• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural features of substituted triazole-linked chalcone derivatives as antimalarial activities against D10 strains of Plasmodium falciparum:A QSAR approach

    2015-02-01 09:11:46MukeshSharma
    Journal of Central South University 2015年10期

    Mukesh C. Sharma

    Division of Drug Design & Medicinal Chemistry Research Lab, School of Pharmacy, Devi Ahilya University,Takshila Campus, Khandwa Road, Indore (M.P)-452001, India

    Structural features of substituted triazole-linked chalcone derivatives as antimalarial activities against D10strains ofPlasmodium falciparum:A QSAR approach

    Mukesh C. Sharma

    Division of Drug Design & Medicinal Chemistry Research Lab, School of Pharmacy, Devi Ahilya University,Takshila Campus, Khandwa Road, Indore (M.P)-452001, India

    A quantitative structure–activity relationship (QSAR) was performed to analyze antimalarial activities against the D10 strains ofPlasmodium falciparumof triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50D10strains ofPlasmodium falciparumdata based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient (r2) of 0.8994, significant cross validated correlation coefficient (q2) of 0.7689,r2for external test set (2)rpred of 0.8256, coefficient of correlation of predicted data setof 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.

    quantitative structure–activity relationship (QSAR); chalcone; antimalarial;Plasmodium falciparum; stepwise forward–backward; partial least squares

    1 Introduction

    Malaria, a devastating infectious disease caused by the protozoaPlasmodium falciparum, affects 200?500 million people worldwide annually.[1] The current global situation with respect to malaria indicates that about two billion people are exposed to the disease and more than one million people die from it every year[2].Malaria is caused by five species of parasites of the genusPlasmodiumthat affect humans:Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae,Plasmodium ovalandPlasmodium knowlesi. The situation is rapidly worsening mainly due to non-availability of effective drugs and development of drug resistance in areas where malaria is frequently transmitted[3?4]. Malaria due toPlasmodium falciparumis the most deadly variety as it is responsible for the majority of malaria deaths. ThePlasmodium falciparumspecies, which is the most virulent and deadly of the malaria parasites, is responsible in more than 90%of the cases. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistantPlasmodium falciparum, which drives the need for the development of new antimalarial drugs[4]. In spite of the intensive efforts to combat malaria, the incidence of malaria has not decreased, especially in the tropical and subtropical areas[5]. The primary drugs for treatment of malaria have been the quinolones chloroquine (CQ), quinine (QN)and mefloquine; the antifolate combination of pyrimethamine and sulfadoxine; and others[6]. However,during the past three decades,P. falciparumhas developed resistance to every commonly available antimalarial drug[7], including chloroquine-resistant(CQ-R), multi-drug-resistant (MDR) and others[8?10].Ethnic medicine has provided two of the most efficacious drugs, quinine and artemisinin (and its analogs) and the ongoing screening of medicinal plants yields new lead compounds[11]. Quantitative structure activity relationships are the most important applications of chemo metrics, giving information useful for the design of new compounds acting on a specific target.QSAR (quantitative structure-activity relationship)attempts to find a consistent relationship between biological activity and molecular properties[12].Descriptors are generally used to describe different characteristics/attributes of the chemical structure in order to yield information about the activity/property being studied. In the present work, QSAR studies havebeen performed on triazole-linked chalcone and dienone hybrid derivatives as potential antimalarial[13] to explore important molecular properties as well as the interaction patterns between the D10strain ofPlasmodium falciparumpotency and ligands at the molecular level for design of new potent antimalarial activities. We have used this partial least squares analysis in this venture for QSAR modeling and to predict the drug activity of a series of newly synthesized triazole-linked chalcone derivatives.

    2 Materials and method

    QSAR studies were performed using the Molecular Design Suite VLife MDS software package, version 3.5 from VLife Sciences, Pune, India[14]. All computational work was performed on a HP Compaq PC running on Intel Pentium-D processor.

    2.1 Biological activity dataset for analysis

    The QSAR studies were performed on a series of triazole-linked chalcone and dienone hybrid analogs derivatives as antimalarial activity, to which the in vitro antimalarial activities against the D10strain ofPlasmodium falciparumpotency values (measured by IC50) were collected from Ref.[13]. The D10(IC50μM)values were expressed in negative logarithmic units,pIC50(lgIC50) and used as dependent variables in QSAR analysis. The chemical structures and corresponding pIC50are listed in Fig. 1 and Table 1.

    Fig. 1 Structure of triazole-linked chacone and dienone hybrid analogs derivative

    2.2 Training and test set

    Sphere exclusion method[15] was adopted for division of training and test set. Sphere exclusion method is used for creating training and test sets from the data.This is a rational selection method which takes into consideration both biological and chemical spaces for division of dataset. Dissimilarity value provides handle to vary train/test set size. It needs to be adjusted by trial and error until a desired division of train and test set is achieved. As a rule, increase in dissimilarity value will lead to increase in number of molecules in the test set.The compounds of both training and test sets were randomly selected subject to the constraint to ensure complete and representative coverage across the entire range of pIC50values. The models were externally validated using a test set with 10 compounds (Table 1)and were not included in the QSAR models development process.

    2.3 Two-dimensional QSAR studies

    Table 1 Structures and in vitro antimalarial activities against D10 strains of P. falciparum

    All the molecules were constructed using the standard geometry with 2D molecular module of molecular design suite. Three-dimensional structures were drawn for each molecule and the molecular geometries optimized using Monte Carlo conformational search[16]. All the compounds were batch optimized for the minimization of energies and geometry optimization using Merck molecular force field followed by considering distance-dependent dielectric constant of 1.0,convergence criterion or root-mean-square (RMS)gradient at 0.01 kcal/(mol·?) and the iteration limit to 10000[17]. The purpose of molecular descriptor is to calculate the properties of molecules that serve as numerical characterizations of molecules in other calculations, such as QSAR, diversity analysis.

    2.4 Calculation of 2D descriptors

    The energy-minimized geometry was used for the calculation of the various 2D descriptors (Individual, Chi,ChiV, Kappa, element count, estate number, estate contribution, Polar surface area and Alignment independent) and was considered independent variables in the present work. The electrostatic descriptors constitute charged polarization, polarity parameter, local dipole index, maximum positive charge, maximum negative charge, total absolute atomic charge, total negative charge, total positive charge. The preprocessing of the independent variables (i.e. descriptors) was done by removing invariable (constant column), which resulted in a total of 250 descriptors to be used for QSAR analysis. The various alignment-independent (AI)descriptors[18] were also calculated. For calculation of AI descriptors every atom in the molecule was assigned at least one and at most three attributes. After all atoms have been assigned their respective attributes, selective distance count statistics for all combinations of different attributes are computed. To calculate AI descriptors, we have used following attributes, 2 (double bonded atom),3 (triple bonded atom), C, N, O, S, H, F, Cl, Br and I and the distance range of 0?7.

    2.5 Model validation

    Internal validation was carried out using leave-oneout (q2, LOO) method[19]. To calculateq2, each molecule in the training set was sequentially removed,the model refit using same descriptors, and the biological activity of the removed molecule predicted using the refit model. Theq2can be calculated using Eq. (1).

    whereyiandy?iare the actual and predicted activity of thei-th molecule in the training set, respectively;ymeanis the average activity of all molecules in the training set.For external validation, activity of each molecule in the test set was predicted using the model generated from the training set. The2rpredvalue is calculated as

    whereyiandy?iare the actual and predicted activity of thei-th molecule in the test set, respectively;ymeanis the average activity of all molecules in the training set. Both summations are over all molecules in the test set.

    3 Results and discussion

    A QSAR analysis has been performed to study the quantitative effects of the molecular structure of the substituted triazole-linked chalcone and dienone hybrid on their antimalarial evaluation. Stepwise forward–backward based feature selection coupled with partial least squares was used as a chemometric tool for QSAR modeling. The below models are validated by predicting the biological activities of the training set and test molecules, as indicated in Table 2. Several 2D QSAR models were constructed, and the best three-regression equation obtained is represented as

    The developed QSAR models are evaluated using the following statistical measures:n(the number of compounds in regression); optimum component (number of optimum PLS components in the model);r2(the squared correlation coefficient),Ftest(the Fischer value for statistical significance),q2(cross-validated correlation coefficient);(r2for external test set).The regression coefficientr2is a relative measure of fit by the regression equation.

    Model 1 generated using the SW-PLS method with 0.8994 as the coefficient of determination (r2) was considered the best model using the same molecules in the test and training sets as in QSAR (Table 3). The model can explain 90% of the variance in the observed activity values. The model shows an internal predictive power (q2=0.7689) of 76% and a predictivity for the external test setof about 82%. The activity contribution chart for 2D-QSAR model is shown in Fig. 2. Figure 3 shows the fit plot of experimental vs predicted pIC50values for the training as well as the test sets by the best QSAR Model 1.

    The descriptorISssOEwhich is electrotopological state indices for number of oxygen atom connected with two single bonds showed positive contribution with

    contribution of ~30%. Such positive effect indicated that the antimalarial activity increased with the presence of methoxy groups such as compounds 1?4; 7?9; 13?20 and 29?31; 35?37. It emphasizes that increase in methoxy of compound will favor the biological activity.The good activity of molecules of 1?4, 7?9, 13?20 and 29?31, 35?37 over other molecules justifies this finding.The next descriptorCSsOH(signifies total number of hydroxy group connected with one single bond) reveals that hydroxy group should be directly attached with chalcone ring for the maximal antimalarial activity and suggests that the increased number of hydroxy atoms will augment the potency of the compounds. The next descriptor isdefining the total number of —CH3group connected with single bond. The positive coefficient of this descriptor signifies the importance of methyl group for antimalarial activities. The next descriptor(~20%) directly proportional to the activity shows the role of the total number of fluorine atom in a molecule. It reveals that presence of electron withdrawing groups over the chalcone and dienone is favorable for the activity (like compounds 6, 11, 12, 22,27, 28, 33, 34, 39 and 40).Table 3 Correlation matrix indicating inter-correlation between descriptors used in model 1

    Table 2 Comparative observed and predicted activities of triazole-linked chalcone and dienone derivatives as D10 strains of P.falciparum

    Parameter ISssOE CSsOH 3 C CFluorine SsCH ISssOE 1.0000 CSsOH 0.4385 1.0000 C 0.3752 0.6522 1.0000 CFluorine 0.4684 0.6886 0.7321 1.0000 SsCH3

    Fig. 2 Contribution charts of descriptors for 2D model 1

    Fig. 3 Graph of observed vs predicted activities of QSAR model 1

    Fig. 4 Contribution charts of descriptors for 2D model 2

    Fig. 5 Graph of observed vs predicted activity of QSAR model 2

    The developed SW-PLS model reveals that the descriptorDTCO1carbon atoms (single double or triple bonded) separated from any oxygen atom (single or double bonded) by bond distance in a molecule plays most important role (~31%) in determining activity.The alignment-independent descriptorDTClCl2showed positive contribution approx ~25%, which reveals the count of number of chlorine atoms separated from any other chlorine atom by 2 bonds in a molecule results increases in activity as augment by the molecules 5, 10,21, 26, 32 and 38.Msignifies relative molecular mass of a compound. This descriptor is inversely proportional to the activity (~15%) and indices the presence heavy or bulky group which decreases the activity.

    In 2D QSAR model,r2>0.5 suggests significant percentage of the total variance in biological activity is accounted by the model. The stability of model judged by leave-one-out procedure is fairly good (q2>0.6),suggesting that the model can be utilized for predictions.Model 3 was generated using the partial least squares regression method with 0.7223 as the coefficient of determination (r2) was considered using the same molecules in the test and training sets. The model can explain 72 % of the variance in the observed activity values. The model shows an internal predictive power(q2=0.6612) of 66% and predictivity for the external test setof about 68%. The descriptorwhich signifies estate contributions defining electro topologic state indices for the number of =CH2groups attached to two single bonds, also showed a positive contribution. The nextISdssCE, an electrotopological parameter, which defines the total number of carbon atoms connected with one double and two single bonds. The descriptor shows the highest negative correlation among the parameters selected for the derived QSAR model. The negative coefficient suggests that inclusion of such carbon atoms in the molecules lead to decreased antimalarial activity shown by substituted chalcone derivatives.DT2Cl2alignment-independent descriptor which means the count of number of single-bonded atoms separated from chlorine atom by two bonds in a molecule to be detrimental for the activity was exhibited by the compounds. It emphasizes that increase inDT2Cl2of compound will favor the biological activity. The activity contribution chart for QSAR model is shown in Fig. 6 and plots of observed vs predicted values of pIC50are shown in Fig. 7.

    Fig. 6 Contribution charts of descriptors for 2D model 3

    Fig. 7 Graph of observed vs. predicted activity of QSAR Model 3

    4 Conclusions

    A quantitative structure–activity relationship(QSAR) study is applied to diverse set of potentially active compounds against the D10, strains ofPlasmodium falciparumstrains of malaria. In pursuit of better antimalarial drugs, a quantitative structure-activity relationship analysis using a novel set of 2D descriptors electrostatic, topological, constitutional, geometrical, and physicochemical descriptors is performed on a series of antimalarial activity triazole-linked chalcone and dienone hybrid. The QSAR models discussed above explains how electron withdrawing, and H-donor properties should be modified to achieve better antimalarial activity. The present work reveals that presence of methoxy, hydroxy groups and less bulky groups at R position of chalcone scaffold increase the antimalarial activity. It shows the requirement of electropositive groups such as methyl,ethyl, propyl, and butyl or less electronegative groups such as cyanide, hydroxyl, amino, nitro, etc. For each set,statistically significant models were obtained using the stepwise forward–backward variable method encoded in software. These models may be considered as mathematical equations for the prediction of antimalarial activities of the compounds structurally similar to those used. We have reported herein the QSAR models for antimalarial activity to update the design process to develop some novel and potent antimalarial agents.

    The author is thankful to Vlife Science Technologies Pvt. Ltd. (Pune India) for providing the facility.

    [1]World Health Organization:World Malaria Report 2010[R]. Geneva,Switzerland, 2010.

    [2]TRIGG P I, KONDRACHINE A V. Malaria parasite biology,pathogenesis and protection:The current global malaria situation[M].Washington, DC:ASM, 1998:11?22.

    [3]WHITE N J. Drug resistance in malaria[J]. British Medical Bulletin,1998, 54:703?715.

    [4]LI Jia-zhong, LI Shu-yan, BAI Chong-liang, LIU Huan-xiang,PAOLA GRAMATICA. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis[J]. Journal of Molecular Graphics and Modelling,2013, 44:266?277.

    [5]BEALES P F, BRABIN B, DORMAN E, GILLES H M, LOUTAIN L, MARSH K, MOLYNEUX M E, OLLIARO P, SCHAPIRA A,TOUZE J E, HIEN T T, WARRELL D A, WHITE N. Severe falciparum malaria[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2000, 94:1?90.

    [6]WINTER R W, KELLY J X, SMILKSTEIN M J, DODEAN R,HINRICHS D, RISCOE M K. Antimalarial quinolones:Synthesis,potency, and mechanistic studies[J]. Experimental Parasitology,2008, 118:487?497.

    [7]CROSS R M, MONASTYRSKYI A, MUTKA T S, BURROWS J N,KYLE D E, MANETSCH R. Endochin optimization:Structure–activity, structure–property relationship studies of 3-substituted 2-methyl-4(1H)-quinolones with antimalarial activity[J]. Journal of Medicinal Chemistry, 2010, 53:7076?7094.

    [8]WELLEMS T E, PLOWE C V. Chloroquine-resistant malaria[J].Journal of Infectious Diseases, 2001, 184:770?776.

    [9]SIDHU A B S, VERDIER-PINARD D, FIDOCK D A. Chloroquine resistance inPlasmodium falciparummalaria parasites conferred by pfcrt mutations[J]. Science, 2002, 298:210?213.

    [10] HYDE J E. Drug-resistant malaria[J]. Trends in Parasitology, 2005,21:494?498.

    [11] WILLCOX M L, BODEKER G. Traditional herbal medicines for malaria[J]. BMJ, 2004, 329:1156.

    [12] KARELSON M. Molecular Descriptors in QSAR/QSPR[M]. New York:Wiley-Interscience, 2000.

    [13] GUANTAI E M, NCOKAZI K, EGAN T J, GUT J, ROSENTHAL P J, SMITH P J, CHIBALE K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds[J]. Bioorganic and Medicinal Chemistry, 2010,18:8243?8256.

    [14] VLIFE MDS 3.5:Molecular design suite[M]. Pune, India:Vlife Sciences Technologies Pvt Ltd, 2008.

    [15] GOLBRAIKH A, TROPSHA A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection[J]. Journal of Computer-Aided Molecular Design,2002, 16:357?369.

    [16] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N,TELLER A H, TELLER E. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21:1087?1092.

    [17] HALGREN T A. Merck molecular force field II. MMFF94 vander Waals and electrostatic parameters for intermolecular interactions[J].Journal of Computational Chemistry, 1996, 17:520?552

    [18] BAUMANN K. An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features[J]. Journal of Chemical Information and Modeling, 2002, 42:26?35

    [19] CRAMER R D, PATTERSON D E, BUNCE J D. Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins[J]. Journal of the American Chemical Society, 1998, 110:5959?5967.

    ? Central South University Press and Springer-Verlag Berlin Heidelberg 2015

    10.1007/s11771-015-2917-8

    date:2014?12?12; Accepted date:2015?02?22

    Mukesh C. Sharma, PhD; Tel:+96?731?2100605; E-mail:mukeshcsharma@yahoo.com

    (Edited by DENG Lü-xiang)

    神马国产精品三级电影在线观看| 国产精品国产高清国产av| 欧美绝顶高潮抽搐喷水| 亚洲人成网站在线播放欧美日韩| 成人三级黄色视频| 国产精品av久久久久免费| 麻豆国产av国片精品| 国产成人啪精品午夜网站| 亚洲成av人片在线播放无| 日本黄色视频三级网站网址| 岛国视频午夜一区免费看| 国内毛片毛片毛片毛片毛片| 亚洲成a人片在线一区二区| 日本一本二区三区精品| 一区二区三区激情视频| 午夜a级毛片| 精品国产乱码久久久久久男人| 麻豆成人午夜福利视频| 天堂网av新在线| 成人国产综合亚洲| 男女下面进入的视频免费午夜| 噜噜噜噜噜久久久久久91| 母亲3免费完整高清在线观看| 日本黄色片子视频| 国产成+人综合+亚洲专区| 久久香蕉精品热| 国产一区在线观看成人免费| 亚洲欧美日韩卡通动漫| 成熟少妇高潮喷水视频| 亚洲自偷自拍图片 自拍| 日韩免费av在线播放| 欧美午夜高清在线| 又大又爽又粗| 九色国产91popny在线| 国语自产精品视频在线第100页| 亚洲国产精品999在线| 亚洲狠狠婷婷综合久久图片| 国产视频内射| 国产伦在线观看视频一区| 嫩草影视91久久| 中文字幕人妻丝袜一区二区| 久9热在线精品视频| 真实男女啪啪啪动态图| 国产极品精品免费视频能看的| 国内揄拍国产精品人妻在线| av视频在线观看入口| av片东京热男人的天堂| 熟妇人妻久久中文字幕3abv| 国产一区在线观看成人免费| 午夜福利在线观看吧| 欧美极品一区二区三区四区| 国内精品一区二区在线观看| 一a级毛片在线观看| 舔av片在线| 黄色片一级片一级黄色片| 怎么达到女性高潮| 国产高清视频在线播放一区| 久久久国产精品麻豆| 一级作爱视频免费观看| 中文字幕高清在线视频| 最好的美女福利视频网| 亚洲欧美一区二区三区黑人| 成人三级做爰电影| 国产精品一区二区精品视频观看| 久久精品国产清高在天天线| 午夜精品在线福利| 一区二区三区国产精品乱码| 波多野结衣高清无吗| 国产精品九九99| 欧美色视频一区免费| 国产高清三级在线| 日韩人妻高清精品专区| 国产精品av久久久久免费| 日本黄色片子视频| 一个人看的www免费观看视频| 一a级毛片在线观看| 国产精品久久久久久人妻精品电影| 色综合欧美亚洲国产小说| 少妇熟女aⅴ在线视频| 亚洲国产精品999在线| 亚洲精品中文字幕一二三四区| 精品一区二区三区四区五区乱码| www.熟女人妻精品国产| 最新美女视频免费是黄的| 啦啦啦韩国在线观看视频| 午夜精品一区二区三区免费看| 国产人伦9x9x在线观看| 精品久久久久久久久久免费视频| 天天一区二区日本电影三级| 午夜福利高清视频| www.999成人在线观看| 久久亚洲真实| 香蕉国产在线看| 精品欧美国产一区二区三| av女优亚洲男人天堂 | 亚洲精品乱码久久久v下载方式 | 午夜a级毛片| 丰满人妻一区二区三区视频av | 中文字幕人成人乱码亚洲影| 黄片小视频在线播放| 制服丝袜大香蕉在线| 午夜精品久久久久久毛片777| 精品一区二区三区视频在线 | 午夜福利在线观看免费完整高清在 | 亚洲成a人片在线一区二区| 国产伦一二天堂av在线观看| 婷婷六月久久综合丁香| 香蕉国产在线看| 国产欧美日韩精品一区二区| 又粗又爽又猛毛片免费看| 综合色av麻豆| 午夜福利成人在线免费观看| av天堂中文字幕网| 变态另类丝袜制服| 狂野欧美白嫩少妇大欣赏| 好看av亚洲va欧美ⅴa在| 好男人电影高清在线观看| 欧美午夜高清在线| 国产精品香港三级国产av潘金莲| 少妇人妻一区二区三区视频| 日韩三级视频一区二区三区| 最近最新免费中文字幕在线| 久久性视频一级片| 在线免费观看不下载黄p国产 | 99热这里只有是精品50| 看片在线看免费视频| 国产成+人综合+亚洲专区| 999久久久精品免费观看国产| 亚洲精品在线美女| 18禁观看日本| 少妇丰满av| 露出奶头的视频| 久久精品91无色码中文字幕| 国产单亲对白刺激| 欧美大码av| 好看av亚洲va欧美ⅴa在| 我的老师免费观看完整版| 久久国产乱子伦精品免费另类| www.999成人在线观看| 国产精品久久久久久人妻精品电影| 免费在线观看成人毛片| 观看免费一级毛片| 国产精品一区二区三区四区免费观看 | 亚洲美女视频黄频| 叶爱在线成人免费视频播放| 一本一本综合久久| 丰满人妻熟妇乱又伦精品不卡| 天堂av国产一区二区熟女人妻| 中文字幕最新亚洲高清| 精品熟女少妇八av免费久了| 真人一进一出gif抽搐免费| 首页视频小说图片口味搜索| 看免费av毛片| 网址你懂的国产日韩在线| av在线蜜桃| 美女黄网站色视频| 国产成人精品久久二区二区91| 国产淫片久久久久久久久 | 全区人妻精品视频| 精华霜和精华液先用哪个| 嫩草影院精品99| 久久久国产成人免费| 国产人伦9x9x在线观看| 特级一级黄色大片| 在线永久观看黄色视频| 精品熟女少妇八av免费久了| 国产黄片美女视频| 五月玫瑰六月丁香| 首页视频小说图片口味搜索| 少妇的逼水好多| 国产99白浆流出| 欧美黄色片欧美黄色片| 日本免费a在线| 午夜免费激情av| 99热这里只有精品一区 | 日韩欧美国产一区二区入口| 美女黄网站色视频| 国产高清有码在线观看视频| bbb黄色大片| 最新美女视频免费是黄的| 99国产精品一区二区三区| www.自偷自拍.com| 18禁国产床啪视频网站| x7x7x7水蜜桃| 九九在线视频观看精品| 视频区欧美日本亚洲| 成熟少妇高潮喷水视频| 国产一区二区三区视频了| 色吧在线观看| 精品国产乱码久久久久久男人| 香蕉国产在线看| 熟女少妇亚洲综合色aaa.| 99久久成人亚洲精品观看| 欧美日韩国产亚洲二区| 老汉色∧v一级毛片| 婷婷六月久久综合丁香| 偷拍熟女少妇极品色| 久9热在线精品视频| 国产aⅴ精品一区二区三区波| h日本视频在线播放| 国产三级在线视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精华国产精华精| 精品日产1卡2卡| 桃红色精品国产亚洲av| 国产欧美日韩精品一区二区| av国产免费在线观看| 一本一本综合久久| 国内精品一区二区在线观看| or卡值多少钱| 国产在线精品亚洲第一网站| 色在线成人网| 一级作爱视频免费观看| 国产亚洲av高清不卡| 九九热线精品视视频播放| 国产主播在线观看一区二区| 男插女下体视频免费在线播放| 在线观看舔阴道视频| 亚洲片人在线观看| 99久久精品国产亚洲精品| 在线a可以看的网站| 国产一区二区在线av高清观看| 女人被狂操c到高潮| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 两个人看的免费小视频| 亚洲成人精品中文字幕电影| 亚洲人成电影免费在线| 一个人看的www免费观看视频| 久久精品综合一区二区三区| 久久午夜综合久久蜜桃| 男人舔女人下体高潮全视频| 久久久国产成人免费| 国产精品国产高清国产av| 床上黄色一级片| xxxwww97欧美| 12—13女人毛片做爰片一| 亚洲七黄色美女视频| 精品一区二区三区av网在线观看| 国内揄拍国产精品人妻在线| 很黄的视频免费| 熟女电影av网| 欧美zozozo另类| 国产激情欧美一区二区| 一进一出好大好爽视频| 最新在线观看一区二区三区| 日本黄色视频三级网站网址| 精品久久久久久久末码| 亚洲自偷自拍图片 自拍| www.999成人在线观看| 色av中文字幕| 亚洲欧美日韩无卡精品| 国产美女午夜福利| 黄色 视频免费看| 51午夜福利影视在线观看| 久久精品国产99精品国产亚洲性色| 中文资源天堂在线| 亚洲精品一区av在线观看| 男女视频在线观看网站免费| 天天一区二区日本电影三级| 亚洲av电影在线进入| 九色国产91popny在线| 亚洲成人中文字幕在线播放| 夜夜夜夜夜久久久久| 亚洲中文字幕一区二区三区有码在线看 | 日日干狠狠操夜夜爽| 精品欧美国产一区二区三| 两个人看的免费小视频| 又粗又爽又猛毛片免费看| 久久久久国内视频| 国产精品98久久久久久宅男小说| 国产一区二区三区在线臀色熟女| 久久久久国产一级毛片高清牌| 欧美日韩瑟瑟在线播放| 91av网一区二区| 亚洲中文av在线| 一本一本综合久久| 国产探花在线观看一区二区| 久久久久久人人人人人| 在线观看一区二区三区| 欧美一区二区国产精品久久精品| aaaaa片日本免费| 国产免费男女视频| 国产精品久久久av美女十八| 国产黄色小视频在线观看| 狂野欧美激情性xxxx| 国内精品一区二区在线观看| 亚洲国产看品久久| 岛国在线免费视频观看| 成年免费大片在线观看| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 看黄色毛片网站| 深夜精品福利| 国产精品一区二区免费欧美| 18禁国产床啪视频网站| 天堂影院成人在线观看| 在线永久观看黄色视频| 国产精品永久免费网站| 男人舔女人下体高潮全视频| 欧美一级毛片孕妇| 欧美日本亚洲视频在线播放| 久99久视频精品免费| 三级男女做爰猛烈吃奶摸视频| 欧美日韩乱码在线| 国产免费男女视频| 少妇裸体淫交视频免费看高清| 丁香六月欧美| 哪里可以看免费的av片| 精品久久久久久久久久久久久| 18禁黄网站禁片免费观看直播| 99久久精品国产亚洲精品| 老熟妇仑乱视频hdxx| 日韩高清综合在线| 国语自产精品视频在线第100页| 黄频高清免费视频| 好看av亚洲va欧美ⅴa在| 亚洲中文av在线| 高潮久久久久久久久久久不卡| 婷婷六月久久综合丁香| 午夜福利成人在线免费观看| 色噜噜av男人的天堂激情| 国产视频内射| 亚洲自拍偷在线| 在线观看免费午夜福利视频| 99久久久亚洲精品蜜臀av| 禁无遮挡网站| 国内精品美女久久久久久| 18禁裸乳无遮挡免费网站照片| 色老头精品视频在线观看| 制服丝袜大香蕉在线| 欧美高清成人免费视频www| 亚洲精品粉嫩美女一区| 啦啦啦韩国在线观看视频| 欧美黑人欧美精品刺激| 男女那种视频在线观看| 久久中文看片网| 蜜桃久久精品国产亚洲av| 搡老岳熟女国产| 国产精品亚洲av一区麻豆| 此物有八面人人有两片| 午夜激情欧美在线| 国产男靠女视频免费网站| 在线免费观看不下载黄p国产 | 亚洲一区高清亚洲精品| 亚洲精品一区av在线观看| x7x7x7水蜜桃| 99国产极品粉嫩在线观看| 操出白浆在线播放| 亚洲av成人不卡在线观看播放网| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频| 亚洲欧美日韩无卡精品| 51午夜福利影视在线观看| www.熟女人妻精品国产| 国产精品久久久久久久电影 | 岛国在线免费视频观看| 男女那种视频在线观看| 九色国产91popny在线| 老司机深夜福利视频在线观看| 欧美午夜高清在线| aaaaa片日本免费| 国语自产精品视频在线第100页| a级毛片a级免费在线| 美女cb高潮喷水在线观看 | 嫩草影院精品99| 午夜日韩欧美国产| 天天添夜夜摸| 亚洲国产日韩欧美精品在线观看 | 欧美黄色淫秽网站| 美女午夜性视频免费| 国产精品亚洲av一区麻豆| 精品久久久久久,| 久久久国产成人精品二区| 色在线成人网| 色av中文字幕| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 国产又黄又爽又无遮挡在线| 免费高清视频大片| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| 夜夜爽天天搞| 午夜两性在线视频| 国产淫片久久久久久久久 | 99精品在免费线老司机午夜| 成年女人永久免费观看视频| 亚洲中文日韩欧美视频| 在线观看美女被高潮喷水网站 | 亚洲avbb在线观看| 一进一出好大好爽视频| 欧美一级a爱片免费观看看| 亚洲av免费在线观看| 久久人妻av系列| 亚洲精品色激情综合| 国内精品久久久久精免费| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 国产亚洲欧美在线一区二区| 亚洲午夜理论影院| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看| 成人无遮挡网站| 黑人巨大精品欧美一区二区mp4| 十八禁人妻一区二区| av天堂中文字幕网| 男人和女人高潮做爰伦理| 一进一出抽搐gif免费好疼| 精品熟女少妇八av免费久了| 人人妻人人澡欧美一区二区| 国产v大片淫在线免费观看| www日本黄色视频网| 国产精品 欧美亚洲| 色吧在线观看| 丁香六月欧美| 我要搜黄色片| 黄色日韩在线| 美女cb高潮喷水在线观看 | 久久久国产成人精品二区| 五月伊人婷婷丁香| 欧美国产日韩亚洲一区| 亚洲国产欧洲综合997久久,| 真人做人爱边吃奶动态| 一个人免费在线观看电影 | 久久久国产成人免费| 嫩草影视91久久| 亚洲一区高清亚洲精品| 男女做爰动态图高潮gif福利片| 高清在线国产一区| 国产av不卡久久| 午夜日韩欧美国产| 狠狠狠狠99中文字幕| 黄色日韩在线| 一区二区三区高清视频在线| 欧美日韩福利视频一区二区| 久久久久亚洲av毛片大全| 两人在一起打扑克的视频| 在线视频色国产色| 在线播放国产精品三级| 国产精品一区二区三区四区久久| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 白带黄色成豆腐渣| 免费看十八禁软件| 国内少妇人妻偷人精品xxx网站 | 91麻豆精品激情在线观看国产| 夜夜躁狠狠躁天天躁| 九九热线精品视视频播放| 国产亚洲精品av在线| 国内毛片毛片毛片毛片毛片| av福利片在线观看| 一本一本综合久久| 国产野战对白在线观看| 高清在线国产一区| 国产一区二区激情短视频| 一本综合久久免费| 天天躁日日操中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久中文| 性色av乱码一区二区三区2| 成年版毛片免费区| 久久午夜亚洲精品久久| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| 1024香蕉在线观看| 中文字幕高清在线视频| 亚洲aⅴ乱码一区二区在线播放| 中文亚洲av片在线观看爽| 操出白浆在线播放| www日本黄色视频网| 国产综合懂色| 国产一区二区激情短视频| 国产免费男女视频| 十八禁人妻一区二区| 男人舔女人的私密视频| 成人三级做爰电影| 国产精品一区二区三区四区久久| 国产午夜精品论理片| 久久天躁狠狠躁夜夜2o2o| 国产极品精品免费视频能看的| 免费在线观看成人毛片| 99久久精品热视频| 一二三四社区在线视频社区8| 黄色丝袜av网址大全| 国产黄a三级三级三级人| 国产精品99久久久久久久久| 国模一区二区三区四区视频 | 在线免费观看不下载黄p国产 | 欧美最黄视频在线播放免费| 一夜夜www| 又紧又爽又黄一区二区| 午夜激情福利司机影院| 午夜福利欧美成人| 中文字幕久久专区| 18禁美女被吸乳视频| 亚洲国产高清在线一区二区三| 中文字幕精品亚洲无线码一区| 国产精品香港三级国产av潘金莲| 欧美最黄视频在线播放免费| 狠狠狠狠99中文字幕| 亚洲电影在线观看av| 在线看三级毛片| 久久婷婷人人爽人人干人人爱| 看免费av毛片| 日本免费a在线| 日韩中文字幕欧美一区二区| 夜夜夜夜夜久久久久| 国产精品久久久久久精品电影| 精品久久久久久久人妻蜜臀av| 日本a在线网址| 亚洲中文字幕日韩| 免费在线观看成人毛片| 他把我摸到了高潮在线观看| 99国产精品99久久久久| 亚洲国产欧美一区二区综合| 久久精品人妻少妇| 国产久久久一区二区三区| 女生性感内裤真人,穿戴方法视频| 成人高潮视频无遮挡免费网站| 久久午夜亚洲精品久久| 91av网一区二区| 亚洲在线自拍视频| 精品免费久久久久久久清纯| 日本黄大片高清| 成年免费大片在线观看| 欧美黄色片欧美黄色片| 色视频www国产| 男女做爰动态图高潮gif福利片| 国产伦精品一区二区三区四那| 欧美在线一区亚洲| 国产乱人视频| 国产激情久久老熟女| 久久香蕉国产精品| 久久久久国产精品人妻aⅴ院| 亚洲成av人片免费观看| 亚洲成人中文字幕在线播放| 亚洲 欧美一区二区三区| 国产成人精品无人区| ponron亚洲| 欧美中文综合在线视频| 午夜福利免费观看在线| 在线观看免费视频日本深夜| 国产亚洲欧美98| 97超视频在线观看视频| 亚洲一区二区三区不卡视频| 国产亚洲av嫩草精品影院| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线精品亚洲第一网站| 亚洲精品中文字幕一二三四区| 黄色 视频免费看| 亚洲欧美激情综合另类| 精品久久久久久,| 精品99又大又爽又粗少妇毛片 | 91麻豆av在线| 19禁男女啪啪无遮挡网站| 欧美日韩精品网址| bbb黄色大片| 免费av毛片视频| 9191精品国产免费久久| 国产精华一区二区三区| 亚洲欧美日韩无卡精品| 精品国内亚洲2022精品成人| 欧美黑人巨大hd| 亚洲精品在线观看二区| 伦理电影免费视频| 舔av片在线| 成年女人看的毛片在线观看| 欧美成人免费av一区二区三区| 国产一区二区在线av高清观看| 黄色日韩在线| 桃色一区二区三区在线观看| 天堂动漫精品| www日本在线高清视频| 亚洲成人久久爱视频| 精品国产美女av久久久久小说| 欧美日本视频| 美女cb高潮喷水在线观看 | 天堂网av新在线| 国产成人精品无人区| 国产三级中文精品| xxx96com| 国产成人精品无人区| 男人舔奶头视频| xxx96com| 亚洲国产精品成人综合色| 国产精品久久久久久亚洲av鲁大| 男女那种视频在线观看| 99国产精品一区二区蜜桃av| 午夜福利在线在线| 九色国产91popny在线| av视频在线观看入口| 男人舔奶头视频| 91老司机精品| 一个人观看的视频www高清免费观看 | 成年女人永久免费观看视频| 国产精品亚洲一级av第二区| 欧美丝袜亚洲另类 | 欧美日本视频| 后天国语完整版免费观看| 国产伦精品一区二区三区视频9 | 一级黄色大片毛片| 少妇的丰满在线观看| 变态另类丝袜制服| 女同久久另类99精品国产91| 免费看日本二区| 亚洲熟妇中文字幕五十中出| 国产精品1区2区在线观看.| 亚洲一区高清亚洲精品| 国产一区二区在线av高清观看| 久久香蕉精品热| 色av中文字幕| av在线天堂中文字幕| 午夜视频精品福利|