• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Properties of Polylactic Acid (PLA)/Nano-SiO2 Composite Master Batch with Good Thermal Properties

    2015-01-12 08:33:11LIUShuqiang劉淑強(qiáng)WUGaihong吳改紅GUOHongxia郭紅霞ZUOZhong左中鵝DAIJinming戴晉明
    關(guān)鍵詞:紅霞

    LIU Shu-qiang (劉淑強(qiáng)), WU Gai-hong(吳改紅), GUO Hong-xia(郭紅霞), ZUO Zhong-e(左中鵝), DAI Jin-ming (戴晉明)

    1 College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030021, China2 Fashion Institute, Donghua University, Shanghai 200051, China

    Preparation and Properties of Polylactic Acid (PLA)/Nano-SiO2Composite Master Batch with Good Thermal Properties

    LIU Shu-qiang (劉淑強(qiáng))1*, WU Gai-hong(吳改紅)1, 2, GUO Hong-xia(郭紅霞)1, ZUO Zhong-e(左中鵝)1, DAI Jin-ming (戴晉明)1

    1CollegeofTextileEngineering,TaiyuanUniversityofTechnology,Taiyuan030021,China2FashionInstitute,DonghuaUniversity,Shanghai200051,China

    In order to improve the thermal properties of polylactic acid (PLA) master batch, the nano-SiO2was applied to mixing with PLA. The structure and thermal properties of the composite master batches were studied. The results showed that the nano-SiO2modified by 3% coupling agent KH-570 could be dispersed evenly in PLA in small scale. The thermal decomposition temperature of composite master batches increased by 6.20-10.80℃, the glass transition temperature increased by 0.22-5.16℃, and the heat enthalpy at the glass transition temperature increased by 0.574-2.437 J/g, compared with pure PLA. The composite master batch possessed superior thermal stability and heat resistance.

    compositemasterbatch;nano-SiO2;polylacticacid(PLA);thermalproperty

    Introduction

    Polylactic acid (PLA) possesses some excellent performances, including biocompatibility, biodegradability, biological absorbability and so on[1]. The raw material sources of PLA are renewable grains, such as corn, wheat and rice. Therefore, PLA is different from other traditional synthetic materials, such as polyester (PET) and nylon, which depend very heavily on petroleum, natural gas and natural gas liquids as sources of raw materials[2]. Moreover, the PLA material in water or soil can be completely decomposed into water (H2O) and carbon dioxide (CO2), which causes no pollution. Thence PLA is a kind of environment-friendly materials, and is different from other traditional synthetic materials which are degraded difficultly and cause many environmental pollutions[3].

    PLA is often used as surgical sutures, scaffolds, drug slow release and tissue culture. But PLA exists some shortcomings, such as high brittleness and poor thermal property especially[4]. The pure PLA and its products are able to be used at room temperature. However, once the temperature rises over the PLA’s glass transition temperature (commonly 57℃), the PLA and its products would become easy to distort, wrinkle or tear, and the mechanical properties would fall sharply[5]. This is due to PLA’s poor thermal properties, so it is particularly important to improve the thermal properties of PLA.

    In order to improve the thermal properties of PLA, some scholars mixed PLA with other heat-resistant polymers. For instance, Chenetal.[6]mixed PET, which was grafted with long-chain carboxylic acid and had good heat-resistance, with PLA to make composites with higher heat-resistance. Mamun and Bledzki[7]applied polypropylene (PP) to enhance the thermal properties of PLA. However, the mixed polymers with higher heat-resistance are usually non-degradable so that they would affect the degradation of PLA. Some heat-resistant inorganic nanoparticles were usually used as a new method to modify PLA in recent years[8]. For instance, the montmorillonite, rare earths nanoparticles, nanometer calcium carbonate and hydroxyl apatite were frequently reported to modify PLA[9]. The interface treatment between inorganic material and PLA matrix is very important, which is due to that the interface between them affects the dispersion of inorganic material in PLA matrix, the mechanical properties of composites, and other properties. The nano-SiO2was relatively less reported to enhance the thermal properties of PLA. The nano-SiO2is a kind of white, non-toxic and amorphous powder with micro porous morphology, lightweight, good chemical stability, high temperature resistance, non-flammability, and about 1750 ℃ melting point[10].

    In this article, the PLA is mixed with nano-SiO2to form composite master batch. In order to improve the dispersibility of nano-SiO2throughout PLA and the interfacial bonding between nano-SiO2and PLA, the silane coupling agent KH-570 was applied to modifying nano-SiO2. The structure and thermal properties of PLA/nano-SiO2composite master batches were measured, and the effects of nano-SiO2on properties of composite master batch were studied. This provided a theoretical basis for preparing PLA/nano-SiO2composites with good thermal properties.

    1 Experimental

    1.1 Materials

    PLA (6202D) was kindly supplied by Nature Works Industry (U.S.). The number average molecular weight (Mn) of PLA was 51000.

    Nano-SiO2with particle size of 20-180 nm was provided by Fengcheng Chemical Industry, Tianjin, China.

    1.2 Surface modification of nano-SiO2

    In order to improve the dispersion of nano-SiO2in PLA and increase their compatibility, the nano-SiO2should be modified by the coupling agent KH-570.

    The process of modification was as follows: 0.04-0.20 g KH-570 and 15 mL anhydrous ethanol were put into a beaker together, and then 0.1 mol/L HCl was added into the beaker to adjust pH value to 5-6. After that, the beaker was heated in water bath at 70℃ for 30 min, and then 2 g nano-SiO2was added to the solution. The mixtures were shocked by using sonication at 30℃ and 30 kHz for 30 min. After that, the mixed solution was dried under 120 ℃ for 8 h by using the drum (101-2A,Beijing Zhongxing Weiye Instrument Co., Ltd., China). Then the dried mass was crushed and grinded into fine particles by using ball mill (QM-1SP, Nanjing Daxue Instrument Company, China).

    1.3 Processing of PLA/nano-SiO2composite master batch

    Before melt-blending, the pure PLA was dried at 100 ℃ for 20 h under vacuum. Then the dried pure PLA and 3% treated nano-SiO2were fed into the double screw extruder (CET35-40D, Coperion (Nanjing) Machine Co., Ltd., China) during main feed opening (Fig.1a) and auxiliary feed opening (Fig.1b). The temperatures of ten heating zones (Fig.1d) in extruder were set in Table 1. The melt was extruded from extruder into a cool water bath (Fig.1f) to be solidified. At last, the solid band (Fig.1g) was cut as small chips (Φ: 3.175 mm, long: 3.175 mm) by a chip cutter (Fig.1h, LQ, Coperion (Nanjing) Machine Co., Ltd., China). The cut chips were PLA/nano-SiO2master batches.

    a—main feed opening; b—auxiliary feed opening; c—single-screw; d—heating zones; e—connecting with vacuum pump; f—a cool water bath; g—golid band; h—chip cutter; i—basket; j—composite master batchFig.1 PLA/nano-SiO2 composite master batch processing

    Table 1 Temperatures of ten heating zones in extruder

    1.4 Scanning electron microscopy (SEM)

    The dispersion of nano-SiO2and the fracture surfaces of pure PLA and PLA/nano-SiO2composite master batches, were studied by a JEOL JSM-6700F SEM under an acceleration voltage of 10 kV. Prior to the SEM examination, the pure PLA and PLA/nano-SiO2composite master batches were submerged in liquid nitrogen and broken to expose the internal structure for SEM studies. And all the surfaces were sputtered with gold.

    1.5 Thermogravimetric analysis (TGA)

    Thermogravimetric analysis (TGA, Germany Netzsch TG 209 F3) was performed on pure PLA and PLA/nano-SiO2composite samples as follows: 2.5 mg weight samples, nitrogen flow (600 mL/min), temperature range from 40 to 700 ℃, 10℃/min heating rate.

    1.6 Differential scanning calorimetry (DSC)

    The thermal properties of samples (6-9 mg) were measured by a Q100 V9.4 Build 287 DSC (TA Instruments Company, USA) using aluminium oxide as the standard. The melting point (Tm) and glass-transition temperature (Tg) of each sample were measured from 10 to 210℃ under nitrogen at a heating rate of 10℃/min.

    2 Results and Discussion

    2.1 Effect of KH-570 dosage on dispersion of nano-SiO2

    The morphological characterizations of unmodified and modified nano-SiO2were measured. The SEM images of nano-SiO2are shown in Fig.2.

    (a)

    (b)

    (c)Fig.2 SEM images (×10000) of nano-SiO2: (a) unmodified; (b) modified by 3% KH-570; (c) modified by 5% KH-570

    Figure 2(a) is the image of unmodified nano-SiO2, which showed that the nano-SiO2was agglomerated as big mass. Figure 2(b) is the image of nano-SiO2modified by 3% KH-570, which showed that the nano-SiO2was dispersed evenly and loosely in nano-scale. Figure 2(c) is the image of nano-SiO2modified by 5% KH-570, which shows that the nano-SiO2was agglomerated as big mass, even bigger than that of unmodified nano-SiO2(Fig.2(a)).

    The unmodified nano-SiO2was covered with many hydroxyl groups (—OH) as shown in Fig.3. The hydroxyl groups (—OH) between SiO2nanoparticles could form hydrogen bonds. Then the SiO2nanoparticles were linked by hydrogen bonds. So the unmodified nano-SiO2was easy to be agglomerated as big mass. However, if the SiO2nanoparticles were modified by 3% coupling agent KH-570, some hydroxyl groups on its surface would be replaced by organic chain of coupling agent KH-570, and the number of hydroxyl groups (—OH) on surface of nano-SiO2would decrease[11]. So the agglomerating of nano-SiO2which was caused by hydrogen bonds (—OH) would weaken. Therefore, the nano-SiO2modified by 3% KH-570 could disperse evenly and loosely in nano-scale. Moreover, if the nano-SiO2was modified by excessive coupling agent KH-570 (i.e., 5%), there was too much KH-570 between SiO2nanoparticles, and the long-chained KH-570 could link nano-SiO2particles like some bridges between nano-SiO2particles. So the excessive KH-570 (i.e., 5%) would lead to agglomerate mass of nano-SiO2.

    Fig.3 Diagram of nano-SiO2 covered with hydroxyl groups

    2.2 Effect of KH-570 dosage on dispersion of nano-SiO2in composite master batch

    The morphological characterizations of pure PLA and PLA/nano-SiO2composite master batches are shown in Fig.4. Figure 4(a) shows a plane fracture section of pure PLA. Figure 4(b) is the image of fracture section of PLA/unmodified nano-SiO2composite master batch, which showed that the unmodified nano-SiO2were unevenly distributed in the PLA matrix, and in some areas, some nano-SiO2particles (circles) were agglomerated in large scale. This indicated that the nano-SiO2without modifying were easy to be agglomerated in the PLA matrix. Figure 4(c) is the image of fracture section of PLA/3% nano-SiO2modified by 3% KH-570, which shows a uniform dispersion of nano-SiO2in the PLA matrix. Moreover, nano-SiO2still remained small scale (most of them are less than 1m in diameter) in the PLA polymer and was not separated from PLA matrix. This declared that the right amount of KH-570 (i.e., 3%) to modify nano-SiO2was beneficial to the dispersability of nano-SiO2in the PLA matrix and the link between nano-SiO2and PLA. Figure 4(d), the image of fracture section of PLA/3% nano-SiO2modified by 5% KH-570, showed that SiO2was agglomerated as bigger particles (circles) over 1.0 μm embedding in PLA. This image declared that too much KH-570 (i.e., 5%) to modify nano-SiO2, in fact, would lead to bigger agglomerations.

    (a)

    (b)

    (c)

    (d)

    The KH-570 silane coupling agent has two functions in the master batch of PLA/nano-SiO2composite. One is that they could improve the dispersion of nano-SiO2, for details see section 2.1 above. The other is that they could connect nano-SiO2with the PLA matrix. The molecular structure of KH-570 silane coupling agent could be abbreviated as RnSiX3, in which R is an organic functional group which can form a chemical bond with the PLA polymer, and X is an easily hydrolyzable group which can react with the hydroxyl groups (—OH) on the surface of nano-SiO2and then connect KH-570 with nano-SiO2[12]. So the KH-570 silane coupling agent, as a bridge, connects the PLA polymer with nano-SiO2together. The process of connecting is shown in Fig.5.

    Fig.5 The process of connecting nano-SiO2 with PLA by KH-570

    2.3 Dispersion of nano-SiO2in composite master batch

    The morphological characterizations of PLA/nano-SiO2composite master batch with different nano-SiO2dosages are shown in Fig.6. From Figs.6(a)-(d), the nano-SiO2dosages are 1%, 3%, 5% and 10%.

    Fig.6 SEM images (×3000) of PLA/nano-SiO2composite master batches with different nano-SiO2dosages: (a) PLA/1% nano-SiO2;

    (b) PLA/3% nano-SiO2; (c) PLA/5% nano-SiO2; (d) PLA/10% nano-SiO2

    Figure 6 shows that 1%-5% nano-SiO2, can distribute evenly in small scale throughout the PLA matrix, but 10% nano-SiO2formed some dense band (circles). These declare that when the PLA matrix includes less nano-SiO2(generally lower than 5%), the nano-SiO2, modified by appropriate amount of KH-570 silane coupling agent, can distribute evenly throughout the PLA matrix, so the KH-570 is effective. When the PLA matrix includes too much nano-SiO2(e.g., 10%), although the nano-SiO2is modified by KH-570 silane coupling agent, the nano-SiO2is still agglomerated as some dense band, and then the KH-570 is ineffective. Because the nano-SiO2nanoparticles have large surface energy, and the dosage of nano-SiO2increases, the density of nano-SiO2particles enhances, and the chances for nano-SiO2particles to contact with each other also increase, so they tend to get together. On the contrary, the KH-570 gives the nano-SiO2a tendency of separating from each other. When less nano-SiO2in PLA, the tendency of separating from each other occupied the main position, and when too much nano-SiO2in PLA, the tendency of getting together occupied the main position.

    2.4 Thermal characterization of composite master batches

    PLA can be thermal-decomposed easily at high temperature, due to its poor thermal stability. The thermo-decomposing temperature is a parameter of evaluating material’s thermal stability.

    The TGA curves of pure PLA and composite master batches including different nano-SiO2are shown in Fig.7. The results show that the pure PLA and composite master batches lost weight mainly at 300-400℃. The four curves all have only one knee, which means that the PLA samples were all broken down in just one step. According to the four curves, the thermo-decomposing temperatures, which means the maximum slope of curve, are measured and shown in Table 2. The thermo-decomposing temperature of PLA composited with 1% to 5% nano-SiO2was higher than that of pure PLA by 6.20℃ to 10.80℃. This results declare that the added nano-SiO2can improve the thermo-decomposing temperature of composite master batches, and the more nano-SiO2, the higher thermo-decomposing temperature. For this there were many causes. The nano-SiO2itself was a kind of heat resistant material whose melting point was as high as 1750 ℃. Also its heterogeneous-nucleation-effect increased the crystallinity degree of PLA matrix. The bonds of “Si—O—Si” and “Si—O—C” also formed when nano-SiO2was reacted with PLA, and the energy of “Si—O” bond formed in composites was higher than that of “C—C” bond in pure PLA. All above were helpful to the thermal stability of composite master batches. Therefore, the thermo-decomposing temperature of composite master batches was higher than that of pure PLA.

    Fig.7 TGA curves of pure PLA and composite master batches

    The DSC heating curves of pure PLA and composite master batches are shown in Fig.8. According to these DSC curves, the glass transition temperature (Tg), melting temperature (Tm) and heat enthalpy are measured and shown in Table 2. The results indicated that the glass transition temperature (Tg) of composite master batches with 1%-5% nano-SiO2is higher than that of pure PLA by 0.22-5.16℃, and the melting temperature (Tm) of composite master batches with 1%-5% nano-SiO2are higher than that of pure PLA by 0.83-2.01℃, and the heat enthalpy atTgof composite master batches is higher than that of pure PLA by 0.574-2.437 J/g. Moreover, the more nano-SiO2added in PLA matrix, the higherTg,Tmand heat enthalpy atTg. It was due to the increase of crystallinity-degree of PLA caused by nano-SiO2, and the more nano-SiO2, the higher crystallinity-degree of composites, then the higherTg,Tmand heat enthalpy atTg. Moreover, the higher heat enthalpy atTgindicated that it needed more heat to soften the composites. All above results show that the nano-SiO2could improve the heat resistance of PLA.

    Fig.8 DSC curves of pure PLA and composite master batches

    Table 2 Parameters of TGA and DSC curves of pure PLA and composite master batches

    4 Conclusions

    The nano-SiO2modified by 3% KH-570 were evenly distributed in the PLA matrix in small scale, and the nano-SiO2were not separated from the PLA matrix. The nano-SiO2unmodified or modified by too much KH-570 (i.e., 5%) were agglomerated as bigger particles over 1.0 μm embedding in PLA.

    When the PLA matrix included less nano-SiO2(generally lower than 5%), the nano-SiO2could distribute evenly throughout the PLA matrix. However, when the PLA matrix included too much nano-SiO2(e.g., 10%), the nano-SiO2was agglomerated as some dense band.

    The thermo-decomposing temperature of PLA composited with 1% to 5% nano-SiO2was higher than that of pure PLA by 6.20-10.80℃. The added nano-SiO2could improve the thermo-decomposing temperature of batches, and the more nano-SiO2, the higher thermo-decomposing temperature.

    The glass transition temperature (Tg) of composites with 1%-5% nano-SiO2increased by 0.22-5.16℃, and the melting temperature (Tm) increased by 0.83-2.01℃, and the heat enthalpy atTgincreased by 0.574-2.437 J/g. Moreover, the more nano-SiO2added in the PLA matrix, the higherTg,Tmand heat enthalpy atTg. So the nano-SiO2could improve the heat resistance of PLA.

    [1] Tsuji H, Kidokoro Y, Mochizuki M. Enzymatic Degradation of Poly (L-lactic acid) Fibers: Effects of Small Drawing [J].JournalofAppliedPolymerScience, 2007, 103(3): 2064-2071.

    [2] Chen X Q, Lu R H, Meng D,etal. Preparation and Characterization of Magnetic Star-Shaped Amphiphilic Copolymer Nanoparticles of S-Fe3O4-PLA-b-MPEG [J].PolymerComposites, 2012, 33(12): 2134-2139.

    [3] Zhao F W, Liu Y, Yuan H L,etal. Orthogonal Design Study on Factors Affecting the Degradation of Polylactic Acid Fibers of Melt Electrospinning [J].JournalofAppliedPolymerScience, 2012, 125(4): 2652-2658.

    [4] Kontou E, Georgiopoulos P, Niaounakis M. The Role of Nanofillers on the Degradation Behavior of Polylactic Acid [J].PolymerComposites, 2012, 33(2): 282-294.

    [5] Oi T, Shinyama K, Fujita S. Electrical Properties of Heat-Treated Polylactic Acid [J].ElectricalEngineeringinJapan, 2012, 180(1): 1-8.

    [6] Chen H P, Pyda M, Cebe P. Non-isothermal Crystallization of PET/PLA Blends [J].ThermochimicaActa, 2009, 492(1/2): 61-66.

    [7] Mamun A A, Bledzki A K. Micro Fibre Reinforced PLA and PP Composites: Enzyme Modification, Mechanical and Thermal Properties [J].CompositesScienceandTechnology, 2013, 78: 10-17.

    [8] Farhoodi M, Dadashi S, Mousavi S M A,etal. Influence of TiO2Nanoparticle Filler on the Properties of PET and PLA Nanocomposites [J].Polymer-Korea, 2012, 36(6): 745-755.

    [9] Murariu M, da Silva Ferreira A, Phuta M,etal. Polylactide (PLA)-CaSO4Composites Toughened with Low Molecular Weight and Polymeric Ester-like-Plasticizers and Related Performances [J].EuropeanPolymerJournal, 2008, 44(11): 3842-3852.

    [10] Shang Q Q, Wang M Y, Liu H,etal. Facile Fabrication of Superhydrophobic Raspberry-like SiO2/Polystyrene Composite Particles [J].PolymerComposites, 2013, 34(1): 51-57.

    [11] Wu G H, Liu S Q, Guo H X,etal. Surface Modification of Nano-SiO2and Application in the Poly lactic Acid (PLA) [J].BulletinoftheChineseCeramicSociety, 2014, 33(3): 506-510. (in Chinese)

    [12] Zhang Y H, Zhai L L, Wang Y,etal. Surface Modification of Nano-SiO2by Silane Coupling Agent 3-(methacryloyloxy) Propyltrimethoxysilane [J].JournalofMaterialsScience&Engineering, 2012, 30(5): 752-756. (in Chinese)

    Foundation items: Shanxi Province Science Foundation for Youths, China (No.2014021020-2); the Projects of Taiyuan University of Technology, China (Nos. 2012L074, 2013T020, 2013T021, and 2013T022); Shanxi Province College Students Training Program, China (No. 2013067)

    TQ342+.8 Document code: A

    1672-5220(2015)01-0097-06

    Received date: 2014-03-21

    * Correspondence should be addressed to LIU Shu-qiang, E-mail: liushuqiang8866@126.com

    猜你喜歡
    紅霞
    如何推薦一部動(dòng)畫片
    點(diǎn)詞成金
    請你幫個(gè)忙
    《烏鴉喝水》中的“想”
    Therapeutic efficacy of moxibustion plus medicine in the treatment of infertility due to polycystic ovary syndrome and its effect on serum immune inflammatory factors
    A Study of Combination of English Language Teaching and Context
    大東方(2018年1期)2018-05-30 01:27:23
    高紅霞教授
    讓動(dòng)作“活”起來
    “光的直線傳播”“光的反射”練習(xí)
    夕陽依舊映紅霞
    中國火炬(2014年7期)2014-07-24 14:21:26
    精品午夜福利视频在线观看一区| 久久久久久久午夜电影| 中国美女看黄片| 女人精品久久久久毛片| 9191精品国产免费久久| 亚洲伊人色综图| 亚洲成av片中文字幕在线观看| 国产精品久久久久久人妻精品电影| 性少妇av在线| 久久国产亚洲av麻豆专区| 动漫黄色视频在线观看| 国产精品,欧美在线| 亚洲aⅴ乱码一区二区在线播放 | 色播亚洲综合网| 最新在线观看一区二区三区| 亚洲最大成人中文| 黄色视频,在线免费观看| 久久亚洲真实| 日韩有码中文字幕| 色综合欧美亚洲国产小说| 怎么达到女性高潮| 色婷婷久久久亚洲欧美| 一区二区三区激情视频| 女人被躁到高潮嗷嗷叫费观| 久久久久亚洲av毛片大全| 一二三四社区在线视频社区8| 一边摸一边抽搐一进一小说| 午夜久久久在线观看| 天天一区二区日本电影三级 | 欧美另类亚洲清纯唯美| 九色亚洲精品在线播放| 少妇被粗大的猛进出69影院| 99riav亚洲国产免费| www.精华液| 久久久久国产精品人妻aⅴ院| 亚洲伊人色综图| 国产成人精品在线电影| 性欧美人与动物交配| 在线观看舔阴道视频| 大型黄色视频在线免费观看| 精品久久久久久久毛片微露脸| 成人手机av| √禁漫天堂资源中文www| 久久国产亚洲av麻豆专区| 777久久人妻少妇嫩草av网站| 少妇 在线观看| 99久久久亚洲精品蜜臀av| 精品一品国产午夜福利视频| 亚洲中文av在线| 久久久国产成人免费| 亚洲情色 制服丝袜| 国产亚洲精品久久久久久毛片| 久热这里只有精品99| 日韩av在线大香蕉| 亚洲欧洲精品一区二区精品久久久| 97人妻天天添夜夜摸| 午夜福利欧美成人| 国产成人影院久久av| 黄色丝袜av网址大全| 一级a爱视频在线免费观看| 搡老岳熟女国产| 日本免费a在线| 欧美丝袜亚洲另类 | av视频在线观看入口| 久久草成人影院| 国产精品乱码一区二三区的特点 | 欧美久久黑人一区二区| 中文亚洲av片在线观看爽| 国产一卡二卡三卡精品| 国产欧美日韩一区二区精品| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站 | 多毛熟女@视频| 欧美国产精品va在线观看不卡| 美女大奶头视频| 亚洲欧美一区二区三区黑人| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区mp4| 日韩欧美一区视频在线观看| 亚洲成av人片免费观看| 免费在线观看日本一区| 涩涩av久久男人的天堂| 日本免费a在线| 人妻久久中文字幕网| 一边摸一边抽搐一进一出视频| 国产精品香港三级国产av潘金莲| 日韩高清综合在线| 久久 成人 亚洲| 自线自在国产av| 免费高清在线观看日韩| 最新在线观看一区二区三区| 在线观看免费视频日本深夜| 国产亚洲欧美在线一区二区| 老司机午夜福利在线观看视频| 欧美精品啪啪一区二区三区| 久久精品国产清高在天天线| 青草久久国产| 欧美最黄视频在线播放免费| 精品久久久久久,| 日日干狠狠操夜夜爽| www.精华液| 欧美成人午夜精品| 亚洲av日韩精品久久久久久密| 精品国产一区二区久久| 757午夜福利合集在线观看| 亚洲片人在线观看| 麻豆国产av国片精品| 国产激情欧美一区二区| 巨乳人妻的诱惑在线观看| 69av精品久久久久久| www.熟女人妻精品国产| 动漫黄色视频在线观看| 淫秽高清视频在线观看| 久久久国产成人精品二区| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 后天国语完整版免费观看| 一级毛片精品| 亚洲第一av免费看| a级毛片在线看网站| 最近最新中文字幕大全电影3 | 91成人精品电影| 精品免费久久久久久久清纯| 在线播放国产精品三级| 伊人久久大香线蕉亚洲五| 久久人妻福利社区极品人妻图片| 久久久久精品国产欧美久久久| 国产99白浆流出| 女生性感内裤真人,穿戴方法视频| 97超级碰碰碰精品色视频在线观看| 日韩国内少妇激情av| av欧美777| 禁无遮挡网站| av电影中文网址| 在线观看一区二区三区| 国产熟女午夜一区二区三区| 亚洲国产日韩欧美精品在线观看 | 免费搜索国产男女视频| 欧美成人免费av一区二区三区| 99国产精品99久久久久| 美女免费视频网站| 成年人黄色毛片网站| 亚洲在线自拍视频| 亚洲国产精品999在线| 一个人观看的视频www高清免费观看 | 欧美 亚洲 国产 日韩一| 男人舔女人下体高潮全视频| 欧美日韩福利视频一区二区| av免费在线观看网站| 男女床上黄色一级片免费看| 日本撒尿小便嘘嘘汇集6| 欧美激情久久久久久爽电影 | 欧美日本视频| 久久中文看片网| 人人妻人人澡人人看| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院| 欧美色欧美亚洲另类二区 | 91国产中文字幕| 麻豆一二三区av精品| 国产成人系列免费观看| 欧美成人一区二区免费高清观看 | 欧美成人性av电影在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久久久精品电影 | 国产蜜桃级精品一区二区三区| 成人永久免费在线观看视频| 午夜福利高清视频| 女人被躁到高潮嗷嗷叫费观| 成人免费观看视频高清| 欧美色视频一区免费| 成人三级做爰电影| 国产伦一二天堂av在线观看| 97人妻天天添夜夜摸| 午夜影院日韩av| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 女人被狂操c到高潮| 麻豆一二三区av精品| 欧美日韩黄片免| 欧美午夜高清在线| 99国产精品一区二区蜜桃av| 国产精品秋霞免费鲁丝片| 国产精品一区二区免费欧美| 欧美不卡视频在线免费观看 | 久久久久久亚洲精品国产蜜桃av| 亚洲国产欧美网| 午夜福利高清视频| 久久久久久国产a免费观看| 18禁黄网站禁片午夜丰满| 久久久久精品国产欧美久久久| 999久久久国产精品视频| 亚洲av第一区精品v没综合| 国产aⅴ精品一区二区三区波| 天天躁夜夜躁狠狠躁躁| 国产成人影院久久av| 9191精品国产免费久久| 国产精品免费一区二区三区在线| 国产精品亚洲av一区麻豆| 精品不卡国产一区二区三区| 久久人妻熟女aⅴ| xxx96com| 久久精品国产亚洲av香蕉五月| 久久性视频一级片| 777久久人妻少妇嫩草av网站| 国产黄a三级三级三级人| 成熟少妇高潮喷水视频| 亚洲精品在线观看二区| 久久九九热精品免费| 咕卡用的链子| 欧美日本中文国产一区发布| 欧美国产日韩亚洲一区| 久久久国产欧美日韩av| 香蕉国产在线看| 欧美绝顶高潮抽搐喷水| 国产成年人精品一区二区| 亚洲成国产人片在线观看| 日韩中文字幕欧美一区二区| 性色av乱码一区二区三区2| 久久人人爽av亚洲精品天堂| 欧美黑人精品巨大| 久久久国产成人精品二区| 亚洲精品中文字幕在线视频| 亚洲精品中文字幕一二三四区| 精品国内亚洲2022精品成人| 美女午夜性视频免费| 久久久国产成人免费| 亚洲一区中文字幕在线| 成在线人永久免费视频| 中文字幕久久专区| 国产精品久久久人人做人人爽| 午夜老司机福利片| 久久香蕉精品热| 亚洲九九香蕉| 国内精品久久久久精免费| 一a级毛片在线观看| 国产麻豆成人av免费视频| 午夜激情av网站| 嫩草影院精品99| 人人澡人人妻人| 啦啦啦免费观看视频1| 99香蕉大伊视频| 手机成人av网站| or卡值多少钱| 9色porny在线观看| 久久天堂一区二区三区四区| 欧美另类亚洲清纯唯美| 亚洲国产毛片av蜜桃av| 香蕉国产在线看| 欧美不卡视频在线免费观看 | 午夜激情av网站| 免费高清视频大片| 久久性视频一级片| 久久久久久久精品吃奶| 国产麻豆成人av免费视频| 国产亚洲精品一区二区www| 国产一区在线观看成人免费| 欧美老熟妇乱子伦牲交| 国产亚洲精品久久久久5区| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 久久久水蜜桃国产精品网| 欧美色欧美亚洲另类二区 | 丰满的人妻完整版| 禁无遮挡网站| 看黄色毛片网站| 久久国产乱子伦精品免费另类| 亚洲一码二码三码区别大吗| 国产av一区在线观看免费| 国产99白浆流出| 国产精品爽爽va在线观看网站 | 久99久视频精品免费| 日韩国内少妇激情av| 日韩成人在线观看一区二区三区| 精品久久久久久久毛片微露脸| 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 岛国视频午夜一区免费看| 69精品国产乱码久久久| 老司机福利观看| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 亚洲人成伊人成综合网2020| 精品福利观看| 国产欧美日韩一区二区三| 男人的好看免费观看在线视频 | 黄色视频不卡| 在线av久久热| 国产精品98久久久久久宅男小说| 国产欧美日韩精品亚洲av| 禁无遮挡网站| 久久国产亚洲av麻豆专区| 无遮挡黄片免费观看| 一本久久中文字幕| 亚洲中文日韩欧美视频| 一区二区三区高清视频在线| 91麻豆精品激情在线观看国产| 给我免费播放毛片高清在线观看| 亚洲色图综合在线观看| 亚洲少妇的诱惑av| 欧美在线一区亚洲| 精品一区二区三区av网在线观看| 日韩免费av在线播放| 国产精品自产拍在线观看55亚洲| 成人亚洲精品av一区二区| 午夜两性在线视频| 国产精品一区二区三区四区久久 | 母亲3免费完整高清在线观看| 午夜免费鲁丝| 嫩草影视91久久| 国产精品 国内视频| 一本综合久久免费| 精品国产乱码久久久久久男人| 波多野结衣巨乳人妻| 长腿黑丝高跟| 一级毛片女人18水好多| 天堂动漫精品| 精品国产乱子伦一区二区三区| 久久天堂一区二区三区四区| 午夜久久久在线观看| 巨乳人妻的诱惑在线观看| 欧美丝袜亚洲另类 | 免费久久久久久久精品成人欧美视频| 精品国产一区二区三区四区第35| 可以免费在线观看a视频的电影网站| 日韩精品青青久久久久久| 中文字幕人妻熟女乱码| 国产高清视频在线播放一区| 日韩有码中文字幕| 嫩草影视91久久| 欧美人与性动交α欧美精品济南到| 亚洲国产高清在线一区二区三 | 国产成人一区二区三区免费视频网站| 18禁观看日本| 国产国语露脸激情在线看| 黄色 视频免费看| 桃红色精品国产亚洲av| 精品不卡国产一区二区三区| 嫁个100分男人电影在线观看| 麻豆成人av在线观看| 母亲3免费完整高清在线观看| 亚洲国产精品合色在线| 啪啪无遮挡十八禁网站| 九色亚洲精品在线播放| 久久精品成人免费网站| 成人特级黄色片久久久久久久| 一级片免费观看大全| 岛国在线观看网站| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 亚洲精华国产精华精| 午夜激情av网站| 男女下面插进去视频免费观看| 免费在线观看视频国产中文字幕亚洲| 满18在线观看网站| 老司机在亚洲福利影院| av超薄肉色丝袜交足视频| 亚洲午夜精品一区,二区,三区| 性色av乱码一区二区三区2| 一本大道久久a久久精品| 国产精品精品国产色婷婷| 久久久久久久久中文| 午夜福利免费观看在线| 91九色精品人成在线观看| 女生性感内裤真人,穿戴方法视频| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 亚洲 欧美一区二区三区| 十八禁网站免费在线| 人妻丰满熟妇av一区二区三区| www.999成人在线观看| 精品国产乱子伦一区二区三区| www.999成人在线观看| 人妻丰满熟妇av一区二区三区| 国产精品一区二区三区四区久久 | 一本大道久久a久久精品| 欧美激情高清一区二区三区| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 超碰成人久久| 亚洲国产欧美一区二区综合| 亚洲中文字幕日韩| 国产欧美日韩一区二区精品| www.自偷自拍.com| 免费不卡黄色视频| 欧美在线黄色| 国产av一区在线观看免费| 国产一卡二卡三卡精品| 久久青草综合色| 99在线人妻在线中文字幕| 中文字幕av电影在线播放| 色综合站精品国产| 国产亚洲精品综合一区在线观看 | 色综合站精品国产| 美国免费a级毛片| 中文字幕另类日韩欧美亚洲嫩草| 天天一区二区日本电影三级 | 亚洲国产欧美日韩在线播放| 久9热在线精品视频| 午夜精品国产一区二区电影| e午夜精品久久久久久久| 波多野结衣av一区二区av| 精品午夜福利视频在线观看一区| 少妇被粗大的猛进出69影院| 午夜免费鲁丝| 久久久精品欧美日韩精品| 好看av亚洲va欧美ⅴa在| 91av网站免费观看| 国产精品99久久99久久久不卡| 18美女黄网站色大片免费观看| 麻豆成人av在线观看| 成人手机av| 国产精品综合久久久久久久免费 | 亚洲精品国产区一区二| 国产成人一区二区三区免费视频网站| 亚洲国产毛片av蜜桃av| 国内久久婷婷六月综合欲色啪| 国产精品,欧美在线| 免费观看精品视频网站| 极品教师在线免费播放| 老熟妇乱子伦视频在线观看| 午夜免费激情av| 999精品在线视频| 国产麻豆成人av免费视频| 最好的美女福利视频网| 熟女少妇亚洲综合色aaa.| 他把我摸到了高潮在线观看| 啦啦啦韩国在线观看视频| 淫秽高清视频在线观看| 岛国在线观看网站| 大香蕉久久成人网| 嫩草影视91久久| 女人被狂操c到高潮| av欧美777| 国产日韩一区二区三区精品不卡| 99久久99久久久精品蜜桃| 国产成人系列免费观看| 久久久精品国产亚洲av高清涩受| 亚洲精品国产区一区二| 1024视频免费在线观看| 咕卡用的链子| 欧美日本中文国产一区发布| 国产高清videossex| 国产在线观看jvid| x7x7x7水蜜桃| 欧美亚洲日本最大视频资源| 国产精品 国内视频| 99国产精品一区二区三区| 久久久精品欧美日韩精品| 成人欧美大片| www.999成人在线观看| 久久国产精品人妻蜜桃| 日韩欧美一区视频在线观看| 99久久综合精品五月天人人| 精品人妻1区二区| 在线观看免费午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | 久久久精品欧美日韩精品| 国产1区2区3区精品| 亚洲精品国产精品久久久不卡| 黄色a级毛片大全视频| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 国产成人精品在线电影| 一级毛片高清免费大全| 岛国视频午夜一区免费看| 91精品国产国语对白视频| 久久人妻福利社区极品人妻图片| 变态另类成人亚洲欧美熟女 | 国产成人系列免费观看| 中文字幕最新亚洲高清| videosex国产| 无限看片的www在线观看| 一级片免费观看大全| 亚洲精品中文字幕在线视频| 最新在线观看一区二区三区| 国产精品久久久久久精品电影 | 亚洲 国产 在线| 成人国语在线视频| 色综合亚洲欧美另类图片| 国产日韩一区二区三区精品不卡| 91成年电影在线观看| 少妇熟女aⅴ在线视频| 国产成人影院久久av| 男人舔女人的私密视频| 精品日产1卡2卡| 国产私拍福利视频在线观看| 99国产精品99久久久久| 免费搜索国产男女视频| 老熟妇仑乱视频hdxx| 亚洲第一欧美日韩一区二区三区| 亚洲av美国av| 女人爽到高潮嗷嗷叫在线视频| 啪啪无遮挡十八禁网站| 国产高清视频在线播放一区| 欧美成人免费av一区二区三区| 99热只有精品国产| 精品国产国语对白av| 老鸭窝网址在线观看| 成人av一区二区三区在线看| 99久久综合精品五月天人人| 国产精品一区二区三区四区久久 | 亚洲欧美激情在线| 性少妇av在线| 国产一卡二卡三卡精品| 在线观看舔阴道视频| 18美女黄网站色大片免费观看| 999久久久国产精品视频| 成人亚洲精品av一区二区| 91精品三级在线观看| 一本大道久久a久久精品| av超薄肉色丝袜交足视频| 亚洲欧美日韩另类电影网站| 啪啪无遮挡十八禁网站| 国产免费男女视频| 韩国精品一区二区三区| tocl精华| 乱人伦中国视频| 国产成人欧美在线观看| 女性被躁到高潮视频| 一边摸一边抽搐一进一小说| 欧美绝顶高潮抽搐喷水| 亚洲欧美一区二区三区黑人| 好看av亚洲va欧美ⅴa在| 丝袜美腿诱惑在线| av电影中文网址| 亚洲一码二码三码区别大吗| 国产精品98久久久久久宅男小说| 日韩高清综合在线| 丝袜在线中文字幕| 午夜老司机福利片| 午夜福利18| 大码成人一级视频| 97人妻精品一区二区三区麻豆 | 久久精品成人免费网站| 激情视频va一区二区三区| 午夜免费激情av| 999久久久精品免费观看国产| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 欧美乱妇无乱码| 99久久久亚洲精品蜜臀av| 热99re8久久精品国产| 精品人妻1区二区| 精品久久蜜臀av无| 国产不卡一卡二| 级片在线观看| 亚洲久久久国产精品| 99精品在免费线老司机午夜| 久久久久久国产a免费观看| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| 亚洲自偷自拍图片 自拍| 国产精品久久久久久人妻精品电影| 亚洲专区国产一区二区| 91国产中文字幕| 纯流量卡能插随身wifi吗| 精品无人区乱码1区二区| 美女大奶头视频| svipshipincom国产片| 午夜免费观看网址| 日日夜夜操网爽| 国产av精品麻豆| 亚洲一区中文字幕在线| 1024视频免费在线观看| 久久久久久免费高清国产稀缺| 在线av久久热| 在线天堂中文资源库| 欧美精品亚洲一区二区| 日本撒尿小便嘘嘘汇集6| 欧美激情 高清一区二区三区| 搞女人的毛片| 久99久视频精品免费| 丰满的人妻完整版| 国产免费男女视频| 欧美日韩福利视频一区二区| 在线永久观看黄色视频| 搡老熟女国产l中国老女人| 精品欧美国产一区二区三| 在线观看免费视频网站a站| 亚洲av成人一区二区三| 亚洲成av人片免费观看| 一区福利在线观看| 韩国av一区二区三区四区| 国产精华一区二区三区| 国产不卡一卡二| 国产亚洲精品综合一区在线观看 | 国产精品久久久久久人妻精品电影| 日韩精品青青久久久久久| 欧美久久黑人一区二区| 69av精品久久久久久| 亚洲精品在线观看二区| 精品一区二区三区av网在线观看| 亚洲国产精品成人综合色| 国产av在哪里看| 精品一区二区三区av网在线观看| 国产精品久久久久久人妻精品电影| 国产精品影院久久| 国产精品一区二区免费欧美| 99国产精品一区二区蜜桃av| 99国产极品粉嫩在线观看| 亚洲欧美日韩高清在线视频| cao死你这个sao货| 人人妻人人澡欧美一区二区 | 国产伦人伦偷精品视频| 国产欧美日韩一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 久久人妻熟女aⅴ| 欧美+亚洲+日韩+国产| 国产aⅴ精品一区二区三区波| 高清黄色对白视频在线免费看| 亚洲精品在线观看二区| 久久青草综合色| 日韩大码丰满熟妇|