洲图色成人| 七月丁香在线播放| 国产一区有黄有色的免费视频| bbb黄色大片| 999久久久国产精品视频| 麻豆国产av国片精品| 老汉色∧v一级毛片| 日本色播在线视频| 久久久久久人人人人人| 菩萨蛮人人尽说江南好唐韦庄| 午夜两性在线视频| 波多野结衣一区麻豆| 欧美日韩黄片免| 中文欧美无线码| 亚洲三区欧美一区| 观看av在线不卡| 欧美日韩亚洲高清精品| 精品一区二区三区四区五区乱码 | 国产成人影院久久av| 麻豆乱淫一区二区| 青草久久国产| 悠悠久久av| 99香蕉大伊视频| 狠狠精品人妻久久久久久综合| 欧美成狂野欧美在线观看| 婷婷成人精品国产| 精品国产一区二区久久| av在线老鸭窝| 午夜激情久久久久久久| 欧美黑人精品巨大| 丰满迷人的少妇在线观看| 国产成人一区二区在线| 久久 成人 亚洲| 成人免费观看视频高清| 一级毛片我不卡| 叶爱在线成人免费视频播放| 超碰成人久久| 日韩一本色道免费dvd| 国产精品一区二区精品视频观看| 伊人亚洲综合成人网| 久久久久国产精品人妻一区二区| 日韩av在线免费看完整版不卡| 亚洲国产精品成人久久小说| 日韩一本色道免费dvd| 国产视频一区二区在线看| 十八禁人妻一区二区| 亚洲中文字幕日韩| 欧美日韩福利视频一区二区| av线在线观看网站| 可以免费在线观看a视频的电影网站| 丝袜喷水一区| 欧美中文综合在线视频| 一本一本久久a久久精品综合妖精| 国产高清videossex| 一本一本久久a久久精品综合妖精| 在线观看国产h片| 免费在线观看完整版高清| 人人澡人人妻人| www.av在线官网国产| 午夜日韩欧美国产| 亚洲欧美精品自产自拍| 日韩 亚洲 欧美在线| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品古装| 国产黄频视频在线观看| 中文字幕亚洲精品专区| 免费不卡黄色视频| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 国产日韩欧美在线精品| 精品一区在线观看国产| 亚洲国产日韩一区二区| 午夜福利影视在线免费观看| 日韩人妻精品一区2区三区| 亚洲三区欧美一区| 国产国语露脸激情在线看| 啦啦啦中文免费视频观看日本| 亚洲,欧美,日韩| 高清不卡的av网站| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区国产| 国产一区二区三区av在线| 久久久久久人人人人人| 亚洲成国产人片在线观看| 男人添女人高潮全过程视频| 久久热在线av| 性高湖久久久久久久久免费观看| 丰满少妇做爰视频| 母亲3免费完整高清在线观看| 97人妻天天添夜夜摸| 国产成人影院久久av| 久久久久久久大尺度免费视频| 69精品国产乱码久久久| 亚洲成人免费电影在线观看 | 精品福利观看| 亚洲国产精品一区二区三区在线| 日韩制服骚丝袜av| 亚洲中文字幕日韩| 日本wwww免费看| 国产xxxxx性猛交| 成人影院久久| 看十八女毛片水多多多| 一本综合久久免费| 免费看十八禁软件| 91字幕亚洲| 777米奇影视久久| 久久天堂一区二区三区四区| 国产1区2区3区精品| 欧美日韩亚洲综合一区二区三区_| 久久人人爽av亚洲精品天堂| 亚洲,欧美精品.| 亚洲,一卡二卡三卡| 国产精品一区二区在线观看99| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久久久99蜜臀 | 黄频高清免费视频| 久久国产精品影院| 国产成人av教育| 亚洲第一av免费看| 亚洲情色 制服丝袜| 女人久久www免费人成看片| 又黄又粗又硬又大视频| 亚洲国产av新网站| 黑人巨大精品欧美一区二区蜜桃| 美女脱内裤让男人舔精品视频| 最近中文字幕2019免费版| 国产男女内射视频| 热99久久久久精品小说推荐| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 亚洲 欧美一区二区三区| 国产一区二区激情短视频 | 一级毛片电影观看| 亚洲欧美色中文字幕在线| 精品久久蜜臀av无| 国产在线观看jvid| 成人国语在线视频| 久久精品国产a三级三级三级| 一级片免费观看大全| 一级黄色大片毛片| 亚洲人成电影观看| 成年人午夜在线观看视频| 老鸭窝网址在线观看| 日韩 亚洲 欧美在线| 老鸭窝网址在线观看| 丝袜脚勾引网站| 国产精品久久久久久人妻精品电影 | 男女午夜视频在线观看| 性少妇av在线| 亚洲精品一区蜜桃| 色婷婷av一区二区三区视频| 精品亚洲乱码少妇综合久久| 精品久久久久久电影网| 亚洲国产精品国产精品| 免费不卡黄色视频| tube8黄色片| 亚洲成国产人片在线观看| 国产在线观看jvid| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 国产精品 欧美亚洲| 久热这里只有精品99| 国产人伦9x9x在线观看| 久久亚洲国产成人精品v| 人人妻人人添人人爽欧美一区卜| 久久久欧美国产精品| 国产成人a∨麻豆精品| 国产精品 国内视频| 成年av动漫网址| 男女边吃奶边做爰视频| 国产精品九九99| 曰老女人黄片| bbb黄色大片| 午夜免费观看性视频| 黄色毛片三级朝国网站| 男的添女的下面高潮视频| 少妇粗大呻吟视频| 国产激情久久老熟女| 啦啦啦 在线观看视频| 国产片特级美女逼逼视频| 最黄视频免费看| 亚洲国产看品久久| 日日夜夜操网爽| 大话2 男鬼变身卡| 中文字幕制服av| 午夜激情久久久久久久| av有码第一页| 97精品久久久久久久久久精品| 日韩伦理黄色片| 久久狼人影院| 亚洲欧美日韩高清在线视频 | 亚洲av美国av| 一本大道久久a久久精品| 制服诱惑二区| 精品视频人人做人人爽| 美女福利国产在线| 一级,二级,三级黄色视频| 亚洲国产精品国产精品| 精品第一国产精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟女毛片儿| 国产97色在线日韩免费| 久久精品国产亚洲av涩爱| 在线 av 中文字幕| 黄色片一级片一级黄色片| 久久毛片免费看一区二区三区| 国产成人a∨麻豆精品| 免费看十八禁软件| 午夜福利视频在线观看免费| 看免费av毛片| 国产精品 国内视频| av天堂在线播放| 黄片播放在线免费| 男女下面插进去视频免费观看| 黄色 视频免费看| 免费久久久久久久精品成人欧美视频| 国产一区二区三区综合在线观看| 一本大道久久a久久精品| 久9热在线精品视频| 欧美黑人精品巨大| 欧美日韩国产mv在线观看视频| 日韩av不卡免费在线播放| 人人妻,人人澡人人爽秒播 | 日韩 欧美 亚洲 中文字幕| 国产免费视频播放在线视频| 又大又爽又粗| 天天影视国产精品| 91精品伊人久久大香线蕉| 丝袜人妻中文字幕| 午夜福利视频在线观看免费| 国产av国产精品国产| 一级,二级,三级黄色视频| 日本91视频免费播放| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看| 亚洲精品国产av蜜桃| 欧美少妇被猛烈插入视频| 欧美人与善性xxx| 中文字幕av电影在线播放| 免费高清在线观看日韩| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品日韩在线中文字幕| av在线app专区| 啦啦啦中文免费视频观看日本| 国产女主播在线喷水免费视频网站| 在线亚洲精品国产二区图片欧美| 色综合欧美亚洲国产小说| 午夜福利在线免费观看网站| 超碰97精品在线观看| 熟女少妇亚洲综合色aaa.| 99精国产麻豆久久婷婷| 晚上一个人看的免费电影| 搡老乐熟女国产| 99国产精品一区二区蜜桃av |