解衛(wèi)海, 馬淑杰, 祁 琳, 張振華, 柏新富,*
1 魯東大學(xué)生命科學(xué)學(xué)院, 煙臺 264025 2 魯東大學(xué)地理與規(guī)劃學(xué)院, 煙臺 264025
Na+吸收對干旱導(dǎo)致的棉花葉片光合系統(tǒng)損傷的緩解作用
解衛(wèi)海1, 馬淑杰1, 祁 琳1, 張振華2, 柏新富1,*
1 魯東大學(xué)生命科學(xué)學(xué)院, 煙臺 264025 2 魯東大學(xué)地理與規(guī)劃學(xué)院, 煙臺 264025
以盆栽棉花為材料,在植株高約20 cm時用不同濃度NaCl溶液澆透后進(jìn)行持續(xù)干旱處理。在干旱處理期間測定葉片葉綠素?zé)晒鈪?shù)、光合氣體交換參數(shù)的變化以及植株水分狀況和Na+含量,以分析土壤NaCl施入引起的棉花Na+吸收和積累量的增加對干旱脅迫導(dǎo)致的葉片光合系統(tǒng)損傷的緩解作用及可能原因。結(jié)果表明,未用NaCl處理的棉花植株,其葉片凈光合速率隨著干旱的延續(xù)而持續(xù)下降、光合機(jī)構(gòu)在干旱處理后期出現(xiàn)了嚴(yán)重?fù)p傷;而NaCl處理的棉花植株,其葉片凈光合速率下降幅度明顯小于未用NaCl處理的,光合機(jī)構(gòu)受損傷程度也較輕或無明顯損傷。對各處理棉花植株Na+的吸收和水分狀況的測定分析表明,NaCl處理的植株,其葉片Na+積累顯著增加、滲透勢降低,細(xì)胞膨壓顯著高于未用NaCl處理的植株。由此可見,在土壤澆灌NaCl溶液后的持續(xù)干旱條件下,棉花植株吸收和積累Na+增加,降低了組織滲透勢、維持了一定的細(xì)胞膨壓,從而有效緩解了干旱脅迫對葉片光合機(jī)構(gòu)的損傷。
棉花; Na+; 干旱; 光系統(tǒng)Ⅱ光化學(xué)效率; 氣體交換
旱、鹽等非生物脅迫是影響植物生長發(fā)育、引起農(nóng)作物減產(chǎn)的主要環(huán)境因子[1],其中又以干旱造成的損失最大,損失量超過其它逆境造成損失的總和[2-3]。干旱引起植物水分平衡失調(diào),進(jìn)而引起代謝紊亂、生長被抑制、光合速率降低等[4]。土壤鹽漬化除導(dǎo)致土壤溶液水勢降低、植物吸水困難、形成滲透脅迫外,還能引起離子毒害并誘發(fā)氧化脅迫等[5-6]。在干旱半干旱地區(qū)由于蒸發(fā)量遠(yuǎn)大于降水量,再加上植物根系的吸水作用,導(dǎo)致近地表土壤溶液濃縮、鹽分濃度升高,從而形成旱、鹽雙重脅迫,對植物造成更嚴(yán)重的危害。然而,土壤鹽分的存在也能夠使植物以消耗較少的能量來吸收鹽離子、降低滲透勢、提高根系從外界吸水的能力[7],也就是說植物對鹽分的吸收和積累可能會增強(qiáng)其抗旱能力,目前在鹽生植物和荒漠植物中已有相關(guān)報道[8-9],而在農(nóng)作物中還未見相關(guān)研究。
光合作用是植物最基本的生命活動,是對逆境脅迫影響最為敏感的生理過程之一。干旱脅迫會導(dǎo)致植物光合作用受到抑制,甚至光合機(jī)構(gòu)的嚴(yán)重?fù)p傷[3,10]。本實驗利用不同濃度NaCl溶液處理盆栽棉花,測定干旱持續(xù)過程中棉花葉片光合氣體交換、葉綠素?zé)晒鈪?shù)的變化以及Na+積累與植株水分狀況的關(guān)系,分析Na+吸收、積累對葉細(xì)胞水分狀況的影響及其在緩解干旱導(dǎo)致的光合機(jī)構(gòu)損傷中的作用,探討Na+積累在棉花適應(yīng)干旱過程中的作用,為干旱半干旱地區(qū)和環(huán)渤海濱海地區(qū)棉花種植的微咸水灌溉提供參考。
實驗在玻璃溫室內(nèi)進(jìn)行,供試材料為新農(nóng)抗13號棉花(Gossypiumspp)。將園土和蛭石以2∶1的比例混合均勻后,分別裝入15個直徑為45 cm的花盆中。將棉花種子在水中浸泡12 h后,選擇飽滿均勻的種子分別種到花盆中,每個花盆種15顆種子,適時澆水,保證土壤濕潤。幼苗長到3片真葉時進(jìn)行間苗,每盆留下7棵長勢均勻的幼苗。待幼苗長至6片真葉時(高約20 cm)進(jìn)行處理,將材料分成A、B、C、D、E 5組(每組3盆),A、B兩組澆灌自來水10 L,C、D、E 3組分別澆灌濃度為25、50、100 mmol/L NaCl溶液10 L,使盆土中溶液完全被替換為相應(yīng)濃度的NaCl溶液。隨后A組保持正常澆水,即A組為沒有進(jìn)行干旱處理的對照(CK); B、C、D、E組停止?jié)菜?,進(jìn)行自然干旱,即B組為常規(guī)干旱處理、C組為干旱加25 mmol/L NaCl處理、 D組為干旱加50 mmol/L NaCl處理、E組為干旱加100 mmol/L NaCl處理。在干旱處理的第0、5、10、15、20、25、30天測定各項光合氣體交換和葉綠素?zé)晒鈪?shù)指標(biāo),并在第30天完成上述測定后取樣進(jìn)行水分狀況和Na+含量的測定。
光合氣體交換參數(shù)用便攜式光合作用測定系統(tǒng)(PP System,USA)測定,測定光強(qiáng)為(800±10) μmol m-2s-1。該系統(tǒng)能同步獲得活體葉片的凈光合速率(Pn)、空氣CO2濃度(Ca)、細(xì)胞間隙CO2濃度(Ci)等生理生態(tài)參數(shù),氣孔限制值(Ls)用Berry和Downtow 方法[11]計算:Ls=1-Ci/Ca。每種處理均取倒數(shù)第一個完全展開葉片為測定對象,每處理重復(fù)測定5個植株的5個葉片。
葉綠素?zé)晒鈪?shù)用Handy-PEA便攜式植物效率分析儀(連續(xù)激發(fā)式熒光儀,Hansatech,UK)測定。激發(fā)光(飽和脈沖光)強(qiáng)度為3000 μmol m-2s-1,暗適應(yīng)時間為 15 min,記錄時間1 s。熒光參數(shù)由 Handy PEA 軟件直接從測定結(jié)果中導(dǎo)出。每個處理重復(fù)測定15個葉片。
植株水勢在處理后第30天用壓力室法測定,葉片滲透勢用露點(diǎn)微伏壓計(HR-33T,美國)測定,均重復(fù)測定5個植株。葉片滲透勢測定以上數(shù)第2個完全展開葉片為測定對象,取每個葉片的半葉(另半葉用于測定Na+含量)密封在自封袋內(nèi)置冰箱(-18 ℃)冷凍10 h以上,取出在室溫下解凍并待溫度平衡后擠壓出組織液進(jìn)行測定。細(xì)胞膨壓則用下式計算:細(xì)胞膨壓=水勢-滲透勢。
取測定滲透勢所用葉片的另半葉在70 ℃烘干后參照王寶山和趙可夫[12]的方法提取葉片Na+。溶液中Na+含量采用GBC-932B型原子吸收分光光度計(GBC,AU)測定。
實驗數(shù)據(jù)以“平均值±標(biāo)準(zhǔn)差”表示,用Origin7.5作圖、SPSS17.5進(jìn)行數(shù)據(jù)處理和統(tǒng)計分析。
Fo是初始熒光量或最小熒光量,為PSⅡ反應(yīng)中心處于完全開放時的熒光產(chǎn)量,F(xiàn)o的升高說明色素吸收的能量中流向光化學(xué)反應(yīng)的部分減少,PSⅡ反應(yīng)中心的破壞或可逆失活會引起Fo的增加[13]、非光化學(xué)能量耗散和光合色素的破壞則引起Fo的下降[14]??勺儫晒猱a(chǎn)量Fv=Fm-Fo(Fm:最大熒光量),F(xiàn)v下降反映了PSⅡ反應(yīng)中心QA氧化態(tài)數(shù)量減少,使QA→QB傳遞電子的能力下降[15]。從本實驗結(jié)果可見,在干旱持續(xù)10 d后,B組Fo迅速上升,20 d后又快速下降;C、D、E組Fo在干旱持續(xù)10 d后出現(xiàn)小幅上升隨后又恢復(fù)至與對照(A)相似的水平。B組Fv在干旱10 d后則快速下降,而C、D、E組在10 d后也開始緩慢下降,但下降幅度較小(圖1)。說明,在干旱持續(xù)10 d后B組葉片PSⅡ反應(yīng)中心開始失活,QA→QB的電子傳遞受阻,隨著干旱持續(xù)時間延長反應(yīng)中心失活加劇,至20 d后出現(xiàn)光合色素的破壞,光合機(jī)構(gòu)受損嚴(yán)重。而C、D、E組雖然也有PSⅡ反應(yīng)中心失活現(xiàn)象,但很快就能部分修復(fù)。
圖1 各處理Fo和Fv隨干旱持續(xù)時間的變化Fig.1 Changes of Fo and Fv in leaves of cotton plants treated with drought for different time
Fv/Fm和Fv/Fo是表示PSⅡ光化學(xué)反應(yīng)狀況的兩個葉綠素?zé)晒鈪?shù),F(xiàn)v/Fm表示PSⅡ最大光化學(xué)效率,F(xiàn)v/Fo代表反應(yīng)中心PSⅡ潛在的活性[16]。當(dāng)植物光合機(jī)構(gòu)受到損害時,F(xiàn)v/Fm和Fv/Fo值就明顯降低[17]。本實驗結(jié)果顯示,B組的Fv/Fm和Fv/Fo值均在干旱處理10 d后開始大幅度下降,C、D、E組Fv/Fm和Fv/Fo值也在干旱處理10 d后出現(xiàn)下降,但下降較緩慢,在整個實驗期間都能維持在一個相對較高的水平(圖2)。這說明干旱導(dǎo)致了棉花葉片PSⅡ光化學(xué)反應(yīng)活性和效率的顯著降低,持續(xù)干旱使光合機(jī)構(gòu)受到明顯損害;而土壤NaCl的添加能減緩干旱脅迫造成的葉片PSⅡ反應(yīng)中心的破壞。
圖2 各處理Fv/Fm和Fv/Fo隨干旱持續(xù)時間的變化Fig.2 Changes of Fv/Fm and Fv/Fo in leaves of cotton plants treated with drought for different time
RC/CSo是表明單位面積有活性反應(yīng)中心數(shù)量的參數(shù)(RC為反應(yīng)中心,CSo為橫截面),ABS/RC是表明單位反應(yīng)中心吸收的光能的參數(shù)(ABS為吸收光量子通量)[18]。由本實驗結(jié)果可見,在干旱處理10 d后,B組RC/CSo開始快速下降,RC/ABS則快速上升,至30 d時RC/CSo已下降至150左右、RC/ABS則上升至30以上。C、D、E組RC/CSo的下降和RC/ABS的上升都比較平緩,在第30天時RC/CSo仍維持在300以上、RC/ABS則保持在20以下(圖3)。RC/CSo的下降說明單位面積有活性反應(yīng)中心的數(shù)量在減少,ABS/RC上升則說明每個有活性反應(yīng)中心吸收的光能增加[19]。從兩者的變化規(guī)律中可以看出持續(xù)干旱使單位面積有活性的反應(yīng)中心數(shù)量下降,迫使剩余的有活性的反應(yīng)中心的負(fù)擔(dān)加重,表明干旱導(dǎo)致了光合反應(yīng)中心不可逆的損傷;而土壤NaCl的存在則使這種損傷程度減輕。
圖3 各處理RC/CSo和ABS/RC隨干旱處理時間的變化Fig.3 Changes of RC/CSo and ABS/RC in leaves of cotton plants treated with drought for different timeRC/CSo: 單位面積有活性反應(yīng)中心數(shù)量The density of the active photosynthetic reaction centers;ABS/RC: 單位反應(yīng)中心吸收的光能The effective antenna size; RC: 反應(yīng)中心reaction centre; CSo: 橫截面cross section; ABS: 吸收光量子通量absorption flux
圖4 各處理PIABS隨干旱處理時間的變化 Fig.4 Changes of PIABS in leaves of cotton plants treated with drought for different time
PIABS是以吸收光能為基礎(chǔ)的光合性能指數(shù)[13],可以準(zhǔn)確地反映植物光合機(jī)構(gòu)的整體狀態(tài),是反應(yīng)光合系統(tǒng)受到環(huán)境影響的最敏感的參數(shù)[20-21]。當(dāng)植物受到干旱或鹽等環(huán)境脅迫導(dǎo)致光合系統(tǒng)受到損傷時,PIABS值會隨著脅迫的加劇而持續(xù)下降。本實驗結(jié)果顯示,B組的PIABS值變化最大,在第30天已經(jīng)下降至近0;C、D、E組的PIABS值在前5 d下降幅度稍大于B組,可能與NaCl的影響有關(guān),5 d后下降幅度均遠(yuǎn)小于B組(圖4)??梢?,B組的光合機(jī)構(gòu)受到了明顯損傷,而C、D、E組的受損傷程度相對較小。
圖5 各處理凈光合速率隨干旱處理時間的變化 Fig.5 Changes of the net photosynthetic rate in leaves of cotton plants treated with drought for different time
對不同處理葉片光合速率的測定結(jié)果表明,干旱顯著降低棉花葉片的光合速率,其中B組在處理后第10天光合速率開始大幅下降,至處理后第30天降至近0;而C、D、E組的光合速率下降幅度明顯小于B組(圖5)。進(jìn)一步分析各處理的細(xì)胞間隙CO2濃度和氣孔限制值的變化發(fā)現(xiàn),處理B在處理后的前20 d細(xì)胞間隙CO2濃度下降、氣孔限制值升高,隨后細(xì)胞間隙CO2濃度迅速升高、氣孔限制值則快速下降;而C組細(xì)胞間隙CO2濃度和氣孔限制值在干旱處理25 d后出現(xiàn)上升和下降,但上升和下降幅度遠(yuǎn)小于B組;而D、E組的細(xì)胞間隙CO2濃度和氣孔限制值在整個實驗期間一直表現(xiàn)為小幅下降和升高(圖6)。依據(jù)高輝遠(yuǎn)等[22]和許大權(quán)[23]的觀點(diǎn),可以認(rèn)為B組在干旱處理的前20 d光合速率下降的原因是氣孔因素,即氣孔關(guān)閉或部分關(guān)閉導(dǎo)致的CO2供應(yīng)不足;20 d后光合速率下降的主要原因則是非氣孔因素,即光合機(jī)構(gòu)受損導(dǎo)致的葉肉細(xì)胞光合活性的降低;C組在干旱處理25 d后光合速率下降的原因才是非氣孔因素,而D、E組在測定期限內(nèi),光合速率下降的原因主要是氣孔因素,并沒有出現(xiàn)光合機(jī)構(gòu)的明顯受損??梢?,在土壤中添加NaCl可明顯緩解干旱脅迫對棉花光合機(jī)構(gòu)的損傷。
圖6 各處理細(xì)胞間隙CO2濃度和氣孔限制值隨干旱處理時間的變化Fig.6 Changes of intercellular CO2 concentration (Ci) and stomata limitations (Ls) in leaves of cotton plants treated with drought for different time
對干旱處理第30天各處理棉花植株水分狀況的測定結(jié)果顯示,A組(CK)維持較高的葉片水勢、滲透勢和細(xì)胞膨壓,干旱處理(B、C、D、E)則導(dǎo)致各項指標(biāo)的顯著降低(圖7)。其中,B組細(xì)胞膨壓為負(fù)值,葉片嚴(yán)重萎蔫;而C、D、E組由于具有更低的滲透勢,細(xì)胞膨壓均為正值,且顯著高于B組(P<0.05),說明細(xì)胞仍維持一定的膨脹狀態(tài),這有利于其正常生理活動的進(jìn)行。另對干旱脅迫下葉片Na+含量與滲透勢的關(guān)系分析發(fā)現(xiàn),葉片滲透勢的降低與Na+含量有極顯著的對數(shù)相關(guān)(圖7,相關(guān)指數(shù)R=0.971>R0.01)。說明在NaCl溶液灌溉后的持續(xù)干旱條件下,棉花植株能夠通過吸收和積累Na+等無機(jī)離子(主要區(qū)隔化在液泡內(nèi))來降低滲透勢,從而增強(qiáng)滲透調(diào)節(jié)能力和吸水、保水能力,使組織能夠維持相對較高的細(xì)胞膨壓。
圖7 各處理植株水分狀況及葉片滲透勢與Na+含量的關(guān)系Fig.7 The water status of plants in different groups and the osmotic potential of leaves in relation to the Na+ content數(shù)據(jù)柱上標(biāo)記字母不同表示差異顯著(P<0.05)
干旱會引起氣孔導(dǎo)度的降低或者關(guān)閉,進(jìn)而影響植物葉片的氣體交換,通過對表觀的氣體交換參數(shù)變化的分析可以判斷光合作用受影響的程度和原因[24]。葉綠素?zé)晒夥治黾夹g(shù)則是研究和探測植物光合生理狀況及各種外界因子或脅迫對其細(xì)微影響的快速、準(zhǔn)確的活體測定和診斷技術(shù)[21,25],與氣體交換指標(biāo)相比,葉綠素?zé)晒鈪?shù)具有“內(nèi)在性”的特點(diǎn)[26-27]。在本實驗中隨著干旱持續(xù)時間的延長,棉花葉片的凈光合速率逐漸下降(圖5),但NaCl處理的棉花植株,其葉片凈光合速率的下降幅度明顯低于未用NaCl處理的。進(jìn)一步分析光合速率變化的原因,從氣體交換參數(shù)的變化可見,未用NaCl處理的棉花植株在干旱持續(xù)20 d后細(xì)胞間隙CO2濃度迅速升高、氣孔限制值則快速下降;而NaCl處理的棉花植株,其葉片細(xì)胞間隙CO2濃度和氣孔限制值在整個實驗期間一直表現(xiàn)為小幅變化(圖6)。說明未用NaCl處理的棉花植株,在干旱持續(xù)20 d后,其光合速率下降的主要原因是光合機(jī)構(gòu)受損導(dǎo)致的葉肉細(xì)胞光合活性的降低,而NaCl處理的并沒有出現(xiàn)光合機(jī)構(gòu)的明顯受損。葉綠素?zé)晒鈪?shù)的變化則表現(xiàn)為,未用NaCl處理的棉花植株,其參數(shù)Fo在干旱持續(xù)10 d后開始快速上升20 d后又迅速下降,F(xiàn)v、Fv/Fm、Fv/Fo、RC/CSo和PI均在干旱持續(xù)10 d后開始快速持續(xù)下降(PI在干旱處理5 d后就開始下降),ABS/RC則在干旱持續(xù)10 d后上升,這些結(jié)果均顯示持續(xù)干旱導(dǎo)致了其葉片光合機(jī)構(gòu)的嚴(yán)重?fù)p傷;而NaCl處理的棉花植株,各參數(shù)的變化幅度較小或無明顯變化,即損傷較輕或無明顯損傷。與氣體交換參數(shù)相比較可以發(fā)現(xiàn),兩者均能很好地顯示持續(xù)干旱對葉片光合機(jī)構(gòu)的影響,但葉綠素?zé)晒鈪?shù)在持續(xù)干旱10 d后就表現(xiàn)出明顯變化,而氣體交換參數(shù)在20 d后才出現(xiàn)明顯變化,說明持續(xù)干旱10 d后棉花葉片光合機(jī)構(gòu)的就開始受到了損傷,這時從“表觀的”氣體交換參數(shù)上并不能體現(xiàn)出來,而葉綠素?zé)晒鈪?shù)卻能及時顯現(xiàn)光合機(jī)構(gòu)的內(nèi)部變化。
雖然土壤鹽漬化可導(dǎo)致環(huán)境滲透脅迫,并引起離子毒害和氧化脅迫[5,28],如果同時伴有干旱則會引起土壤溶液進(jìn)一步濃縮,環(huán)境鹽離子濃度升高更有利于Na+等從外界環(huán)境到植物細(xì)胞內(nèi)的運(yùn)輸[29-31],且使植物對K+的吸收減少[32],從而對植物產(chǎn)生更嚴(yán)重的傷害。但是,本實驗結(jié)果顯示,在盆土中澆灌適量的NaCl溶液后,在隨后的持續(xù)干旱條件下,棉花植株對Na+的吸收和積累顯著增加,并在一定程度上降低了葉片的滲透勢,從而使細(xì)胞能夠維持一定的膨壓,而細(xì)胞膨壓的維持對保護(hù)葉綠素和細(xì)胞的正常功能都具有重要作用[33-34]。對氣體交換參數(shù)和葉綠素?zé)晒鈪?shù)的分析均顯示用NaCl溶液澆灌的棉花植株與沒有澆灌NaCl的相比,在干旱脅迫下葉片光合機(jī)構(gòu)受損傷程度顯著減輕或沒有出現(xiàn)明顯損傷。雖然干旱和鹽脅迫條件下植物細(xì)胞能夠通過合成和積累有機(jī)滲透調(diào)節(jié)物質(zhì)可溶性糖、脯氨酸和甜菜堿等來調(diào)節(jié)滲透勢,但是有機(jī)滲透調(diào)節(jié)物質(zhì)的合成、轉(zhuǎn)運(yùn)和積累會在一定程度上干擾和重新定向植物的正常的生理過程,且有機(jī)分子的合成、累積和轉(zhuǎn)運(yùn)都需要耗能耗時;而吸收和積累Na+等鹽離子作為滲透調(diào)節(jié)物質(zhì)則可以避免這種干擾且耗能耗時均較少。也就是說,在旱、鹽協(xié)同作用下,植物吸收和積累Na+并區(qū)隔化至液泡進(jìn)行滲透調(diào)節(jié)比其合成和積累有機(jī)物進(jìn)行滲透調(diào)節(jié)更為經(jīng)濟(jì)和高效,Slama等[35]和陳成升等[36]的實驗也證實了這一點(diǎn)。當(dāng)然,土壤鹽漬化導(dǎo)致的Na+吸收和積累量增加對干旱條件下植物滲透調(diào)節(jié)的增效作用是相對的和有一定限度的,不同植物在不同干旱程度下對土壤含鹽量的反應(yīng)都會有很大差異,如果土壤含鹽量過高無疑會加重干旱對植物的不利影響,各種植物抗旱性對土壤鹽分響應(yīng)的適宜范圍還需進(jìn)一步研究。
[1] Aroca R, Porcel R, Ruiz-Lozano J M. Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 2012, 63(1): 43-57.
[2] Anjum S A, Xie X Y, Wang L C, Saleem M F, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 2011, 6(9): 2026-2032.
[3] Rahdari P, Hoseini S M. Drought stress: A review. International Journal of Agronomy and Plant Production, 2012, 3(10): 443-446.
[4] Mohan S C, Binod K, Suhel M, Kunj C. Effect of drought stress in rice: A review on morphological and physiological characteristics. Trends in Biosciences, 2012, 5(4): 261-265.
[5] Shaheen S, Naseer S, Ashraf M, Akram N A. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms inSolanummelongenaL. Journal of Plant Interactions, 2013, 8(1): 85-96.
[6] 韓冰, 孫錦, 郭世榮, 金春燕. 鈣對鹽脅迫下黃瓜幼苗抗氧化系統(tǒng)的影響. 園藝學(xué)報, 2010, 37(12): 1937-1943.
[7] Ma Q, Yue L J, Zhang J L, Wu G Q, Bao A K, Wang S M. Sodium chloride improves photosynthesis and water status in the succulent xerophyteZygophyllumxanthoxylum. Tree Physiology, 2012, 32(1): 4-13.
[8] Wang S M, Wan C G, Wang Y R, Chen H, Zhou Z Y, Fu H, Sosebee R E. The characteristics of Na+, K+and free proline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environments, 2004, 56(3): 525-539.
[9] 譚永芹, 柏新富, 侯玉平, 張振華. 土壤鹽分對三角葉濱藜抗旱性能的影響. 生態(tài)學(xué)報, 2013, 33(23): 7340-7347.
[10] Wang Z X, Chen L, Ai J, Qin H Y, Liu Y X, Xu P L, Jiao Z Q, Zhao Y, Zhang Q T. Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (VitisamurensisRupr.). Photosynthetica, 2012, 50(2): 189-196.
[11] Berry J A, Downton W J S. Environmental regulation of photosynthesis // Govind J. Photosynthesis (Vol Ⅱ). New York: Academic Press, 1982: 263-343.
[12] 王寶山, 趙可夫. 小麥葉片中Na、K提取方法的比較. 植物生理學(xué)通訊, 1995, 31(1): 50-52.
[13] 付春霞, 張元珍, 王衍安, 范曉丹, 閆玉靜, 張友朋. 缺鋅脅迫對蘋果葉片光合速率及葉綠素?zé)晒馓匦缘挠绊? 中國農(nóng)業(yè)科學(xué), 2013, 46(18): 3826-3833.
[14] Li R H, Guo P G, Michael B, Stefania G, Salvatore C. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 2006, 5(10): 751-757.
[15] Dias M C, Brüggemann W. Limitations of photosynthesis inPhaseolusvulgarisunder drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica, 2010, 48(1): 96-102.
[16] Kalaji H M, Carpentier R, Allakhverdiev S I, Bosa K. Fluorescence parameters as early indicators of light stress in barley. Journal of Photochemistry and Photobiology B: Biology, 2012, 112: 1-6.
[17] 王海珍, 韓路, 徐雅麗, 王琳, 賈文鎖. 胡楊異形葉葉綠素?zé)晒馓匦詫Ω邷氐捻憫?yīng). 生態(tài)學(xué)報, 2011, 31(9): 2444-2453.
[18] 魏曉東, 陳國祥, 施大偉, 劉丹, 唐加紅, 李霞. 干旱脅迫對銀杏葉片光合系統(tǒng)Ⅱ熒光特性的影響. 生態(tài)學(xué)報, 2012, 32(23): 7492-7500.
[19] 卜慶梅, 柏新富, 朱建軍. 4種園林樹木葉綠素?zé)晒鈪?shù)對脫水的響應(yīng)及耐旱特性分析. 林業(yè)科學(xué), 2011, 47(10): 37-43.
[20] Van Heerden P D R, Strasser R J, Krüger G H J. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiologia Plantarum, 2004, 121(2): 239-249.
[21] Stirbet A, Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 2011, 104(1/2): 236-257.
[22] 高輝遠(yuǎn), 鄒琦, 程炳嵩. 大豆光合日變化過程中氣孔限制和非氣孔限制的研究. 西北植物學(xué)報, 1993, 13(2): 96-102.
[23] 許大全. 光合作用氣孔限制分析中的一些問題. 植物生理學(xué)通訊, 1997, 33(4): 241-244.
[24] Zlatev Z. Leaf gas exchange and water relations of two sunflower cultivars under drought. Agricultural Science and Technology, 2012, 4(1): 24-26.
[25] 李鵬民, 高輝遠(yuǎn), Strasser R J. 快速葉綠素?zé)晒庹T導(dǎo)動力學(xué)分析在光合作用研究中的應(yīng)用. 植物生理與分子生物學(xué)學(xué)報, 2005, 31(6): 559-566.
[26] Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis. Ecological Studies, 1994, 100(1): 49-70.
[27] 羅明華, 胡進(jìn)耀, 吳慶貴, 楊敬天, 蘇智先. 干旱脅迫對丹參葉片氣體交換和葉綠素?zé)晒鈪?shù)的影響. 應(yīng)用生態(tài)學(xué)報, 2010, 21(3): 619-623.
[28] Yadav S, Irfan M, Ahmad A, Hayat S. Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology, 2011, 32(5): 667-685.
[29] Niu X, Bressan R A, Hasegawa P M, Pardo J M. Ion homeostasis in NaCl stress environments. Plant Physiology, 1995, 109(3): 735-742.
[30] Bai X F, Zhu J J, Zhang P, Wang Y H, Yang L Q, Zhang L. Na+and water uptake in relation to the radial reection coefcient of root in arrowleaf saltbush under salt stress. Journal of Integrative Plant Biology, 2007, 49(9): 1334-1340.
[31] 劉正祥, 張華新, 楊秀艷, 劉濤, 狄文彬. NaCl 脅迫下沙棗幼苗生長和陽離子吸收、運(yùn)輸與分配特性. 生態(tài)學(xué)報, 2014, 34(2): 326-336.
[32] 丁同樓, 賈玉輝, 鮑敬, 王寶山. 不同耐鹽性小麥根Na+和K+的吸收特性. 植物生理學(xué)報, 2013, 49(1): 34-40.
[33] Morgan J M. Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology, 1984, 35: 299-319.
[34] Howarth J F, Durako M J. Variation in pigment content ofThalassiatestudinumseedlings in response to changes in salinity and light. Botanica Marina, 2013, 56(3): 261-273.
[35] Slama I, Ghnaya T, Messedi D, Hessini K, Labidi N, Savoure A, Abdelly C. Effect of sodium chloride on the response of the halophyte speciesSesuviumportulacastrumgrown in mannitol-induced water stress. Journal of Plant Research, 2007, 120(2): 291-299.
[36] 陳成升, 謝志霞, 劉小京. 旱鹽互作對冬小麥幼苗生長及其抗逆生理特性的影響. 應(yīng)用生態(tài)學(xué)報, 2009, 20(4): 811-816.
The mitigating effects of Na+accumulation on the drought-induced damage to photosynthetic apparatus in cotton seedlings
XIE Weihai1, MA Shujie1, QI Lin1, ZHANG Zhenhua2, BAI Xinfu1,*
1CollegeofLifeSciences,LudongUniversity,Yantai264025,China2CollegeofGeographyandPlanning,LudongUniversity,Yantai264025,China
Abiotic stresses such as drought and salinity are major factors affecting plant growth and development, leading to the reductions in crop productivity. It is generally believed that plant water stress is exacerbated by saline soils. However, sodium ions absorbed by plant cells are partmentalized into vacuoles, and function as an effective osmoregulator, increasing the ability of plants to absorb and retain water. Thus, salt uptake in plants may potentially alleviate the adverse effects of drought. In this study, pot grown cotton plants were watered with NaCl solutions of different concentrations at a plant height of ca. 20 cm, followed by a sustained drought treatment. Parameters such as chlorophyll fluorescence, photosynthesis and gas exchange, plant water status, tissue Na+content, etc. were measured during drought stress were taken to assess whether Na+could alleviate drought induced photosystem dysfunction in leaves and identify the mechanisms involved. The leaf photosynthetic rates and the gas exchange of the plants were investigated using a TPS-1 portable photosynthesis system (PP System, USA), and chlorophyll fluorescence parameters were measured with a handy PEA (Hansatech, UK). The net photosynthetic rate declined as drought stress progressed in plants not treated with NaCl. By contrast, the decline in photosynthetic rate induced by drought was significantly lower in plants treated with NaCl. In addition, in plants not treated with NaCl, CO2concentrations in leaf intercellular spaces increased rapidly, while the stomatal limitation value decreased rapidly 20 days after the drought treatment commenced; the chlorophyll fluorescence parameterFo(the initial fluorescence) increased rapidly after 10 days of drought treatment, but decreased rapidly after 20 days; the other chlorophyll fluorescence parameters, such asFv(the variable fluorescence),Fv/Fm(maximum quantum efficiency of photosystemⅡ),Fv/Fo(maximum primary yield of photochemistry of photosystemⅡ),RC/CSo(the density of the active photosynthetic reaction centers) andPI(the performance index) all showed sharp declines as drought stress became obvious, while theABS/RC(the effective antenna size) increased consistently 10 days after drought treatment began. These results indicate that the photosynthetic apparatus suffered serious damage in the late stages of drought stress in plants not watered with salt solution. By contrast, the salt treated plants subjected to the same drought stress showed smaller or insignificant changes in these parameters, indicating that the photosynthetic apparatus of the salt treated plants suffered less or no damage. Salt absorption and plant water status have always been extremely important in the study of salt stress. Our results show that Na+accumulation in salt treated plants increased significantly, which lowered leaf osmotic potential, facilitating the maintenance of turgor pressure. Compared to salt treated plants, cells in plants not treated with NaCl lost their turgor with the advancement of drought stress and the plants wilted seriously. It is therefore concluded that the cotton plants treated with NaCl absorbed and accumulated Na+, lowering tissue osmotic potential and maintaining some turgor pressure during sustained drought, thus mitigating damage to the photosynthetic apparatus caused by drought stress.
cotton; Na+; drought; photosystemⅡ(PSⅡ) photochemistry efficiency; gas exchange
國家自然科學(xué)基金項目(41271236)
2014-03-06; < class="emphasis_bold">網(wǎng)絡(luò)出版日期:
日期:2014-12-04
10.5846/stxb201403060382
*通訊作者Corresponding author.E-mail: bxf64@163.com
解衛(wèi)海, 馬淑杰, 祁琳, 張振華, 柏新富.Na+吸收對干旱導(dǎo)致的棉花葉片光合系統(tǒng)損傷的緩解作用.生態(tài)學(xué)報,2015,35(19):6549-6556.
Xie W H, Ma S J, Qi L, Zhang Z H, Bai X F.The mitigating effects of Na+accumulation on the drought-induced damage to photosynthetic apparatus in cotton seedlings.Acta Ecologica Sinica,2015,35(19):6549-6556.