• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同還原溫度制備RGO/MnO2復(fù)合材料對(duì)電容增效的影響

    2015-01-01 08:20:00王令云章海霞王曉敏
    新型炭材料 2015年1期
    關(guān)鍵詞:碳納米管太原熱處理

    王令云,王 勇,章海霞,王曉敏

    (太原理工大學(xué) 材料科學(xué)與工程學(xué)院,山西 太原 030024)

    1 Introduction

    MnO2is a promising candidate to replace the noble-metal oxides as supercapacitor electrode material,owing to its high theoretical pseudocapacitance,low cost and environmental friendliness[1,2].MnO2has been synthesized via various methods,such as reduction,hydrothermal,and co-precipitation methods[3-5].The values of specific capacitance reported for manganese oxide are mostly between 100 and 250 F·g-1,which is far from the theoretical value of 1 000 F·g-1,which is attributed to its intrinsic poor conductivity,easy aggregation,various crystal structures and morphology of MnO2[3,6].To improve its performance,carbon materials have been applied to composite with MnO2to achieve excellent conductivity and large specific surface area[7-9].

    Graphene is a two-dimensional new carbon material with the advantages of the large specific surface area and outstanding electrical conducting properties,which make it a good carrier material for MnO2.Positive effects have been already attained as a support of MnO2[10-12].As an intermediate product of graphene prepared by the oxidation-reduction method,graphene oxide (GO)has a large specific surface area as well as a large number of oxygen-containing functional groups,providing both double layer capacitance and pseudocapacitance[13].However,for the poor electrical conductivity of GO,composite of MnO2with GO can’t improve significantly the capacitance of MnO2[14,15].

    In this paper,we synthesized composite materials of MnO2with reduced graphene oxide(RGO)as supercapacitor electrode materials.The relationships between specific capacitance and thermal reduction temperature of GO,microstructure,electrical conductivity of the composite materials were analyzed,suggesting a balanced use of RGO’s electrical conductivity and pseudocapacitance in supercapacitor electrode materials.

    2 Experimental

    2.1 Preparation of RGO/MnO2composite materials

    GO was synthesized by the modified Hummers method,and then was dissolved into deionized water to prepare GO by ultrasonic treatment[16,17].Then GO powder was heated at different temperatures from 200 to 800 ℃to obtain RGO in Ar atmosphere.Then the RGO was sonicated in 25% alcoholic solution,to which KMnO4was added under stirring.KMnO4was reduced to MnO2by alcohol and then MnO2grew on the RGO sheets.RGO/MnO2composites were obtained after washing and drying.GO samples after thermal reduction were marked by X-RGO and the composites by X-RGO/MnO2,where X standed for the heating temperature of GO.The mass fraction of RGO in the composites was all controlled to be 20%.

    2.2 Characterization

    Scanning electron microscopy (SEM)was employed to characterize the morphology.X-ray diffraction (XRD,Y-2000X)was used to characterize the size and the structure of all samples.Fourier Translation Infrared Spectroscopy (FT-IR,F(xiàn)TS165)was performed to measure the characteristic functional groups.Four probe method is used to measure the electrical conductivity of the RGO.Electrochemical workstation (CHI660D)was used to evaluate the electrochemical performance of samples,the cyclic voltammetry (CV)for the samples was tested in a standard three-electrode test system.The counter electrode was a piece of Pt foil,the reference electrode was Hg/Hg2SO4electrode and the working electrode was assembled from the RGO/MnO2composites as follows.Electrode material was made of the composites (77%,~16-20 mg),acetylene black (13%)and polytetrafluoroethylene (PTFE,10%).The mixture was painted on Ni foil current collectors and pressed under 25 MPa to make the electrode.The applied potential range for CV measurement was-0.8~0.0 V(vs.Hg/Hg2SO4),the test was conducted in 6 mol·L-1KOH electrolyte.Calculation method of specific capacitance was based on the formula:

    Where Csis the specific capacitance of the composites,s stands for the scan rate in the CV test,m is the weight of the composite,ΔV stands for scanning voltage range,i and V represent for electric current and voltage,respectively.

    3 Results and discussion

    3.1 Morphology and structures

    The obtained materials were analyzed by SEM.Fig.1a shows a low magnification SEM image of the as-prepared MnO2sample without the addition of RGO,in which the particles were aggregated into bulks with a particle size greater than 5 μm.The high magnification SEM image of MnO2shown in Fig.1b revealed a typical sheet-like structure of δ-MnO2,which was a potential material for the study in supercapacitors.Smaller RGO/MnO2particles are shown in Fig.1c,while MnO2was dispersed by GO and the agglomeration was not obvious.In the high magnification SEM image of RGO/MnO2shown in Fig.1d,loose and small pieces of particles can be seen clearly,which were different from the bulks in Fig.1b,indicating that the aggregation was alliviate and dispersion was improved by RGO addition[18-20].Fig.1e is the low magnification SEM image of 600-RGO/MnO2.Compared with Fig.1c,there was no obvious change in the particle size,but in the high magnification SEM image of the sample in Fig.1f,looser and smaller fragments were presented,indicating that thermal reduction broke RGO into much smaller pieces and finally made the MnO2particles more dispersedly grown on RGO and thus increased the specific surface area of the composites.

    Fig.1 SEM images of (a,b)pure MnO2,(c,d)GO/MnO2and (e,f)600-RGO/MnO2.

    Fig.2 shows the XRD patterns of the GO/MnO2,200-RGO/MnO2,400-RGO/MnO2,600-RGO/MnO2and 800-RGO/MnO2.In each pattern,characteristic diffraction peaks of MnO2were all located at the 2θ values of~12°,37°,67°,corresponding to δ-MnO2(JCPDS file 80-1098).The crystal type of the MnO2was not changed by the addition of RGO,in accordance with the analysis of SEM images.The δ-MnO2was also considered to have a relatively high capacitance as well[21].The structure destruction of RGO was caused by the thermal reduction.So the characteristic peak of the (002)plane was broadened,which agreed well with the result in SEM image,which suggested that the edges of RGO after heat treatment appeared to be loose and blurry[22].Besides,with the increase of the heating temperature,the 2θ value of the (001)plane peak of GO gradually increased,indicating that oxygen-containing functional groups located between the layers of GO were reduced during heat treatment,and the interlayer spacing was decreased[23,24].However,the (001)plane peak of RGO sample after thermal reduction at 800 ℃ didn’t drift to the location of characteristic peak of the (002)planes (2θ=26°)completely,which indicated that some of the oxygen-containing functional groups were still left in the RGO.The patterns of sample d and e with higher heating temperatures obviously showed that the peaks of the (001)and (002)planes coincided and broadened,which indicated the structure of GO was destructed to some extent during the thermal reduction.The destruction was presented as the loosen edges of RGO,leading to an increase of its specific surface area and making it easier to disperse MnO2.

    Fig.2 XRD patterns of the samples:(a)GO/MnO2,(b)200-RGO/MnO2,(c)400-RGO/MnO2,(d)600-RGO/MnO2and (e)800-RGO/MnO2.

    The FT-IR spectra of GO,200-RGO,400-RGO,600-RGO and 800-RGO are shown in Fig.3.The characteristic peaks at 3480,1750 and 1408cm-1could be attributed to the stretching vibration of—H—O—H from interlayer water molecules,C=O from aromatic aldehydes,and C—O from carboxy group,respectively[25].The intensity of the peak at 3480 cm-1weakened with the increasing temperature,which indicated that heat treatment decreased the interlayer water content[26].The intensity of the peaks at 1750cm-1and 1408cm-1weakened when the heating temperature was increased,demonstrating that the thermal reducing ability was enhanced with the rising temperature.All of the weakened peaks indicated that the reduction of oxygen-containing functional groups would lead to the decrease of the interlayer spacing,which was proved by the XRD spectra.The existence of oxygen-containing functional groups also caused a high electrical resistance of GO,so their removal would improve the electrical conductivity of RGO[27,28].

    Fig.3 FT-IR spectra of (a)GO,(b)200-RGO,(c)400-RGO,(d)600-RGO and (e)800-RGO.

    The electrical resistances of the prepared RGO are listed in Table 1.These data confirmed our prediction and was in accordance with the analysis of the FT-IR spectra.

    Table 1 Electrical conductivity of different RGO samples.

    3.2 Electrochemical characterization

    Fig.4 shows the cyclic voltammograms of different RGO samples.Fig.5 shows the cyclic voltammograms of different RGO/MnO2composite samples.Table 2 and Table 3 list the specific capacitance of all samples obtained from Fig.4 and Fig.5,respectively.Fig.6 indicates the capacitance retention rate of the 600-RGO/MnO2composite.

    The redox reaction would take place and electric energy would be stored due to the existence of oxygen-containing functional groups of GO and RGO.The reaction would be reflected in the curves by the redox peaks[29],just like the obvious peaks in cyclic voltammetry curve of GO and 200-RGO.For other samples,the peaks changed to be weaker as the thermal reduction temperature got higher,this was because that the functional groups were partly removed and the reaction was thus weakened accordingly.On the other hand,the impurities in the materials and electrolyte might also have redox reactions and bring out some peaks.

    Fig.4 Cyclic voltammetry curves of (a)GO,(b)200-RGO,(c)400-RGO,(d)600-RGO and (e)800-RGO.

    Fig.5 Cyclic voltammetry curves of (a)GO/MnO2,(b)200-RGO/MnO2,(c)400-RGO/MnO2,(d)600-RGO/MnO2and (e)800-RGO/MnO2.

    Fig.6 Relationship between capacitance retention and cycle number for the 600-RGO/MnO2composite.

    The results showed that the specific capacitance of the composites increased with increasing heating temperatures of GO,and reached a maximum of 321 F·g-1at 600 ℃for 600-RGO/MnO2,which was increased by 87% compared with that of pure MnO2(171 F·g-1)and by 50% compared with GO/MnO2(214 F·g-1).This was a compromising result contributed by two countering factor of electrical conductivity and pseudocapacitance.In one hand,as the electrical conductivity of the RGO improved with the increasing heating temperature,the specific capacitance of the composite also went up.On the other hand,the remaining oxygen-containing functional groups of RGO could provide considerable pseudocapacitance at the same time,which decreased with increasing heating temperature[30].The trend of specific capacitance of RGO samples (Table 2)was consistent with the composite samples (Table 3),which in turn supported the analysis above.On the other hand,the capacitance retention of 600-RGO/MnO2didn’t change too much even cycled for 1 000 times,indicating that the sample had a good stability (Fig.6).

    Table 2 Specific capacitances of different RGO samples.

    Table 3 Specific capacitances of different RGO/MnO2samples.

    4 Conclusions

    The RGO/MnO2composites were prepared after the thermal reduction of GO in the composites at different temperatures.RGO has a large specific surface area,disperses MnO2well and enhances the efficiency of MnO2.With increasing the temperature,the amounts of oxygen-containing functional groups decreased,the electrical conductivity of RGO was increased,which favored an increase of the capacitance.However,the pseudocapacitance provided by the remaining oxygen-containing functional groups decreased with the temperature,leading to a specific capacitance decrease.When GO was reduced at 600 ℃,the 600-RGO/MnO2composite achieved the highest specific capacitance of 321 F·g-1,which is 87% higher than that of the pure MnO2.Also,the 600-RGO/MnO2composite had a good cycling stability.

    [1]Yu Gui-hua,Hu Liang-bing,Liu Nian,et al.Enhancing the supercapacitor performance of graphene MnO2nanostructured electrodes by conductive wrapping[J].Nano Lett,2011,11(10):4438-4442.

    [2]Wei Wei-feng,Cui Xin-wei,Chen Wei-xing,et al.Manganese oxide-based materials as electrochemical supercapacitor electrodes[J].Chem Soc Rev,2011,40(3):1697-1721.

    [3]S Devaraj,N Munichandraiah.Effect of crystallographic structure of MnO2on its electrochemical capacitance properties[J].Journal of Physical Chemistry C,2008,112(11):4406-4417.

    [4]Yang Yu-juan,Huang Cheng-de.Effect of synthetical conditions,morphology,and crystallographic structure of MnO2on its electrochemical behavior[J].J Solid State Electr,2010,14(7):1293-1301.

    [5]V Subramanian,Zhu Hong-wei,Bingqing Wei.Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte[J].CPL,2008,453(4):242-249.

    [6]Daniel Bélanger,L Brousse,Jeffrey W Long.Manganese oxides:battery materials make the leap to electrochemical capacitors[J].The Electrochemical Society Interface,2008,17(1):49-52.

    [7]Wang Yu-qin,Yuan An-bao,Wang Xiu-ling.Pseudocapacitive behaviors of nanostructured manganese dioxidecarbon nanotubes composite electrodes in mild aqueous electrolytes:effects of electrolytes and current collectors[J].J Solid State Electr,2008,12(9):1101-1107.

    [8]Wang Jian-gan,Yang Ying,Huang Zheng-hong,et al.Incorporation of nanostructured manganese dioxide into carbon nanofibers and its electrochemical performance[J].Mat L,2012,72(4):18-21.

    [9]Fan Zhuang-jun,Yan Jun,Wei Tong,et al.Asymmetric supercapacitors based on graphene MnO2and activated carbon nanofiber electrodes with high power and energy density[J].Adv Funct Mater,2011,21(12):2366-2375.

    [10]Deng Ling-juan,Zhu Guang,Wang Jian-fang,et al.Graphene-MnO2and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte[J].J Power Sources,2011,196(24):10782-10787.

    [11]A.K.Geim,Graphene:status and prospects[J].Science,2009,324(5934):1530-4.

    [12]JIN Yu,CHEN Hong-hai,CHEN Ming-hai,et al.Carbon nanotube polyaniline graphene composite paper and its electrochemical capacitance behaviors[J].Acta Phys.-Chim.Sin,2009,28,(03):609-614.(靳 瑜,陳宏源,陳名海.碳納米管聚苯胺石墨烯復(fù)合納米碳紙及其電化學(xué)電容行為[J].物理化學(xué)學(xué)報(bào),2012,28(03):609-614.)

    [13]Xu Bin,Yue Shu-fang,Sui Zhu-yin,et al.What is the choice for supercapacitors:graphene or graphene oxide[J].Energy &Environmental Science,2011,4(8):2826-2830.

    [14]Chen Sheng,Zhu Jun-wu,Wu Xiao-dong,et al.Graphene oxide MnO2nanocomposites for supercapacitors[J].Acs Nano,2010,4(5):2822-2830.

    [15]Dmitriy A Dikin,Sasha Stankovich,Eric J Zimney,et al.Preparation and characterization of graphene oxide paper[J].Nature,2007,448(7152):457-460.

    [16]WANG Yong-zhen,WANG Yan,HAN Fei,et al.The effect of heat treatment on the electrical conductivity of highly conducting graphene films[J].New Carbon Materials,2012,27(4):266-270.(王永禎,王 艷,韓 非.還原熱處理對(duì)石墨烯薄膜導(dǎo)電性的影響[J].新型炭材料,2012,27(4):266-270.)

    [17]Goki Eda,Giovanni Fanchini,Manish Chhowalla.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J].Nature nanotechnology,2008,3(5):270-274.

    [18]Myeongjin Kim,Yongseon Hwang,Kyungchan Min,et al.Introduction of MnO2nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors[J].Electrochim Acta,2013,113(0):322-331.

    [19]Ha Fei,Wang Xiao-min,Lian Jie,et al.The effect of Sn content on the electrocatalytic properties of Pt-Sn nanoparticles dispersed on graphene nanosheets for the methanol oxidation reaction[J].Carbon,2012,50(15):5498-5504.

    [20]Jiang Rong-rong,Huang Tao,Tang Yang,et al.Factors influencing MnO2multi-walled carbon nanotubes composite's electrochemical performance as supercapacitor electrode[J].Electrochim Acta,2009,54(27):7173-7179.

    [21]Ragupathy P,Park D H,Campet G,et al.Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor[J].The Journal of Physical Chemistry C,2009,113(15):6303-6309.

    [22]LIU Yan-zhen,LI Yong-feng,YANG Yong-gang,et al.The effect of thermal treatment at low temperatures on graphene oxide films[J].New Carbon Materials,2011,26(1):41-45.(劉燕珍,李永鋒,楊永崗.低溫?zé)崽幚韺?duì)氧化石墨烯薄膜的影響[J].新型炭材料,2011,26(1):41-45.)

    [23]Wang Da-wei,Li Feng,Wu Zhong-shuai,et al.Electrochemical interfacial capacitance in multilayer graphene sheets:Dependence on number of stacking layers[J].Electrochem Commun,2009,11(9):1729-1732.

    [24]Zhao Bing,Liu Peng,Jiang Yong,et al.Supercapacitor performances of thermally reduced graphene oxide[J].J Power Sources,2012,198(0):423-427.

    [25]Geng Jian-xin,Liu Lei-jing,Yang Seung-bo,et al.A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension[J].Journal of Physical Chemistry C,2010,114(34):14433-14440.

    [26]James G Radich,Prashant V Kamat.Making graphene holey.Gold nanoparticle mediated hydroxyl radical attack on reduced graphene oxide[J].ACS Nano,2013,7(6):5546-5557.

    [27]Sung Mook Choi,Min Ho Seo,Hyung Ju Kim,et al.Synthesis of surface-functionalized graphene nanosheets with high Ptloadings and their applications to methanol electrooxidation[J].Carbon,2011,49(3):904-909.

    [28]ZHANG Li-li,ZHAO Xin,Meryl D.Stoller,et al.Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors[J].Nano Lett,2012,12(4):1806-1812.

    [29]Frackowiak E,Beguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.

    [30]Chen Cheng-meng,Zhang Qiang,Yang Mang-guo,et al.Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J].Carbon,2012,50(10):3572-3584.

    猜你喜歡
    碳納米管太原熱處理
    民用飛機(jī)零件的熱處理制造符合性檢查
    太原清廉地圖
    除夜太原寒甚
    Cr12MoV導(dǎo)桿熱處理開裂分析
    模具制造(2019年10期)2020-01-06 09:13:08
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    J75鋼焊后熱處理工藝
    焊接(2016年2期)2016-02-27 13:01:20
    聚賴氨酸/多壁碳納米管修飾電極測(cè)定大米中的鉛
    高精度免熱處理45鋼的開發(fā)
    山東冶金(2015年5期)2015-12-10 03:27:41
    拓?fù)淙毕輰?duì)Armchair型小管徑多壁碳納米管輸運(yùn)性質(zhì)的影響
    功能化多壁碳納米管對(duì)L02細(xì)胞的作用
    黄色视频在线播放观看不卡| av线在线观看网站| 深夜精品福利| 18在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费鲁丝| 国内精品宾馆在线| 免费少妇av软件| 久久久国产精品麻豆| 国产精品一国产av| 亚洲av电影在线观看一区二区三区| 国产片特级美女逼逼视频| 老女人水多毛片| 看十八女毛片水多多多| 精品一区二区免费观看| 精品久久久精品久久久| 涩涩av久久男人的天堂| 成人免费观看视频高清| 国产精品成人在线| 九色成人免费人妻av| 91aial.com中文字幕在线观看| 秋霞伦理黄片| 18禁国产床啪视频网站| www.av在线官网国产| 不卡视频在线观看欧美| 十八禁网站网址无遮挡| 夫妻性生交免费视频一级片| 男女下面插进去视频免费观看 | 亚洲av.av天堂| 精品久久国产蜜桃| 色婷婷av一区二区三区视频| 纵有疾风起免费观看全集完整版| 国产精品.久久久| 国产成人精品福利久久| 免费高清在线观看日韩| 精品国产露脸久久av麻豆| 狠狠婷婷综合久久久久久88av| 22中文网久久字幕| 两性夫妻黄色片 | 咕卡用的链子| 久久精品久久久久久久性| 国产高清三级在线| 在线天堂最新版资源| 69精品国产乱码久久久| 国产男女内射视频| 啦啦啦视频在线资源免费观看| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 日韩av不卡免费在线播放| 高清av免费在线| 王馨瑶露胸无遮挡在线观看| av在线app专区| 99精国产麻豆久久婷婷| 久久久久视频综合| 美女福利国产在线| 亚洲av在线观看美女高潮| 黄色一级大片看看| 国产欧美另类精品又又久久亚洲欧美| 国产片特级美女逼逼视频| 日韩精品免费视频一区二区三区 | 丝袜美足系列| 人妻 亚洲 视频| 午夜激情av网站| 9191精品国产免费久久| 亚洲人与动物交配视频| 免费黄网站久久成人精品| 国产爽快片一区二区三区| 中文字幕免费在线视频6| 久久久久久久大尺度免费视频| 欧美3d第一页| 精品亚洲成国产av| 午夜影院在线不卡| 亚洲性久久影院| 久久99一区二区三区| 最新中文字幕久久久久| 国产亚洲最大av| 午夜91福利影院| 人妻系列 视频| 亚洲美女搞黄在线观看| h视频一区二区三区| 久久久久久久久久久久大奶| 在线观看美女被高潮喷水网站| 黄色 视频免费看| 五月开心婷婷网| 一区二区av电影网| 女性被躁到高潮视频| 国产色婷婷99| 国产精品偷伦视频观看了| 人人妻人人添人人爽欧美一区卜| 美女视频免费永久观看网站| 国产有黄有色有爽视频| 97在线视频观看| 韩国av在线不卡| 国产伦理片在线播放av一区| 亚洲欧美成人综合另类久久久| av国产久精品久网站免费入址| av黄色大香蕉| 一级,二级,三级黄色视频| 制服人妻中文乱码| 韩国精品一区二区三区 | 亚洲精品国产色婷婷电影| 欧美成人午夜精品| 亚洲人成77777在线视频| 亚洲精品乱久久久久久| 欧美成人午夜精品| 国产男女超爽视频在线观看| 午夜久久久在线观看| 亚洲精品第二区| 人妻一区二区av| 99香蕉大伊视频| 大片免费播放器 马上看| videos熟女内射| 国产免费一级a男人的天堂| 精品一区在线观看国产| 韩国av在线不卡| 捣出白浆h1v1| 爱豆传媒免费全集在线观看| 激情视频va一区二区三区| 欧美日本中文国产一区发布| 极品人妻少妇av视频| 一本大道久久a久久精品| 秋霞伦理黄片| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 日韩欧美一区视频在线观看| 香蕉国产在线看| 成人18禁高潮啪啪吃奶动态图| 国内精品宾馆在线| 人妻少妇偷人精品九色| 高清毛片免费看| 日韩精品免费视频一区二区三区 | 国产极品粉嫩免费观看在线| 最近最新中文字幕免费大全7| 在线观看国产h片| 9191精品国产免费久久| 人妻少妇偷人精品九色| av线在线观看网站| 成人国产麻豆网| 国产亚洲最大av| 免费日韩欧美在线观看| 国产淫语在线视频| 午夜福利在线观看免费完整高清在| 一级毛片 在线播放| 少妇猛男粗大的猛烈进出视频| 热re99久久精品国产66热6| 国产精品人妻久久久久久| 最近中文字幕2019免费版| 亚洲欧美成人综合另类久久久| 欧美性感艳星| 又黄又粗又硬又大视频| 国产日韩欧美亚洲二区| 免费高清在线观看日韩| 草草在线视频免费看| 青青草视频在线视频观看| 下体分泌物呈黄色| 精品国产一区二区三区四区第35| 亚洲成色77777| 波多野结衣一区麻豆| 国产高清国产精品国产三级| 亚洲精品日本国产第一区| 国产高清三级在线| 涩涩av久久男人的天堂| 亚洲在久久综合| 少妇高潮的动态图| 男女边摸边吃奶| 亚洲欧洲日产国产| 99久国产av精品国产电影| 久久99热6这里只有精品| 久久婷婷青草| 狠狠婷婷综合久久久久久88av| 亚洲欧洲国产日韩| 男女下面插进去视频免费观看 | 激情视频va一区二区三区| 美女中出高潮动态图| 免费av不卡在线播放| 制服诱惑二区| 观看美女的网站| 国产欧美日韩一区二区三区在线| 欧美精品高潮呻吟av久久| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到 | 亚洲av日韩在线播放| 成人国语在线视频| 热re99久久精品国产66热6| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 国产精品国产三级国产专区5o| 亚洲人成77777在线视频| 日韩中文字幕视频在线看片| 国产精品嫩草影院av在线观看| 精品亚洲成国产av| 色94色欧美一区二区| 少妇人妻 视频| 国产av国产精品国产| 国产一级毛片在线| 亚洲精品美女久久av网站| 成人国产麻豆网| 少妇猛男粗大的猛烈进出视频| 香蕉精品网在线| 99re6热这里在线精品视频| 欧美日韩成人在线一区二区| 一级毛片电影观看| 51国产日韩欧美| 国产又色又爽无遮挡免| 超色免费av| 一级毛片我不卡| 国产精品不卡视频一区二区| www.色视频.com| 97精品久久久久久久久久精品| 国产探花极品一区二区| 午夜av观看不卡| 青青草视频在线视频观看| 丰满饥渴人妻一区二区三| 18+在线观看网站| 日韩人妻精品一区2区三区| 一级毛片电影观看| 麻豆精品久久久久久蜜桃| 国产午夜精品一二区理论片| 一级,二级,三级黄色视频| 欧美少妇被猛烈插入视频| 成年av动漫网址| 国产永久视频网站| 夜夜骑夜夜射夜夜干| 18禁国产床啪视频网站| 国产精品免费大片| 九色亚洲精品在线播放| 国产又色又爽无遮挡免| 亚洲美女黄色视频免费看| 久久人人爽人人爽人人片va| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| a级片在线免费高清观看视频| 欧美人与性动交α欧美精品济南到 | 国产男人的电影天堂91| 欧美精品亚洲一区二区| 日韩一区二区视频免费看| 交换朋友夫妻互换小说| 中文精品一卡2卡3卡4更新| 最近手机中文字幕大全| 丝袜喷水一区| 一级毛片黄色毛片免费观看视频| 久久久久精品久久久久真实原创| 最近中文字幕高清免费大全6| 国产无遮挡羞羞视频在线观看| 国产又爽黄色视频| 日韩人妻精品一区2区三区| 精品少妇久久久久久888优播| 欧美97在线视频| 久久久久精品久久久久真实原创| 国产熟女午夜一区二区三区| 国产精品女同一区二区软件| 激情视频va一区二区三区| 18+在线观看网站| 日韩中字成人| 久久精品夜色国产| 美女大奶头黄色视频| 在线观看免费高清a一片| 另类亚洲欧美激情| 亚洲欧洲日产国产| 亚洲三级黄色毛片| 成人国语在线视频| 美女内射精品一级片tv| 欧美日本中文国产一区发布| 欧美性感艳星| 欧美老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 久久精品久久久久久久性| 欧美精品一区二区大全| 免费观看无遮挡的男女| 亚洲国产日韩一区二区| 天美传媒精品一区二区| 国产精品国产av在线观看| 成人国语在线视频| 极品少妇高潮喷水抽搐| 搡女人真爽免费视频火全软件| 人妻系列 视频| 国产免费一级a男人的天堂| 日本猛色少妇xxxxx猛交久久| 久久99热6这里只有精品| 国产一区二区激情短视频 | 在线天堂最新版资源| 自拍欧美九色日韩亚洲蝌蚪91| 韩国av在线不卡| 欧美日本中文国产一区发布| av又黄又爽大尺度在线免费看| 狂野欧美激情性bbbbbb| 亚洲中文av在线| 一本—道久久a久久精品蜜桃钙片| 51国产日韩欧美| 久久久久久久久久成人| 十分钟在线观看高清视频www| 最近2019中文字幕mv第一页| 黄色配什么色好看| 亚洲av男天堂| 亚洲国产精品成人久久小说| 亚洲精品一二三| www.色视频.com| 国产精品一区www在线观看| 免费人成在线观看视频色| 2022亚洲国产成人精品| 9色porny在线观看| 97在线人人人人妻| 母亲3免费完整高清在线观看 | 七月丁香在线播放| 9热在线视频观看99| 亚洲,欧美,日韩| 国产麻豆69| 亚洲欧美中文字幕日韩二区| 欧美老熟妇乱子伦牲交| 最新中文字幕久久久久| 国产老妇伦熟女老妇高清| a级片在线免费高清观看视频| 免费播放大片免费观看视频在线观看| 久久国内精品自在自线图片| 宅男免费午夜| 精品国产一区二区久久| 午夜激情av网站| 大香蕉久久网| 夫妻午夜视频| 在线免费观看不下载黄p国产| 亚洲精品美女久久久久99蜜臀 | 黄色毛片三级朝国网站| 午夜影院在线不卡| 一区二区三区精品91| 91精品国产国语对白视频| 中国美白少妇内射xxxbb| 国国产精品蜜臀av免费| 一区二区日韩欧美中文字幕 | 国产在线一区二区三区精| 五月伊人婷婷丁香| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久噜噜老黄| 飞空精品影院首页| 99香蕉大伊视频| 蜜桃国产av成人99| 国产 一区精品| 日韩一区二区三区影片| 91国产中文字幕| 韩国av在线不卡| 午夜日本视频在线| 国产亚洲一区二区精品| 波多野结衣一区麻豆| 啦啦啦啦在线视频资源| 午夜av观看不卡| 另类精品久久| 国产熟女午夜一区二区三区| 久热久热在线精品观看| 欧美bdsm另类| 女的被弄到高潮叫床怎么办| 午夜福利,免费看| 亚洲精品国产色婷婷电影| 考比视频在线观看| 国产亚洲最大av| 国产又色又爽无遮挡免| 免费大片18禁| www.av在线官网国产| 国产激情久久老熟女| av线在线观看网站| 99久久中文字幕三级久久日本| 国产日韩欧美亚洲二区| 美女国产视频在线观看| 丝袜喷水一区| 亚洲av男天堂| www日本在线高清视频| 黄色一级大片看看| 中文天堂在线官网| 九草在线视频观看| 久久久久视频综合| 国产亚洲一区二区精品| 亚洲第一区二区三区不卡| 啦啦啦在线观看免费高清www| 亚洲精品成人av观看孕妇| 成人免费观看视频高清| 男女边吃奶边做爰视频| 国产在线一区二区三区精| 亚洲色图 男人天堂 中文字幕 | 三上悠亚av全集在线观看| 大话2 男鬼变身卡| 日本av手机在线免费观看| 国产一级毛片在线| 亚洲av成人精品一二三区| 老熟女久久久| 日韩中文字幕视频在线看片| 一区二区日韩欧美中文字幕 | 飞空精品影院首页| 2022亚洲国产成人精品| 亚洲精品456在线播放app| 日本av免费视频播放| 性色av一级| 免费观看a级毛片全部| 亚洲欧美日韩另类电影网站| 男女免费视频国产| 国产免费一区二区三区四区乱码| 中文字幕另类日韩欧美亚洲嫩草| 免费观看性生交大片5| 男人添女人高潮全过程视频| 中文精品一卡2卡3卡4更新| 久久久久久久亚洲中文字幕| 一边亲一边摸免费视频| 成人午夜精彩视频在线观看| 亚洲av电影在线观看一区二区三区| 国产又爽黄色视频| 黑人猛操日本美女一级片| 秋霞伦理黄片| 青青草视频在线视频观看| h视频一区二区三区| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 97在线视频观看| 少妇的逼水好多| 亚洲情色 制服丝袜| 99re6热这里在线精品视频| 国精品久久久久久国模美| www.av在线官网国产| 国产成人免费无遮挡视频| 国产男女超爽视频在线观看| 99久久精品国产国产毛片| 交换朋友夫妻互换小说| 99热6这里只有精品| 日本av免费视频播放| 欧美亚洲日本最大视频资源| av免费观看日本| 99久久人妻综合| 我的女老师完整版在线观看| 天美传媒精品一区二区| 岛国毛片在线播放| 欧美人与性动交α欧美软件 | 亚洲五月色婷婷综合| 22中文网久久字幕| 99热这里只有是精品在线观看| 午夜av观看不卡| 欧美 日韩 精品 国产| 国产极品粉嫩免费观看在线| 老女人水多毛片| 国产欧美另类精品又又久久亚洲欧美| 久久毛片免费看一区二区三区| 黑人猛操日本美女一级片| 久久久欧美国产精品| 免费大片18禁| 在线天堂中文资源库| 18禁在线无遮挡免费观看视频| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲精品久久久com| 久久久亚洲精品成人影院| 国产亚洲精品久久久com| 亚洲成色77777| 热99国产精品久久久久久7| 亚洲一码二码三码区别大吗| 99热这里只有是精品在线观看| 成人手机av| 午夜精品国产一区二区电影| 五月玫瑰六月丁香| 国产又色又爽无遮挡免| 91精品国产国语对白视频| 免费女性裸体啪啪无遮挡网站| 夫妻性生交免费视频一级片| 日本爱情动作片www.在线观看| 少妇高潮的动态图| 色婷婷久久久亚洲欧美| 插逼视频在线观看| 亚洲欧美中文字幕日韩二区| 如日韩欧美国产精品一区二区三区| 飞空精品影院首页| 黑人高潮一二区| 精品视频人人做人人爽| 日本av手机在线免费观看| 五月开心婷婷网| 亚洲婷婷狠狠爱综合网| 五月开心婷婷网| 一二三四中文在线观看免费高清| 亚洲精品美女久久av网站| 日本爱情动作片www.在线观看| 在线精品无人区一区二区三| 国产综合精华液| 国产精品不卡视频一区二区| 多毛熟女@视频| 久久毛片免费看一区二区三区| 亚洲欧洲日产国产| 一区二区日韩欧美中文字幕 | 日韩 亚洲 欧美在线| 中文字幕人妻丝袜制服| 18禁在线无遮挡免费观看视频| 久久精品人人爽人人爽视色| 美女xxoo啪啪120秒动态图| 久久亚洲国产成人精品v| 久久久国产一区二区| 久久国产精品男人的天堂亚洲 | 成人综合一区亚洲| av片东京热男人的天堂| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| 亚洲国产欧美日韩在线播放| www.色视频.com| 日韩精品免费视频一区二区三区 | 另类亚洲欧美激情| 一区二区三区四区激情视频| 男女免费视频国产| 丰满饥渴人妻一区二区三| 国产成人91sexporn| h视频一区二区三区| 美女xxoo啪啪120秒动态图| 成人亚洲欧美一区二区av| 丝袜脚勾引网站| 美女主播在线视频| 一级爰片在线观看| 美女xxoo啪啪120秒动态图| 人人妻人人澡人人爽人人夜夜| 高清欧美精品videossex| 亚洲精品,欧美精品| 自线自在国产av| 有码 亚洲区| 捣出白浆h1v1| 国产亚洲精品久久久com| 亚洲精品,欧美精品| 18禁观看日本| 亚洲内射少妇av| 99re6热这里在线精品视频| 中文字幕精品免费在线观看视频 | 久久久久久久国产电影| 欧美精品国产亚洲| 欧美+日韩+精品| 亚洲欧美清纯卡通| 亚洲av国产av综合av卡| 新久久久久国产一级毛片| 激情五月婷婷亚洲| 国产精品.久久久| 午夜激情av网站| av福利片在线| 精品一品国产午夜福利视频| 亚洲欧美日韩卡通动漫| 22中文网久久字幕| 男人舔女人的私密视频| 国国产精品蜜臀av免费| 看十八女毛片水多多多| 免费黄色在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三卡| 国产1区2区3区精品| 一级片免费观看大全| 自线自在国产av| 亚洲欧洲日产国产| 久久女婷五月综合色啪小说| 狂野欧美激情性bbbbbb| 国产麻豆69| 日韩在线高清观看一区二区三区| 国产免费一区二区三区四区乱码| 超色免费av| 涩涩av久久男人的天堂| 天堂8中文在线网| 亚洲成人av在线免费| 99热6这里只有精品| 少妇人妻久久综合中文| 国产毛片在线视频| 在线 av 中文字幕| 波多野结衣一区麻豆| 精品视频人人做人人爽| 国产成人免费无遮挡视频| 男女边摸边吃奶| 亚洲av在线观看美女高潮| 中国国产av一级| 在线天堂最新版资源| 999精品在线视频| 亚洲国产欧美在线一区| 大香蕉久久网| 日韩 亚洲 欧美在线| 国产成人91sexporn| 国产成人一区二区在线| av不卡在线播放| 国产熟女午夜一区二区三区| 国产免费又黄又爽又色| 午夜福利视频精品| 精品人妻偷拍中文字幕| 乱人伦中国视频| 亚洲欧洲精品一区二区精品久久久 | 中文字幕精品免费在线观看视频 | 国产亚洲一区二区精品| 人人妻人人澡人人看| 精品一区二区三卡| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| 在线观看人妻少妇| 午夜免费鲁丝| 交换朋友夫妻互换小说| 国产乱人偷精品视频| 狂野欧美激情性xxxx在线观看| av.在线天堂| 国产成人欧美| 国产精品欧美亚洲77777| 精品国产露脸久久av麻豆| 免费看av在线观看网站| 久久人人爽人人爽人人片va| 国产一区二区激情短视频 | 91精品三级在线观看| 亚洲色图综合在线观看| 全区人妻精品视频| 亚洲国产色片| 中文天堂在线官网| a 毛片基地| 婷婷色麻豆天堂久久| 国产精品久久久久久久久免| 久久精品久久久久久噜噜老黄| 久久久国产欧美日韩av| 高清av免费在线| 人人妻人人爽人人添夜夜欢视频| 中文字幕av电影在线播放| 国产av精品麻豆| 久久久久网色| 一区二区三区精品91| 乱人伦中国视频| 777米奇影视久久| 色5月婷婷丁香| 久久 成人 亚洲| 永久网站在线| 韩国高清视频一区二区三区| 亚洲国产av影院在线观看|