• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High pressure equation of state for molten CaCO3from frst principles simulations

    2015-02-07 09:08:51?
    Acta Geochimica 2015年1期
    關(guān)鍵詞:晚課補(bǔ)差升學(xué)率

    ?

    ORIGINAL ARTICLE

    High pressure equation of state for molten CaCO3from frst principles simulations

    Zhigang Zhang?Zairong Liu

    Carbonate melts are important active metasomatic agents and effcient transport agents;their thermodynamic properties at high temperatures and pressures are therefore of considerable interest for various geochemical applications.However,due to the extreme challenges in relevant experiments,current knowledge of even the density of carbonate melts is limited.In this study,we provide high quality volumetric data of CaCO3-melt from frst principles at high temperatures and pressures(up to 3,500 K and 60 GPa).The accuracy of these data is demonstrated through comprehensive comparison with available experimental data and a thorough discussion of the predictability of the re-scaling method proposed in this study.Based on the simulations,an equation of state has been established that is critical to relevant highly disputed questions such as the decomposition and solidifcation boundaries of CaCO3melts,the latter of which is briefy discussed in this study with a newly derived ab initio melting curve to high pressures.

    Carbonates·Melts·CaCO3·First principles· Equation of state

    1 Introduction

    Carbonate melts play important roles in various geochemical processes on the surface and in the interior of Earth(Jones et al.2013).With remarkable features,such as low density and high mobility,carbonate melts are wellknown as active metasomatic agents in the mantle(Green and Wallace 1988).They are also recognized to be effcient transport agents of volatiles and rare earth elements due to the high solubility of these components in carbonate melts (Yang et al.2003).In addition,carbonate melts are thought to be related to low seismic velocity and high electrical conductivity in the asthenosphere(Gaillard et al.2008; Gudfnnsson and Presnall 2005)and to be responsible for the formation of‘‘super-deep’’diamonds(Litvin et al. 2014).Furthermore,shock-induced devolatilization of carbonate melts in Earth’s early history dramatically alter the evolution of the atmosphere and may be the main cause for the Cretaceous–Tertiary extinction(O’Keefe and Ahrens 1989).

    Despite the ubiquity and importance of carbonate melts, it is surprising to fnd that people actually know little about their properties at high temperatures and pressures,conditions under which carbonate melts often reside.Most experiments are concentrated around ambient pressure and mainly on alkali carbonate melts,owing to their role as electrolyte materials for fuel cells.Current measurements of carbonate melts are limited to 1,800 K and 5.5 GPa and signifcant discrepancies exist among different research groups,owing to the extreme challenges faced in these experiments(Dobson et al.1996;Liu and Lange 2003).

    Calcium-bearing carbonate melts are one of the main components of mantle-derived and highly evolved carbonatite melts(Church and Jones 1995).Nevertheless,as shown in Fig.1,even the phase and stability boundaries of CaCO3-melt remain poorly constrained.There is no consensus on exactly what temperature and pressure CaCO3liquid decomposes and what the products of its decomposition are in extreme conditions(Bobrovsky et al.1976; Litvin et al.2014;Martinez et al.1995).Nor is thereconsensus about the onset of melting of CaCO3solids and whether or not it is congruent(Kerley 1989;Spivak et al. 2011).Related with these,there is no consensus as to the precise boundary of crystalline phases and whether or not meta-stable polymorphs would be stabilized at high temperatures(Merlini et al.2012;Oganov et al.2006;Ono et al.2005,2007).

    Fig.1 Phase diagram of CaCO3-system.Points at low temperatures and pressures are determined by Irving and Wyllie(1973)and Huang and Wyllie(1976),respectively,for calcite–aragonite transition and melting

    Uncertainty about CaCO3melts and their minerals, some of which are marked in Fig.1,can be ascribed to the complexity of the structure and bonding of carbonates at high pressures(Oganov et al.2013).Different from silicate melts,which are characterized by polymerization and network formation,carbonate melts consist of metal cations and carbonateanions with no defnite association(Jones et al.2013).The C–O bonds are more polarized and readily introduce more energetic local minimums by rotating theanions.This feature of carbonate melts calls for theoretical approaches from frst principles; experimental measurements are extremely diffcult and thermodynamic models with empirical parameters do not generate reliable predictions in regions far beyond the regression regime.For CaCO3-melts,as shown in Fig.1, the calculations by Bobrovsky et al.(1976),Kerley(1989), and Martinez et al.(1995)are thus prone to signifcant error at high pressures and temperatures.

    Recently it has become our continuous endeavor to uncover the properties and roles of carbonatite melts in the mantle through frst principles simulations based on predictive quantum mechanical theories.In this study,as an important step,we explore the pressure–volume–temperature(PVT)properties of CaCO3-melts.Closely related to fundamental thermodynamic properties such as free energy and chemical potential,PVT properties are the key to solving the above-mentioned questions.In contrast to the growing database of PVT data for fuids and silicate melts (Zhang and Duan 2005),high pressure PVT data of CaCO3melts are still extremely scarce.As a matter of fact,current knowledge of CaCO3melts is not remarkably better than that generated by studies carried out decades ago(Dobson et al.1996;Genge et al.1995;Liu and Lange 2003).With a generalized re-scaling method to correct the systematic errors in the simulation results(Zhang et al.2013),we present an accurate equation of state(EOS)and,for the frst time,extend the PVT data of CaCO3-melts to at least 3,500 K and 60 GPa,rectifying the high pressure melting curve based on this EOS and that of the coexisting aragonite.Finally,we briefy discuss the implications of the results of this study.

    2 Theory

    2.1 Computational details

    First principles simulations were carried out with Vienna ab initio simulation package(Kresse and Furthmuller 1996)using the projector-augmented-wave method(Kresse and Joubert 1999).We focused on the local density approximation(LDA)in most simulations and will show below that the results in this study will be essentially independent from the choices of exchange–correlation functional.Limited simulations with the PBE form of generalized gradient approximation(GGA;Perdew et al. 1996)have been performed for the purpose of comparison. The core radii are 2.3 atomic units(a.u.)for calcium(with a neon core),1.5 a.u.for carbon(with a helium core),and 1.52 a.u.for oxygen(with a helium core).

    We computed the thermodynamic and dynamical properties of molten CaCO3with extensive molecular dynamics (MD)simulations.At each time step(1 fs interval),the electronic structure was calculated at the Brillouin zone center with an energy cutoff of 500 eV and iteration convergence criterion of 10-6eV.The thermal equilibrium between ions and electrons is assumed via the Mermin functional(1965).MD trajectories were propagated in the NVT ensemble with the Nose′thermostat(1984)for 7 ps, with the frst 3 ps discarded as pre-equilibrium.Uncertainties in directly simulated quantities are determined using appropriate non-Gaussian statistics via the blocking method(Flyvbjerg and Petersen 1989).The primary cell is cubic with 160 atoms(32 formula units).The initial confgurations were prepared through melting the 2×2×2 aragonite supercells by increasing the temperature and homogeneously straining the cell to a cubic shape.Simulation results for most properties were found to be unchanged within statistical uncertainties in larger systems (240 atoms)and durations twice as long.

    We have not applied the quantum corrections for high temperature MD simulation results since the temperatures (>900 K)are much higher than the Debye temperature (<500 K for aragonite)and quantum effects should be negligibly small(Kerley 1989).On the other hand,in order to have accurate comparisons with experimental measurements at ambient conditions for crystals,as described in the next section,we counted the effects of zero-point vibrations by computing the phonon frequencies through the small displacement method with the aid of Phonopy(Togo et al.2008).In these calculations,we relaxed the ionic structures with high precision(energy cutoff increased to 1,000 eV,iteration convergence criterion decreased to 10-8eV)and dense k-point mesh (5×3×4 and 6×5×6 for aragonite and post-aragonite,respectively). We used a 2×2×2 supercell in calculating the force constant matrix by confrming its convergence for thermodynamic properties.Non-analytical-term corrections have been applied for longitudinal-transverse optical phonon frequency splitting in the limit of small wave-vector (Wang et al.2010).

    2.2 Systematic errors and corrections

    Practical density functional theory(DFT)calculations rely on an approximation to the exchange–correlation functional.The two most widely used approximations:LDA and GGA,yield different predictions for quantities such as EOS.The main idea of a posteriori corrections to LDA and GGA is based on the observations that the correction to the energy should depend only on volume(van de Walle and Ceder 1999).A constant shift in pressure,named as the constant-shifting method hereafter,actually assumes the simplest possible volume-dependent form of correction to energy,i.e.,linear with volume.Although popular for its simplicity,this method has been found to be insuffcient to bring LDA and GGA predictions into agreement over a wide range of pressure.As discussed in Zhang et al.(2013), the alternative re-scaling method,achieved by counting the volumetric dependence of corrections in pressure,shows its superiority with high accuracy over the constant-shifting method.

    A thermodynamic self-consistent derivation for the rescaling method can be found in Zhang et al.(2013).We only briefy summarize here the formula involved in this study.In the mean time,by noticing that the corrections should be equivalent for the same stoichiometric system,as also argued by van de Walle and Ceder(1999),we further slightly generalize this method for situations beyond single phase.

    The fundamental relation of the re-scaling method lies in the correction to the Helmholtz free energy:

    where subscript 0 refers to properties at zero pressure and an arbitrary reference temperature,K is the isothermal bulk modulus,andisthedisplacementofbasefreeenergyforthesakeof re-scaling and can be neglected since relative(rather than absolute)free energy is concerned.Free energies with subscript ref represent those of a reference phase.When the reference temperature is selected as athermal(static)and focusingonasinglephase,Eq.(1)isexactlythatproposedin Zhang et al.(2013).The re-arrangement and slight generalization of Eq.(1)make it convenient to correct results for phases with few or even no experimental data since we can choose an alternative more familiar phase with the same stoichiometry as the reference phase.We will show in the next section that this generalization for CaCO3-systems, though more or less empirical,is satisfactory for rendering DFT predictions independent of the form of the exchange–correlation functional and for agreeing with existing experimental measurements.

    From the thermodynamic identitywe fnd from Eq.(1)

    The constant-shifting method has also been applied to limited results to compare its performance with the abovementioned re-scaling method.The correction to pressure reads

    The choices of parameters in these formulas are described in the caption of Fig.4 in the next section.

    3 Results and discussions

    3.1 Structure

    Finite sized MD simulations explore the phase space with constrained time and space scales.This somewhat hinders a quick downhill convergence to the global minimum,corresponding to the most stable phase,but on the other hand facilitates sampling meta-stable phase space and extends important information smoothly beyond the stable phases.When the energy barriers between local minima are appropriate,phase transitions or chemical reactions can be observed in the MD trajectories.As for the simulation of CaCO3-melts,we should ensure that in our sampling,(1) the melt has not crystallized at suffciently low temperatures,and(2)thehas not completely decomposed into separate ions at suffciently high temperatures.By inspecting the radial distribution function and the mean square displacement,we fnd the super-cooled CaCO3-melt can be well sampled even deep within the solid phase regime(at least to 1,500 K and 50 GPa).The monitoring of decomposition is more ambiguous since the structure of CaCO3-melt varies continuously over the temperatures and pressures.A frst order inspection can be derived from the density of states,which is defned as the Fourier transformation of the velocity auto-correlation function(Allen and Tildesley 1987).As shown in Fig.2,the crystalline phase of CaCO3(aragonite here)shows clear features in the high frequency region(>500 cm-1),which corresponds to that of normal modes of the carbonate group(Ni and Keppler 2013).The melting of the solid greatly destroys these features as revealed by the noticeable fattened spectra of super-cooled melt at the same temperature and volume. Increasing the temperature further blurs the characteristic peaks of frequency and at the temperature of 4,000–5,000 K it becomes essentially featureless.Therefore in the following discussions,we have not included the results at 4,000–5,000 K in order to eliminate any possible negative infuence on the accuracy of EOS proposed in this study.We noticed that this approximate choice of temperature upper limit is consistent with a recent experiment, which demonstrates congruent melting of CaCO3at 3,500 K and 10–22 GPa(Spivak et al.2011).

    Fig.2 Density of states(through Fourier transformation of velocity auto-correlation functions)of CaCO3-melts at various temperatures with a volume of 32.15 cm3/mol.Shaded area represents the characteristic high frequency regime of carbonate anion.Aragonite at 1,500 K is included for comparison

    It is interesting to inspect more closely the equilibrated melt structure over varying temperatures and pressures.As shown in Fig.3,we fnd signifcant effects on the local coordination environment from compressions,especially for Ca–O coordination.Over the pressures involved in this study,the structure varies continuously from calcite-like to post-aragonite-like,with Ca–O coordination increased from~6.7 to~10.3.This is inconsistent with that of the early classical simulations with force feld by Genge et al. (1995),which fnds a consistent similarity to calcite and may imply inaccuracy of their force feld at high pressures. Variations of C–O coordination over pressure reveal subtle effects of compression on the carbonate groups.In Fig.3a, we fnd the averaged C–O coordination number is generally equal to or slightly smaller than 3 except at extremehigh pressures.As shown in Fig.3b,although the threefold C–O coordination dominates throughout the compression, the lower-than-threefold coordination(twofold or even onefold coordination at the lowest pressures inspected) always appears with 5–20%.This feature is consistent with that proposed by Williams and Knittle(2003),who argued from their Raman spectroscopy that at least two anionic bonding environments exist in carbonate liquids with one carbonate-like bonding and the other singlebonded C–O units.At high pressures,the fourfold coordination gradually increases and the liquid structure is much more densely packed than solid phases,which only demonstratetetrahedral structures in the pyroxene-type phase with a pressure over 130 GPa(Oganov et al.2006).

    Fig.3 a Ca–O and C–O coordination number at 1500,2000,and 3000 K.The Ca–O coordination number of the crystalline phases with their approximate range of stability is shown for comparison. b Distribution of C–O coordination environments in CaCO3melts at 1,500 K(open symbols)and 2,500 K(solid symbols).Numbers denote the coordinated number of oxygen atoms around carbon

    3.2 Corrections to the systematic DFT errors

    We choose aragonite at 300 K as the reference phase and temperature for our re-scaling and also constant-shifting corrections,since we can fnd much more experimental data to show the accuracy of our corrections.Results for post-aragonite are included for comparison and to confrm our generalization of the re-scaling method proposed in this study for situations beyond the reference phase.

    As shown in Fig.4a,the predictions of LDA and GGA deviate from the experimental pressure by 3–7 GPa.LDA underestimates while GGA overestimates the pressures by similar amounts,which is in contrast to the comparisons for silicates,for which experimental pressures are much closer to LDA predictions(Zhang et al.2013).The constantshifting method is obviously inadequate to correct the deviations:even at modest pressure,the shifted GGA is larger than that of LDA by over 5 GPa.

    In the inset plot of Fig.4a and in Fig.4b,we show the accuracies of the re-scaling method generalized in this study toahightemperatureandadifferentphase,respectively.The corrections are unexpectedly extremely successful,with an almost exact match between re-scaled LDA and GGA predictions and perfect agreement with the available experimental data.The re-scaling method is demonstrated to be superior to the constant-shifting method with its high accuracy and independence of exchange–correlation functional, which isthe major uncertainty inDFTsimulations.Allthese comparisons convince us that we can also accurately predict PVT properties of CaCO3-melt with a similar approach,as discussed in the following section.

    3.3 EOS for CaCO3-melt

    After the re-scaling correction to the simulated results of melts,we established the EOS for CaCO3-melt with the Mie–Gruneisen equation:

    Fig.4 High accuracy of the re-scaling method proposed in this study as revealed by comparison with experiments,and the predictions with the constant-shifting method for aragonite and post-aragonite.The parameters forthe re-scaling are:and(from those reported by Ono et al.2005 for aragonite); GPa;For constant-pressure shifting,

    where PCis the reference isotherm at T0=1,500 K that can be accurately reproduced with a third-order Eulerian fnite strain equation(known as Birch–Murnaghan equation),γ is the Gruneisen parameter which we simplify to be linear with V by γ=γa+γb*(V-V0)/40.1873,and CVis the isochoric heat capacity.

    The parameters for this EOS are determined from linear least-square ftting and listed in Table 1.As shown in Fig.5,the equation reproduces all the simulation resultsquite well,including PVT properties(errors within 1 GPa) and energetic properties(errors within 1%).

    Table 1 Parameters for the equation of state(Eq.(4))for molten CaCO3and aragonite at high temperatures and pressures

    Fig.5 Equation of state for CaCO3melts.The simulated and corrected pressures and enthalpies(inset)at 1,500,2,500,and 3,500 K are shown as circles with uncertainties smaller than the size of the symbols.The lines are Mie–Gruneisen equation of state (Eq.(4))ftted to the simulation results with parameters listed in Table 1

    In Fig.6,we show the predictability of this EOS by comparing it with experimental measurements.Although we can only fnd very limited experimental data about calcium-bearing carbonate melts relevant to this study (>1,500 K),some in-depth analyses may provide important information to assess the accuracy of this study.First,as argued by Liu and Lange(2003),carbonate components mix ideally,i.e.,the volumes of carbonate liquids vary linearly with respect to the end-members.Secondly, although some systematic deviations exist between the measured densities of K2Ca(CO3)2melt by Liu and Lange (2003)and those by Dobson et al.(1996)at lower temperatures,we fnd they reach agreement at 1,750 K with a density of~1.82 g/cm3.Then with the well-determined density of K2CO3melt at 1,750 K(1.67 g/cm3),we get the extrapolated density of CaCO3melt to be 2.15 g/cm3at ambient pressure and 1,750 K,which agrees with the prediction of our EOS in this study.In contrast,the predictions by classical MD simulations of Genge et al.(1995) systematically underestimate the densities overthe pressures.

    Fig.6 Density and isothermal compressibility of CaCO3-melts at 1,750 K from different studies.Blue lines and open squares are those simulated by Genge et al.(1995)with empirical force feld. Experimental measurement of K2Ca(CO3)2melt by Dobson et al. (1996)is shown a with purple star at the bottom-left corner of the plot.Assuming ideal mixing and utilizing density of K2CO3determined by Liu and Lange(2003)at the same temperature and pressure,we get the density of CaCO3melt indicated by the flled purple circle.In the inset plot,we include the compressibility of K2CO3-melt determined by Liu et al.(2007),and those of anorthite (CaAl2Si2O8)and diopside(CaMgSi2O6)melts measured by Rigden et al.(1989)for comparisons

    In the inset plot of Fig.6,we computed the isothermal compressibility[defned as β=1/KT=-(dV/dP)T/V]of CaCO3melt at 1,750 K.The results from this study are slightly smaller than those calculated by Genge et al. (1995).At low pressures,similar to K2CO3(Liu et al. 2007),CaCO3melt can be more signifcantly compressed as compared with typical silicate melts such as anorthite (CaAl2Si2O8)and diopside(CaMgSi2O6)melts(Rigden et al.1989).With the increase of pressure to 10 GPa,the compressibility of carbonate melts rapidly decreases and all these melts interestingly show a similar magnitude of compressibility around 0.015 GPa-1.

    3.4 Applications and implications

    視高考如生命的北方人,早在那個(gè)年月里就變態(tài)地迫切追求升學(xué)率了。我初中時(shí)便有晚課,分兩個(gè)班,一個(gè)叫補(bǔ)差,一個(gè)叫培優(yōu),月考分?jǐn)?shù)排名靠前去培優(yōu),靠后則去補(bǔ)差。我和朋友的功課都屬于中不溜陣營(yíng),上下隨便一波動(dòng)就波動(dòng)去了隔壁班,兩人一會(huì)兒培優(yōu)一會(huì)兒補(bǔ)差,好不熱鬧。

    The accurate EOS determined in this study has important applications related to calcium-bearing carbonatite melts. We only briefy introduce one as follows for the onset of melting CaCO3solids.For this purpose,we also calculated the EOS of CaCO3–aragonite with the same approach mentioned above.The parameters of the aragonite arelisted in Table 1.We can predict the melting curve of CaCO3by integrating the Clausius–Clapeyron equation:

    Before the integration,we selected a converged experimental melting point at about 1,968 K and 5.5 GPa(Huang and Wyllie 1976;Suito et al.2001).It should be noted that this point lies beyond calcite phase as revealed in Fig.1 and mentioned by Irving and Wyllie(1973)and I-vanov and Deutsch(2002).From this fxed point and Eq.(4),we produced the melting curve of CaCO3over wide pressures in Fig.7,which is the frst curve from frst principles,as far as we know.Compared with the early prediction by Kerley(1989),which has often been cited as the only melting curve before this study,we believe our results should be much more accurate for the reasons discussed above.

    Based on the new derived melting curve,almost the whole bulk mantle falls into the solid regime of the CaCO3phase diagram,which implies that the calcium-dominant carbonate systems would not be melted over the entire mantle.To fuel the CaCO3minerals,extremely high heat fow is needed,which is often unlikely according to analysis of the global records(Pollack et al.1993).The other possibility,which is more reasonable,would be eutectic melting through mixing with other components that have much lower melting temperatures.K2CO3,as an example, would be a good candidate to achieve the melting of CaCO3.Again,assumingidealmixing ofthetwo components,since the fusion curve of K2CO3approaches the geotherm(Liu et al.2007),we expect the carbonatite melts in the mantle should contain more alkali-bearing components than CaCO3.

    Fig.7 Melting curve predicted in this study and those by experimental measurements(Huang and Wyllie 1976;Suito et al.2001)and by thermodynamic model of Kerley(1989).Melting data of K2CO3by Liu et al.(2007)and Klement and Cohen(1975)are shown on the left-bottom of the diagram.Temperature profle over the mantle is picked from Ono(2008).In the inset plot,we compare the density of the coexisting solid and liquid densities and the density of diamond at 2,603 K(Suzuki et al.1998)is included for comparison

    On the other hand,as shown in Fig.7,it is possible that the melting curve of CaCO3meets with the geotherm at two points.In addition,as revealed in the inset plot of Fig.7,we fnd the densities of CaCO3phases(liquid or solid)become even larger than that of diamond and the density contrast between the coexisting solid and liquid reduces signifcantly with increasing pressure.Oganov et al.(2008),by comparing the enthalpy change of relevant reactions,proposed that CaCO3becomes more prevalent in the lowermost part of the mantle.Combining all these factors,the most interesting speculation here is that we may fnd almost pure CaCO3-melt at the base of the mantle.Of course,we should be aware that the unexplored phases(e.g.,post-aragonite and pyroxene-type phase,as shown in Fig.1)may(or may not)remarkably change the plausible extrapolation of the melting curve at high pressures(>40 GPa).

    4 Conclusions

    In this study,we present PVT properties of CaCO3-melt at high temperatures and pressures(up to 3,500 K and 60 GPa)through extensive frst principles simulations.To improve the accuracy and reliability of our predictions as much as possible,we carefully inspect the structures of melts to ensure proper sampling of the MD trajectories and comprehensively correct the systematic errors in the simulation results.Based on these efforts,we propose a high quality EOS for CaCO3-melt at high pressures.From this equation,along with that of CaCO3–aragonite,a melting curve has been obtained by integrating the Clausius–Clapeyron equation from frst principles for the frst time and plausibly implies the existence of CaCO3-melt at the base of the mantle.

    AcknowledgmentsWe acknowledge the funds from the key programs(#90914010 and#41020134003)granted by National Natural Science Foundation of China.All the simulations were carried out on the computational facilities in the Computer Simulation Lab of IGGCAS.

    Allen MP,Tildesley DJ(1987)Computer simulation of liquids. Clarendon Press,Oxford

    Church AA,Jones AP(1995)Silicate–carbonate immiscibility at Oldoinyo-Lengai.J Petrol 36:869–889

    Dobson DP,Jones AP,Rabe R,Sekine T,Kurita K,Taniguchi T, Kondo T,Kato T,Shimomura O,Urakawa S(1996)In-situ measurement of viscosity and density of carbonate melts at high pressure.Earth Planet Sci Lett 143:207–215

    Flyvbjerg H,Petersen HG(1989)Error-estimates on averages of correlated data.J Chem Phys 91:461–466

    Gaillard F,Malki M,Iacono-Marziano G,Pichavant M,Scaillet B (2008)Carbonatite melts and electrical conductivity in the asthenosphere.Science 322:1363–1365

    Genge MJ,Price GD,Jones AP(1995)Molecular-dynamics simulations of CaCO3melts to mantle pressures and temperatures—implications for carbonatite magmas.Earth Planet Sci Lett 131:225–238

    Green DH,Wallace ME(1988)Mantle metasomatism by ephemeral carbonatite melts.Nature 336:459–462

    Gudfnnsson GH,Presnall DC(2005)Continuous gradations among primary carbonatitic,kimberlitic,melilititic,basaltic,picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa.J Petrol 46:1645–1659

    Huang W-L,Wyllie PJ(1976)Melting relationships in the systems CaO–CO2and MgO–CO2to 33 kilobars.Geochim Cosmochim Acta 40:129–132

    Irving AJ,Wyllie PJ(1973)Melting relationships in CaO–CO2and MgO–CO2to 36 kilobars with comments on CO2in the mantle. Earth Planet Sci Lett 20:220–225

    Ivanov BA,Deutsch A(2002)The phase diagram of CaCO(3)in relation to shock compression and decomposition.Phys Earth Planet Inter 129:131–143

    Jones AP,Genge M,Carmody L(2013)Carbonate melts and carbonatites.Carbon Earth 75:289–322

    Kerley GI(1989)Equations of state for calcite minerals.I.Theoretical model for dry calcium carbonate.High Press Res 2:29–47

    Klement W,Cohen LH(1975)Solid–solid and solid–liquid transitions in K2CO3,Na2CO3and Li2CO3—investigations to greater than-5 kbar by differential thermal-analysis—thermodynamics and structuralcorrelations.Ber Bunsenges Phys Chem 79:327–334

    Kresse G,Furthmuller J(1996)Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Kresse G,Joubert D(1999)From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B 59:1758–1775

    Litvin Y,Spivak A,Solopova N,Dubrovinsky L(2014)On origin of lower-mantle diamonds and their primary inclusions.Phys Earth Planet Inter 228:176–185

    Liu Q,Lange RA(2003)New density measurements on carbonate liquids and the partial molar volume of the CaCO3component. Contrib Mineral Petrol 146:370–381

    Liu Q,Tenner TJ,Lange RA(2007)Do carbonate liquids become denser than silicate liquids at pressure?Constraints from the fusion curve of K2CO3to 3.2 GPa.Contrib Mineral Petrol 153:55–66

    Martinez I,Deutsch A,Scharer U,Ildefonse P,Guyot F,Agrinier P (1995)Shock recovery experiments on dolomite and thermodynamical calculations of impact-induced decarbonation.J Geophys Res Solid Earth 100:15465–15476

    Merlini M,Hanfand M,Crichton WA(2012)CaCO3-III and CaCO3-VI,high-pressure polymorphs of calcite:possible host structures for carbon in the Earth’s mantle.Earth Planet Sci Lett 333:265–271

    Mermin ND(1965)Thermal properties of inhomogeneous electron gas.Phys Rev 137:1441

    Ni HW,Keppler H(2013)Carbon in silicate melts.Rev Mineral Geochem 75:251–287

    Nose′S(1984)A molecular-dynamics method for simulations in the canonical ensemble.Mol Phys 52:255–268

    O’Keefe JD,Ahrens TJ(1989)Impact production of CO2by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth.Nature 338:247–249

    Oganov AR,Glass CW,Ono S(2006)High-pressure phases of CaCO3:crystal structure prediction and experiment.Earth Planet Sci Lett 241:95–103

    Oganov AR,Ono S,Ma YM,Glass CW,Garcia A(2008)Novel highpressure structures of MgCO3,CaCO3and CO2and their role in Earth’s lower mantle.Earth Planet Sci Lett 273:38–47

    Oganov AR,Hemley RJ,Hazen RM,Jones AP(2013)Structure, bonding,and mineralogy of carbon at extreme conditions. Carbon Earth 75:47–77

    Ono S(2008)Experimental constraints on the temperature profle in the lower mantle.Phys Earth Planet Inter 170:267–273

    Ono S,Kikegawa T,Ohishi Y,Tsuchiya J(2005)Post-aragonite phase transformation in CaCO3at 40 GPa.Am Mineral 90:667–671

    Ono S,Kikegawa T,Ohishi Y(2007)High-pressure transition of CaCO3.Am Mineral 92:1246–1249

    Perdew JP,Burke K,Ernzerhof M(1996)Generalized gradient approximation made simple.Phys Rev Lett 77:3865–3868

    Pollack HN,Hurter SJ,Johnson JR(1993)Heat fow from the Earth’s interior:analysisofthe globaldata set.Rev Geophys 31:267–280

    Rigden SM,Ahrens TJ,Stolper EM(1989)High-pressure equation of state of molten anorthite and diopside.J Geophys Res Solid Earth 94:9508–9522

    Spivak AV,Dubrovinskii LS,Litvin YA(2011)Congruent melting of calcium carbonate in a static experiment at 3500 K and 10–22 GPa:its role in the genesis of ultradeep diamonds.Dokl Earth Sci 439:1171–1174

    Suito K,Namba J,Horikawa T,Taniguchi Y,Sakurai N,Kobayashi M,Onodera A,Shimomura O,Kikegawa T(2001)Phase relations of CaCO3at high pressure and high temperature.Am Mineral 86:997–1002

    Suzuki A,Ohtani E,Kato T(1998)Density and thermal expansion of a peridotite melt at high pressure.Phys Earth Planet Inter 107:53–61

    Togo A,Oba F,Tanaka I(2008)First-principles calculations of the ferroelastic transition between rutile-type and CaCl(2)-type SiO(2)at high pressures.Phys Rev B 78:134106

    van de Walle A,Ceder G(1999)Correcting overbinding in localdensity-approximation calculations.Phys Rev B 59:14992–15001

    Wang Y,Wang JJ,Wang WY,Mei ZG,Shang SL,Chen LQ,Liu ZK (2010)A mixed-space approach to frst-principles calculations of phonon frequencies for polar materials.J Phys Condens Matter 22:202201

    Williams Q,Knittle E(2003)Structural complexity in carbonatite liquid at high pressures.Geophys Res Lett 30:1022.doi:10.1029/ 2001GL013876

    Yang XM,Yang XY,Zheng YF,Le Bas M(2003)A rare earth element-rich carbonatite dyke at Bayan Obo,Inner Mongolia, North China.Mineral Petrol 78:93–110

    Zhang ZG,Duan ZH(2005)Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation.Phys Earth Planet Inter 149:335–354

    Zhang ZG,Stixrude L,Brodholt J(2013)Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth.Earth Planet Sci Lett 379:1–12

    Received:5 January 2015/Revised:12 January 2015/Accepted:12 January 2015/Published online:31 January 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    Z.Zhang(?)·Z.Liu

    Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing 100029,China

    e-mail:zgzhang@mail.iggcas.ac.cn

    猜你喜歡
    晚課補(bǔ)差升學(xué)率
    電的重要性
    梵 音
    文苑(2019年8期)2019-11-21 00:11:56
    基于“補(bǔ)差”理念的海綿城市策略研究
    老禪院
    梵音
    基于ARIMA模型對(duì)我國(guó)升學(xué)率的研究
    財(cái)訊(2018年6期)2018-05-14 08:55:50
    高中生物教學(xué)中補(bǔ)差的分析與探討
    考試周刊(2017年82期)2018-01-30 08:53:17
    讓英語(yǔ)學(xué)習(xí)轉(zhuǎn)“補(bǔ)差”為“不留差”
    竣工結(jié)算中工料機(jī)補(bǔ)差相關(guān)問(wèn)題的探討
    實(shí)現(xiàn)升學(xué)率與素質(zhì)教育的辯證統(tǒng)一
    午夜激情久久久久久久| 永久网站在线| 久久久亚洲精品成人影院| 精品国产一区二区久久| 一二三四中文在线观看免费高清| 18禁观看日本| 女人久久www免费人成看片| 国产黄频视频在线观看| 亚洲国产精品一区三区| 妹子高潮喷水视频| 国产成人freesex在线| 18在线观看网站| 欧美精品国产亚洲| 国产老妇伦熟女老妇高清| 十八禁高潮呻吟视频| 97超碰精品成人国产| 亚洲av日韩在线播放| 少妇人妻久久综合中文| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片| 人人妻人人爽人人添夜夜欢视频| 亚洲天堂av无毛| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 在线播放无遮挡| 亚洲精品乱码久久久久久按摩| 啦啦啦在线观看免费高清www| 午夜老司机福利剧场| 99久久人妻综合| 九草在线视频观看| 少妇人妻 视频| 高清不卡的av网站| 九九爱精品视频在线观看| 高清视频免费观看一区二区| 国产一区二区在线观看日韩| 亚洲高清免费不卡视频| 97在线人人人人妻| 九九在线视频观看精品| 777米奇影视久久| 免费观看的影片在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产免费现黄频在线看| 七月丁香在线播放| 日韩亚洲欧美综合| 80岁老熟妇乱子伦牲交| 中文天堂在线官网| 久久ye,这里只有精品| 51国产日韩欧美| 天天影视国产精品| 日韩一本色道免费dvd| 一级a做视频免费观看| 女性被躁到高潮视频| 国产日韩欧美在线精品| 亚洲av中文av极速乱| 丰满乱子伦码专区| 99热6这里只有精品| 另类亚洲欧美激情| 免费人妻精品一区二区三区视频| 女人精品久久久久毛片| 插逼视频在线观看| 三上悠亚av全集在线观看| 国语对白做爰xxxⅹ性视频网站| 午夜91福利影院| 午夜91福利影院| 久久久久网色| av在线播放精品| 制服人妻中文乱码| 久久久久视频综合| 亚洲内射少妇av| 人妻少妇偷人精品九色| 麻豆成人av视频| 亚洲色图 男人天堂 中文字幕 | 又粗又硬又长又爽又黄的视频| av不卡在线播放| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人 | 26uuu在线亚洲综合色| 国产高清有码在线观看视频| av线在线观看网站| 满18在线观看网站| 中文字幕最新亚洲高清| 亚洲国产成人一精品久久久| 国产白丝娇喘喷水9色精品| 人人妻人人澡人人看| 午夜免费鲁丝| 蜜桃久久精品国产亚洲av| 欧美97在线视频| 少妇高潮的动态图| 亚洲欧美精品自产自拍| 精品人妻一区二区三区麻豆| 女的被弄到高潮叫床怎么办| 3wmmmm亚洲av在线观看| 亚洲怡红院男人天堂| 日韩av在线免费看完整版不卡| 人人妻人人澡人人看| 一边亲一边摸免费视频| 国产高清国产精品国产三级| 春色校园在线视频观看| 中文字幕亚洲精品专区| 久热这里只有精品99| 欧美一级a爱片免费观看看| 成人国产麻豆网| 欧美老熟妇乱子伦牲交| 久久精品人人爽人人爽视色| 成年美女黄网站色视频大全免费 | videosex国产| 欧美xxⅹ黑人| 男人操女人黄网站| 亚洲综合色惰| 国产亚洲欧美精品永久| 日本爱情动作片www.在线观看| av国产久精品久网站免费入址| 在线 av 中文字幕| 成年av动漫网址| 91精品三级在线观看| 亚洲精品日韩在线中文字幕| 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| 久久久久久久久久久久大奶| 成人18禁高潮啪啪吃奶动态图 | 日韩av不卡免费在线播放| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频| 久久国产精品大桥未久av| 国产精品人妻久久久影院| 简卡轻食公司| 免费大片黄手机在线观看| 七月丁香在线播放| 日韩 亚洲 欧美在线| 亚洲无线观看免费| 日韩大片免费观看网站| 性色av一级| 国产精品.久久久| 成人国语在线视频| 丰满饥渴人妻一区二区三| 九草在线视频观看| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃 | 一级片'在线观看视频| 一级黄片播放器| 看免费成人av毛片| 2018国产大陆天天弄谢| 午夜精品国产一区二区电影| 交换朋友夫妻互换小说| 国产高清有码在线观看视频| 亚洲丝袜综合中文字幕| 搡女人真爽免费视频火全软件| 欧美 亚洲 国产 日韩一| 在线观看免费视频网站a站| 只有这里有精品99| 2021少妇久久久久久久久久久| 国产精品国产av在线观看| 美女主播在线视频| 国产精品一区www在线观看| 99re6热这里在线精品视频| 色婷婷av一区二区三区视频| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 大码成人一级视频| 中文字幕亚洲精品专区| 精品人妻偷拍中文字幕| 欧美日韩国产mv在线观看视频| 日韩一区二区视频免费看| 制服诱惑二区| 男人爽女人下面视频在线观看| 在线精品无人区一区二区三| 精品久久久久久电影网| 三级国产精品片| 国产成人精品在线电影| 搡老乐熟女国产| 丝瓜视频免费看黄片| 欧美日韩一区二区视频在线观看视频在线| 国产精品一区二区在线不卡| av在线老鸭窝| 国产熟女午夜一区二区三区 | 这个男人来自地球电影免费观看 | 成年美女黄网站色视频大全免费 | 大又大粗又爽又黄少妇毛片口| 日日啪夜夜爽| 亚洲精品国产色婷婷电影| 日本欧美国产在线视频| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 母亲3免费完整高清在线观看 | 亚洲av男天堂| 大片电影免费在线观看免费| 在线观看三级黄色| 国产精品久久久久成人av| 亚洲不卡免费看| 日韩熟女老妇一区二区性免费视频| 国产极品粉嫩免费观看在线 | 日日啪夜夜爽| 天天影视国产精品| 精品人妻熟女毛片av久久网站| 天天躁夜夜躁狠狠久久av| 日产精品乱码卡一卡2卡三| 国产欧美另类精品又又久久亚洲欧美| 一级毛片我不卡| 精品人妻一区二区三区麻豆| av网站免费在线观看视频| 日韩av免费高清视频| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看| 一本—道久久a久久精品蜜桃钙片| 高清不卡的av网站| 内地一区二区视频在线| 中国国产av一级| 9色porny在线观看| 免费高清在线观看视频在线观看| 精品久久蜜臀av无| 欧美国产精品一级二级三级| 欧美日韩视频精品一区| 久久午夜综合久久蜜桃| 亚洲欧美日韩卡通动漫| 亚洲五月色婷婷综合| 成年女人在线观看亚洲视频| 一级毛片黄色毛片免费观看视频| 免费久久久久久久精品成人欧美视频 | 久久99蜜桃精品久久| 精品国产国语对白av| 热99久久久久精品小说推荐| 亚洲国产精品专区欧美| 如何舔出高潮| 中文天堂在线官网| 高清欧美精品videossex| 人人妻人人爽人人添夜夜欢视频| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放| 成人午夜精彩视频在线观看| 五月伊人婷婷丁香| 99久久综合免费| 亚洲人成网站在线观看播放| 在线观看三级黄色| 精品亚洲成a人片在线观看| 日产精品乱码卡一卡2卡三| 春色校园在线视频观看| .国产精品久久| 久久影院123| 免费黄频网站在线观看国产| 视频区图区小说| 日韩亚洲欧美综合| 国产成人午夜福利电影在线观看| 免费大片黄手机在线观看| 成人午夜精彩视频在线观看| 精品熟女少妇av免费看| 亚洲综合色惰| 日韩免费高清中文字幕av| 亚洲美女搞黄在线观看| 波野结衣二区三区在线| 成人黄色视频免费在线看| 国产综合精华液| 亚洲五月色婷婷综合| 尾随美女入室| 欧美精品一区二区免费开放| 日本av手机在线免费观看| 亚洲第一av免费看| 国产伦精品一区二区三区视频9| 狂野欧美白嫩少妇大欣赏| 在线天堂最新版资源| 久久97久久精品| 亚洲人成网站在线观看播放| 日本猛色少妇xxxxx猛交久久| 内地一区二区视频在线| 婷婷色综合大香蕉| 婷婷成人精品国产| 国产精品成人在线| 国产日韩欧美视频二区| 精品人妻偷拍中文字幕| 简卡轻食公司| 成人毛片60女人毛片免费| 精品国产国语对白av| 精品人妻熟女毛片av久久网站| 黑人猛操日本美女一级片| 丝袜喷水一区| 十分钟在线观看高清视频www| 晚上一个人看的免费电影| 国产黄色免费在线视频| 亚洲人与动物交配视频| 亚洲av欧美aⅴ国产| 少妇猛男粗大的猛烈进出视频| 欧美激情 高清一区二区三区| 亚洲内射少妇av| 免费黄频网站在线观看国产| 桃花免费在线播放| 如何舔出高潮| 69精品国产乱码久久久| 999精品在线视频| freevideosex欧美| 在线免费观看不下载黄p国产| av.在线天堂| 热re99久久国产66热| 久久久久久久久久成人| 成人18禁高潮啪啪吃奶动态图 | 国产极品天堂在线| 国产成人aa在线观看| 日本-黄色视频高清免费观看| 99久久综合免费| 精品人妻熟女毛片av久久网站| 国产片内射在线| 亚洲三级黄色毛片| xxx大片免费视频| 国产乱人偷精品视频| 欧美bdsm另类| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| 日韩一区二区三区影片| 欧美亚洲 丝袜 人妻 在线| 国产精品一区www在线观看| 日本免费在线观看一区| 一本大道久久a久久精品| 久久精品人人爽人人爽视色| av卡一久久| 十八禁网站网址无遮挡| 免费观看性生交大片5| kizo精华| 国产精品一区二区在线不卡| 中国美白少妇内射xxxbb| 亚洲av福利一区| av在线老鸭窝| 777米奇影视久久| 久久久国产欧美日韩av| av免费在线看不卡| 久久久国产欧美日韩av| 免费不卡的大黄色大毛片视频在线观看| 蜜桃久久精品国产亚洲av| 婷婷色综合大香蕉| 久久久久久久国产电影| 草草在线视频免费看| 国产精品久久久久久久久免| 看非洲黑人一级黄片| 在线观看www视频免费| 日韩av在线免费看完整版不卡| 男人爽女人下面视频在线观看| 精品熟女少妇av免费看| 国产老妇伦熟女老妇高清| 成年美女黄网站色视频大全免费 | 这个男人来自地球电影免费观看 | 亚洲av成人精品一二三区| 一级黄片播放器| 99国产精品免费福利视频| 国产成人精品婷婷| 亚洲av不卡在线观看| 亚洲欧美一区二区三区黑人 | 亚洲人成77777在线视频| av一本久久久久| 欧美成人午夜免费资源| 男女边摸边吃奶| 一二三四中文在线观看免费高清| 黄色欧美视频在线观看| 亚洲精品乱久久久久久| 一级爰片在线观看| 亚洲内射少妇av| 日韩精品免费视频一区二区三区 | 国产伦精品一区二区三区视频9| 久久久久精品性色| 久久久亚洲精品成人影院| 97超视频在线观看视频| 99热这里只有是精品在线观看| 岛国毛片在线播放| 亚洲av福利一区| 欧美xxxx性猛交bbbb| 岛国毛片在线播放| 男女边吃奶边做爰视频| 欧美成人午夜免费资源| 日韩av在线免费看完整版不卡| 午夜老司机福利剧场| 日韩在线高清观看一区二区三区| 极品人妻少妇av视频| 精品人妻熟女av久视频| 精品亚洲成国产av| 日韩一区二区视频免费看| 边亲边吃奶的免费视频| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av蜜桃| 中文天堂在线官网| av卡一久久| 18+在线观看网站| 久久久久久久久大av| 亚洲成人一二三区av| 制服丝袜香蕉在线| 99久久综合免费| 黑丝袜美女国产一区| 国产免费一区二区三区四区乱码| 久久国产精品大桥未久av| 能在线免费看毛片的网站| 99国产综合亚洲精品| 夜夜骑夜夜射夜夜干| 狠狠婷婷综合久久久久久88av| 久久国内精品自在自线图片| 高清黄色对白视频在线免费看| 亚洲国产色片| 男女啪啪激烈高潮av片| 免费看av在线观看网站| 人人妻人人澡人人看| 乱人伦中国视频| 中国三级夫妇交换| 美女中出高潮动态图| 2018国产大陆天天弄谢| 91精品一卡2卡3卡4卡| 久久人人爽av亚洲精品天堂| 国产探花极品一区二区| 在线观看免费高清a一片| 色网站视频免费| 人妻人人澡人人爽人人| 在线看a的网站| 水蜜桃什么品种好| 超色免费av| 妹子高潮喷水视频| 国产精品秋霞免费鲁丝片| 国产乱人偷精品视频| 97超视频在线观看视频| 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 91精品三级在线观看| 久久 成人 亚洲| 欧美日韩综合久久久久久| 亚洲四区av| 22中文网久久字幕| 热re99久久精品国产66热6| 69精品国产乱码久久久| 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡 | 成人国产麻豆网| 亚洲国产精品国产精品| 亚洲精品色激情综合| 精品久久久噜噜| 国国产精品蜜臀av免费| 亚洲,欧美,日韩| 免费观看无遮挡的男女| 国产有黄有色有爽视频| 亚洲国产精品成人久久小说| av在线观看视频网站免费| 蜜桃国产av成人99| 亚洲美女视频黄频| 日本欧美视频一区| 成人影院久久| 99re6热这里在线精品视频| 91久久精品国产一区二区成人| 人人妻人人澡人人爽人人夜夜| 婷婷色综合www| 亚洲av欧美aⅴ国产| 久久精品国产亚洲网站| 少妇丰满av| 精品亚洲成a人片在线观看| 又粗又硬又长又爽又黄的视频| 赤兔流量卡办理| 欧美性感艳星| 国产精品一区二区三区四区免费观看| 午夜福利影视在线免费观看| 久久久久久久久久久久大奶| 亚洲av综合色区一区| 搡女人真爽免费视频火全软件| 午夜福利视频在线观看免费| 男女高潮啪啪啪动态图| 日韩一本色道免费dvd| 国产日韩欧美视频二区| 26uuu在线亚洲综合色| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品婷婷| 人妻一区二区av| 亚洲,一卡二卡三卡| 99国产综合亚洲精品| av女优亚洲男人天堂| av在线观看视频网站免费| 纯流量卡能插随身wifi吗| 精品久久久久久电影网| 成年女人在线观看亚洲视频| 黄片播放在线免费| 99精国产麻豆久久婷婷| 午夜激情av网站| 免费人妻精品一区二区三区视频| 自线自在国产av| 自拍欧美九色日韩亚洲蝌蚪91| 少妇被粗大的猛进出69影院 | 高清欧美精品videossex| 国产精品 国内视频| 妹子高潮喷水视频| 亚洲av.av天堂| 午夜免费观看性视频| 日本av手机在线免费观看| 国产av精品麻豆| 亚洲人与动物交配视频| 又大又黄又爽视频免费| 精品久久久噜噜| 久久人人爽av亚洲精品天堂| 九九在线视频观看精品| 久久精品国产亚洲网站| 极品人妻少妇av视频| 秋霞伦理黄片| 国产成人免费无遮挡视频| 国产免费福利视频在线观看| 亚洲av综合色区一区| 99久久中文字幕三级久久日本| 国产午夜精品一二区理论片| av卡一久久| 成人毛片a级毛片在线播放| 91精品国产九色| 亚州av有码| 午夜福利,免费看| 亚洲国产最新在线播放| 亚洲精品久久久久久婷婷小说| 狠狠精品人妻久久久久久综合| 大码成人一级视频| 国产探花极品一区二区| 一本一本综合久久| 一区在线观看完整版| 又黄又爽又刺激的免费视频.| 中文字幕最新亚洲高清| 精品酒店卫生间| 亚洲成人手机| 国产av码专区亚洲av| 国产精品99久久99久久久不卡 | 五月天丁香电影| 亚洲精品日韩av片在线观看| 国产色爽女视频免费观看| 日韩强制内射视频| 成人亚洲欧美一区二区av| 久久精品夜色国产| www.色视频.com| 国产不卡av网站在线观看| 王馨瑶露胸无遮挡在线观看| freevideosex欧美| 乱码一卡2卡4卡精品| 中国国产av一级| 99国产综合亚洲精品| 日韩一区二区三区影片| 十分钟在线观看高清视频www| 久久亚洲国产成人精品v| av电影中文网址| 91国产中文字幕| 又黄又爽又刺激的免费视频.| 国产综合精华液| 天堂中文最新版在线下载| 性色av一级| 亚州av有码| 精品人妻熟女毛片av久久网站| 热99国产精品久久久久久7| 国产午夜精品久久久久久一区二区三区| 免费黄频网站在线观看国产| 观看美女的网站| 日本黄大片高清| 18禁动态无遮挡网站| 又粗又硬又长又爽又黄的视频| 人妻制服诱惑在线中文字幕| 人妻少妇偷人精品九色| 亚洲国产av新网站| 免费人成在线观看视频色| 亚洲精品国产色婷婷电影| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 国产女主播在线喷水免费视频网站| 国产精品一区www在线观看| 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| 看非洲黑人一级黄片| 99久久人妻综合| 精品久久蜜臀av无| h视频一区二区三区| 制服人妻中文乱码| 日韩,欧美,国产一区二区三区| 美女福利国产在线| 精品熟女少妇av免费看| 狂野欧美激情性bbbbbb| 如日韩欧美国产精品一区二区三区 | 免费观看的影片在线观看| 交换朋友夫妻互换小说| 青春草国产在线视频| 26uuu在线亚洲综合色| 丝袜喷水一区| av一本久久久久| 久久久久国产网址| 午夜老司机福利剧场| 欧美精品一区二区大全| 建设人人有责人人尽责人人享有的| 国产熟女午夜一区二区三区 | 99久久中文字幕三级久久日本| 日韩电影二区| 国产精品女同一区二区软件| 大香蕉久久网| 一本久久精品| 男女啪啪激烈高潮av片| 国产精品久久久久久精品古装| 久久精品久久久久久噜噜老黄| 国产精品一区www在线观看| 午夜免费男女啪啪视频观看| av一本久久久久| 亚洲无线观看免费| 男男h啪啪无遮挡| 欧美xxⅹ黑人| 亚洲精品第二区| 日韩中字成人| 国产色爽女视频免费观看| 亚洲精品国产色婷婷电影| av有码第一页| 国产精品嫩草影院av在线观看| 亚洲精品亚洲一区二区| 如何舔出高潮| 国产精品人妻久久久影院| 国产不卡av网站在线观看| 国精品久久久久久国模美| 肉色欧美久久久久久久蜜桃| 最近的中文字幕免费完整| 一区二区三区精品91| 久久国产精品男人的天堂亚洲 | 一边摸一边做爽爽视频免费| 精品午夜福利在线看| .国产精品久久| 欧美亚洲日本最大视频资源|