張興旭,南志標(biāo),李春杰
(草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅蘭州730020)
通常把密度大于5 g·cm-3的金屬稱為重金屬,目前自然界中存在的90種元素中有53種是重金屬[1],主要包括金(Au)、銀(Ag)、銅(Cu)、鋅(Zn)、鋁(Al)、鉛(Pb)和鎘(Cd)等。隨著全球工業(yè)化和地球化學(xué)活動(dòng)的日益頻繁,地表和地下水中重金屬污染已經(jīng)成為一個(gè)嚴(yán)重的環(huán)境問題[2-3]。重金屬污染限制作物生產(chǎn),在食物鏈中通過生物富集來威脅人類的健康[4-6]。Cd是眾多環(huán)境污染中對(duì)植物有毒害效應(yīng)的重金屬之一,可以影響植物一系列的生物化學(xué)和生理代謝過程,包括光合作用、呼吸作用、氮循環(huán)、蛋白質(zhì)新陳代謝以及營(yíng)養(yǎng)元素的吸收[3,7]。目前一些研究表明,重金屬Zn脅迫能夠影響植物體內(nèi)的卡爾文循環(huán)[8]和光合作用的活性[9-11]。
禾草內(nèi)生真菌(Fungal Endophyte or Endophytic Fungi)是指能夠在禾草中度過大部分或全部的生命周期,但不使宿主植物顯示任何外部癥狀的一大類真菌[12],包括香柱菌屬(Epichloё)及其無性階段 Neotyphodium屬的真菌[13-14]。已經(jīng)在很多冷季型禾草中發(fā)現(xiàn)了Neotyphodium屬及其有性階段Epichloё屬的內(nèi)生真菌[12-13,15],這些內(nèi)生真菌可以賦予宿主植物很強(qiáng)的競(jìng)爭(zhēng)能力,主要因?yàn)槠涮岣吡思闹髦参飳?duì)各種生物脅迫[16-21]和非生物脅迫[15,22-23]的耐受性。
通過一系列物理和化學(xué)手段來改善和消除局部地區(qū)的土壤重金屬污染費(fèi)時(shí)、費(fèi)力[24],特別是對(duì)大面積污染而言更是杯水車薪,而且往往會(huì)導(dǎo)致土壤團(tuán)粒結(jié)構(gòu)、生物區(qū)系的改變和土壤功能的退化[25]。植物修復(fù)技術(shù)是一種對(duì)環(huán)境友好的、投入高效的選擇,但是受到諸多因素的限制[26]。植物能夠進(jìn)行土壤修復(fù)的前提條件是該植物對(duì)重金屬污染具有極強(qiáng)的耐受能力[27]。因此,可以通過提高植物對(duì)重金屬污染的耐受性從而提高其修復(fù)能力[28]。研究已經(jīng)證實(shí),應(yīng)用叢枝菌根和植物共生體進(jìn)行土壤修復(fù)是一種提高植物修復(fù)的新型而高效的方法[29-32]。與叢枝菌根相類似,Neotyphodium屬內(nèi)生真菌也能夠提高寄主禾草對(duì) Al[33]、Zn[34-35]和Cu[15]的耐受性。內(nèi)生真菌還可以影響宿主禾草對(duì)Fe、Zn、Cu、Ca和 P等礦質(zhì)元素的吸收和運(yùn)輸[33,36]。Ren 等[37]的研究表明,與不帶內(nèi)生真菌的植株相比,帶菌多年生黑麥草(Lolium perenne)可以積累更多的Cd元素。
本文綜述目前有關(guān)重金屬脅迫對(duì)禾草生長(zhǎng)和生理生化的影響、禾草對(duì)重金屬脅迫的響應(yīng)以及內(nèi)生真菌的侵染在禾草耐重金屬中調(diào)節(jié)的作用,以期為耐重金屬脅迫禾草品種的選育和植物修復(fù)機(jī)制的研究提供新的方法手段和理論基礎(chǔ)。
有關(guān)重金屬離子脅迫主要有金屬離子的不足和過量?jī)煞N情況,在長(zhǎng)期的共同進(jìn)化過程中,植物已經(jīng)發(fā)展了一些策略來應(yīng)對(duì)金屬離子的脅迫[38]。
重金屬離子能夠在高濃度條件下抑制多年生黑麥草的種子萌發(fā),其中Cd和Pb的抑制作用較Cu和Zn顯著[39]。低濃度的Cd和Pb對(duì)多年生黑麥草(Lolium perenne)的種子萌發(fā)具有促進(jìn)作用,而高濃度的Cd和Pb抑制了其萌發(fā)[40]。低濃度的Cd對(duì)醉馬草(Achnatherum inebrians)種子萌發(fā)和幼苗生長(zhǎng)具有促進(jìn)作用,而高濃度的Cd明顯抑制了其種子萌發(fā),內(nèi)生真菌的侵染有效緩解了Cd毒害對(duì)醉馬草種子萌發(fā)的影響[41]。隨后,在對(duì)重金屬Cd脅迫下帶與不帶內(nèi)生真菌的披堿草(Elymus dahuricus)種子萌發(fā)和幼苗生長(zhǎng)的研究中也得到了相同的結(jié)論[42]。
植物暴露于有毒重金屬中通常發(fā)生一些很明顯的外部病癥如缺綠病、壞死以及根的生長(zhǎng)抑制[43-44]。蘇丹草(Sorghum sudanense)和多年生黑麥草的根系活力均隨著Cd濃度的升高而逐漸降低[45],黑麥草、高羊茅(Festuca arundinacea)和匍匐剪股穎(Agrostis stolonifera)在重金屬Zn脅迫下根系活力降低[46]。但是,多年生黑麥草和匍匐剪股穎的根系活力在低濃度Pb脅迫下比對(duì)照有顯著提高[47],相同的植物物種對(duì)不同種類重金屬脅迫的響應(yīng)不同,可能跟植物的生育期、品種和環(huán)境條件等有關(guān)。內(nèi)生真菌可以增加寄主植物的根冠比、須根數(shù)目及根毛長(zhǎng)度,但是根直徑減?。?3]。Cd脅迫對(duì)胚根生長(zhǎng)的影響大于胚芽生長(zhǎng),特別是在高濃度鎘脅迫條件下[48-50]。在重金屬Cu脅迫條件下,內(nèi)生真菌侵染的高羊茅具有相對(duì)較多須根數(shù)[15]。隨著Cd脅迫濃度的增加,醉馬草[23]、披堿草[42]和野大麥(Hordeum brevisubulatum)[51]的幼苗均呈現(xiàn)出胚芽長(zhǎng)度顯著降低,葉片失綠黃化、出現(xiàn)紅褐色斑點(diǎn),胚根褐變的現(xiàn)象,這些癥狀與其他研究報(bào)道相同[3,50],伴隨著這些癥狀而來的就是植物干物質(zhì)產(chǎn)量的減少[50],而內(nèi)生真菌的侵染可以顯著緩解Cd對(duì)其幼苗胚根的傷害。很多研究表明,高濃度Cd脅迫對(duì)胚根生長(zhǎng)的影響大于胚芽生長(zhǎng)[48-50]。Cd脅迫對(duì)胚根生長(zhǎng)的影響相對(duì)較大,是因?yàn)橹参锷L(zhǎng)過程中根是植物直接接觸生長(zhǎng)基質(zhì)中Cd元素的器官,根部可能積累了相對(duì)含量較高的Cd元素[52-53]。
一年生黑麥草(L.multiflorum)地上部分的干生物量隨著Zn濃度的增加,呈先增后減的變化規(guī)律[46]。在5.0 ×10-4mol·L-1的 Cd 脅迫下,多年生黑麥草、高羊茅、匍匐剪股穎生物量均明顯下降,且地上部分生物量的下降幅度大于地下部分[47]。與未被侵染植株相比,內(nèi)生真菌的侵染可以提高細(xì)羊茅(F.stapfii)對(duì)Al脅迫的耐受性,明顯促進(jìn)宿主植物干物質(zhì)的積累[54]。內(nèi)生真菌可以提高紫羊茅(F.rubra)對(duì) Al脅迫的耐受性,增加其生物量[55],也可以提高黑麥草對(duì)Zn脅迫的適應(yīng)能力從而增加植株干質(zhì)量和分蘗數(shù)[11,34]。在重金屬Cu脅迫下,內(nèi)生真菌侵染的高羊茅具有相對(duì)較多的地下生物量[15]。Cd脅迫會(huì)顯著降低高羊茅和草地羊茅(F.pratensis)生物量、分蘗數(shù)和綠葉數(shù),內(nèi)生真菌可以緩解Cd對(duì)羊茅屬植物的毒害,與不帶菌植株相比,帶菌植株具有較高的生物量和生長(zhǎng)指數(shù)[25]。與E-植株相比,E+植株具有較多的分蘗數(shù)和生物量,內(nèi)生真菌的侵染可以提高Cd在高羊茅植株中的積累并且改善 Cd在根部和地上部的運(yùn)輸[56]。醉馬草[23,41]、披堿草[42]和野大麥[51]的生物量均隨著 Cd脅迫濃度的增加而逐漸減少,內(nèi)生真菌的侵染可以顯著緩解Cd毒害,表現(xiàn)為相對(duì)較高的干、鮮質(zhì)量。隨著Mn、Zn和Fe 3種重金屬脅迫濃度的增加,醉馬草地上生物量積累、株高和分蘗數(shù)均顯著降低[57](表1)。
表1 內(nèi)生真菌對(duì)重金屬離子脅迫的響應(yīng)Table 1 Response of endophyte to heavy metal stress
植物在水分脅迫條件下,重金屬脅迫往往能夠誘導(dǎo)植物一系列的生化反應(yīng)和生理變化[7]。內(nèi)生真菌侵染可以提高高羊茅[33]及其他5種羊茅屬植物[55]對(duì)重金屬Al的耐受程度。同時(shí),內(nèi)生真菌會(huì)影響高羊茅對(duì)礦質(zhì)元素(Fe、Zn、Cu、Ca、P)的吸收和體內(nèi)的轉(zhuǎn)移運(yùn)輸[33]。盡管內(nèi)生真菌可以增加寄主植物對(duì)各種脅迫的抗逆性,但是即便是單一脅迫對(duì)植物生理功能的影響也各不相同[11]。如,Cd通過影響植物一系列的生物化學(xué)和生理代謝過程,包括光合作用、呼吸作用、氮循環(huán)、蛋白質(zhì)新陳代謝以及營(yíng)養(yǎng)元素的吸收,進(jìn)而對(duì)植物產(chǎn)生有毒害效應(yīng)[3,7];而鉻(Cr)使植物細(xì)胞器的超微結(jié)構(gòu)改變,擾亂代謝活動(dòng),抑制生長(zhǎng),加劇細(xì)胞膜脂過氧化以及蛋白質(zhì)和核酸含量和功能的改變[58];Pb可以直接和間接地作用于植物,通過影響葉片的表面形態(tài)及結(jié)構(gòu)[59-60]和內(nèi)在的物質(zhì)系統(tǒng)、分子基礎(chǔ)[61]來改變植物的光合作用,進(jìn)而影響其生長(zhǎng)和代謝[3,58,62]。
目前一些研究表明,重金屬Zn脅迫能夠影響植物體內(nèi)的卡爾文循環(huán)[8]以及光合作用的活性[9-11];N.lolii內(nèi)生真菌可以提高多年生黑麥草對(duì)重金屬Zn脅迫的耐受性,促進(jìn)地上生物量的積累和分蘗的增加,同時(shí)還增強(qiáng)其光合作用[34]。Cd脅迫顯著降低了高羊茅和草地羊茅光系統(tǒng)Ⅱ的最大光化學(xué)效率(Fv/Fm),但內(nèi)生真菌侵染的植株下降的幅度要小于不帶菌植株[25]。Cd脅迫的毒性可使大麥(H.vulgare)成熟葉片產(chǎn)生紅褐色邊紋枯死斑[50],從而影響其光合作用。多年生黑麥草的凈光合速率和最大光化學(xué)效率隨著Cd濃度的增加而降低,高濃度Cd脅迫條件下內(nèi)生真菌可以顯著緩解其下降趨勢(shì)[56]。
脯氨酸在植物適應(yīng)干旱和不良環(huán)境中起著重要作用,通過溶質(zhì)積累達(dá)到滲透調(diào)節(jié)的目的和作用。在重金屬脅迫下,植物脯氨酸通常發(fā)生積累現(xiàn)象,但是如何產(chǎn)生這種應(yīng)激反應(yīng)到目前學(xué)術(shù)界一直沒有達(dá)成一致的意見[63-66]。最初的研究發(fā)現(xiàn),植物遭受重金屬脅迫后體內(nèi)產(chǎn)生并積累了大量的脯氨酸[63-64],其實(shí)脯氨酸累積并不是植物受重金屬損傷的癥狀[67],相反,脯氨酸被認(rèn)為是保護(hù)植物免受重金屬毒害的[65,68],當(dāng)植物受到各種壓力時(shí)脂質(zhì)過氧化和脯氨酸積累之間存在一種關(guān)系[69]。Mn、Zn和Fe脅迫下醉馬草植株中脯氨酸含量會(huì)積累增加[57]。
在田間干旱條件下,E+高羊茅植株中脯氨酸含量的積累低于E-植株,但在室內(nèi)條件下,200 μmol·L-1CdCl2濃度脅迫條件下,E+植株脯氨酸積累高于E-植株,這可能是由于Cd脅迫壓力過大以至于E+植株維持正常的生理代謝過程所致[70]。但是,有關(guān)脯氨酸研究結(jié)論的不一致,可能歸因于不同的逆境脅迫作用于不同的品種和不同環(huán)境。紙上芽床發(fā)芽試驗(yàn)和盆栽試驗(yàn)的結(jié)果均表明,重金屬Cd脅迫下,醉馬草、披堿草和野大麥3種禾草體內(nèi)脯氨酸的積累均顯著增加,E+禾草體內(nèi)脯氨酸含量增加要大于 E- 植株[23,41-42,51]。
許多Cd脅迫植物中均有H2O2和·O2-積累的報(bào)道[71-72],Cd脅迫通過影響質(zhì)膜上膜脂和膜蛋白的相互作用,傷害細(xì)胞膜結(jié)構(gòu)的同時(shí)誘導(dǎo)·O2-的產(chǎn)生從而激發(fā)質(zhì)膜上NADPH-氧化酶的活性[73-76]。在水稻(Oryza sativa)根部[77]和葉部[71],Cd 脅迫可以增加·O2-的產(chǎn)生,從而激發(fā)了NADPH-氧化酶的活性,被認(rèn)為是Cd誘導(dǎo)·O2-形成的原因。很多研究表明,植物可以通過誘導(dǎo)抗氧化防御體系來增強(qiáng)對(duì)Cd 脅迫的耐受性[3,7,53]。內(nèi)生真菌的侵染可以提高重金屬Cd在高羊茅植株中的積累和抗氧化物酶活性[56]。Zn脅迫下,內(nèi)生真菌侵染(E+)的多年生黑麥草中抗壞血酸過氧化物酶(Ascorbic acid,APX)的活性低于野生型植株[34]。
目前廣泛認(rèn)為,Cd毒害能夠使植物產(chǎn)生氧化應(yīng)激反應(yīng),誘導(dǎo)植物體內(nèi)產(chǎn)生一些與氧化相關(guān)的活性氧自由基[3,53,75]。Cd 脅迫處理的植物中 H2O2積累,可能是由于植物體內(nèi)H2O2產(chǎn)生和清除之間的動(dòng)態(tài)平衡被打亂的結(jié)果[3,53]。超氧化物歧化酶(Superoxide Dismutase,SOD)是植物體內(nèi)將活性氧自由基清除并將·O2-自由基轉(zhuǎn)化成H2O2的解毒過程中起首要作用的酶。此外,過氧化氫酶(Catalase,CAT)、過氧化物酶(Peroxidas,POD)和 APX也都能夠防止體內(nèi)H2O2的積累。當(dāng)植物體內(nèi)H2O2含量增加,如果SOD酶活性被抑制,其他酶將會(huì)被激發(fā)來分解和清除這些自由基。因此,有理由認(rèn)為,CAT與APX在配合SOD清除H2O2的過程中發(fā)揮著重要作用[3]。內(nèi)生真菌可以提高醉馬草、披堿草和野大麥在重金屬Cd脅迫下的抗氧化酶系統(tǒng),在長(zhǎng)期Cd脅迫環(huán)境下CAT、SOD、POD和APX的活性都顯著增加[23,41-42,51]。王萍等[57]研究表明,CAT、SOD 和POD活性均隨著Mn、Zn和Fe 3種重金屬脅迫濃度的增加而顯著上升。丙二醛(MDA)作為機(jī)體受到逆境脅迫后膜脂過氧化的產(chǎn)物,其含量的高低反映了機(jī)體細(xì)胞受損傷的程度。醉馬草[23,41,51,57]、披堿草[42]和野大麥[51]遭受重金屬脅迫后體內(nèi) MDA 含量均明顯升高。
重金屬脅迫與其他各種形式的非生物脅迫相似,也能夠?qū)е麓罅康幕钚匝踝杂苫a(chǎn)生,這些自由基損傷蛋白質(zhì)和DNA等遺傳物質(zhì)并且引起膜脂過氧化,而植物自身的抗氧化防衛(wèi)系統(tǒng)能夠清除自由基,從而保護(hù)細(xì)胞免受傷害[3],這是植物抗重金屬脅迫的主要機(jī)理之一。
與干旱脅迫相似,重金屬脅迫也能夠通過誘導(dǎo)植物體內(nèi)的一系列生理生化變化來緩解脅迫程度或者提高植物適應(yīng)脅迫的能力[7]。重金屬(如Cd)能誘導(dǎo)產(chǎn)生自由基和活性氧(Reactive Oxygen Species,ROS),從而破壞植物主要細(xì)胞大分子,如蛋白質(zhì)、脂質(zhì)和脫氧核糖核酸(DNA)。重金屬脅迫能夠激發(fā)或誘導(dǎo)植物抗氧化酶體系的表達(dá),具體表現(xiàn)在SOD、CAT和POD活性有不同程度的變化[3]。內(nèi)生真菌可以提高醉馬草、披堿草和野大麥在重金屬Cd脅迫下的抗氧化酶系統(tǒng),與不帶菌植株相比,帶菌植株的 CAT、SOD、POD和 APX活性均有顯著增加[23,41-42,51],然而,Cd 脅迫誘導(dǎo)植株 ROS 含量的分子基礎(chǔ)以及內(nèi)生真菌的調(diào)控作用機(jī)制,仍然需要通過將來的研究來進(jìn)一步闡明。
谷胱甘肽(Glutathione,GSH)參與植物抗氧化代謝途徑中活性氧的產(chǎn)生、調(diào)節(jié)和清除,寄主植物可以通過APX-谷胱甘肽循環(huán)來參與活性氧解毒[78-80]。當(dāng)植物遭受重金屬脅迫時(shí),液泡膜內(nèi)積累的金屬離子與谷胱甘肽發(fā)生螯合反應(yīng)并形成復(fù)合體隱含于液泡中[81]。由于谷胱甘肽在植物抗活性氧反應(yīng)中具有重要作用,目前已經(jīng)通過轉(zhuǎn)基因手段等分子生物學(xué)的方法來調(diào)控谷胱甘肽的表達(dá),從而提高目標(biāo)植物的耐重金屬能力[82]。
當(dāng)植物遭受重金屬脅迫時(shí),植物螯合肽及其復(fù)合物將金屬離子螯合并且誘發(fā)相關(guān)酶活性的啟動(dòng),從而在植物應(yīng)對(duì)金屬脅迫的過程中發(fā)揮功能性作用[2,83]。目前,僅見有關(guān)擬南芥(Arabidopsis thaliana)中植物螯合物與重金屬Cd螯合成重金屬?gòu)?fù)合體并將其隔離在液泡中[84]。此外,植物螯合態(tài)還可以作用于谷胱甘肽,通過對(duì)Pb的螯合及形成Pb的螯合物來降低重金屬毒害[85]。內(nèi)生真菌也可能通過與寄主互作分泌一系列的酚類化合物使其結(jié)合可溶性的Al、Fe和Mn來降低金屬離子的脅迫[86-87]。
內(nèi)生真菌侵染的高羊茅在溫室[88]和田間[89]試驗(yàn)中均積累了較低濃度的Cu含量。Neotyphodium屬內(nèi)生真菌的侵染提高了高羊茅和草地羊茅植株地上和地下部分對(duì)重金屬鎘Cd的積累和體內(nèi)運(yùn)輸從而減輕了其對(duì)宿主的傷害,內(nèi)生真菌侵染的植株具有相對(duì)較高的干物質(zhì),植株地上部和根部積累重金屬Cd的潛能也要高于不帶菌植株。這兩種草類植物對(duì)Cd具有超積累效應(yīng),而內(nèi)生真菌的侵染增強(qiáng)了這一效應(yīng)[25]。與E-植株相比,E+植株具有較多的分蘗數(shù)和生物量,內(nèi)生真菌的侵染可以提高重金屬Cd在高羊茅植株中的積累并且改善Cd在根部和地上部的運(yùn)輸,帶菌植株對(duì)重金屬的提取和吸收能力強(qiáng)于不帶菌植株的[56]。
綜上所述,微量的重金屬作為植物生長(zhǎng)的有益元素,能夠促進(jìn)植物正常的生長(zhǎng)和生理代謝,但是重金屬濃度過高會(huì)嚴(yán)重影響禾草類植物的生長(zhǎng)、生理和生化代謝途徑。通過微生物接種和植物組織培養(yǎng)等方法,能夠成功轉(zhuǎn)接內(nèi)生真菌從而獲得一些新的帶菌禾草新品系。用內(nèi)生真菌侵染禾草來增加寄主植物對(duì)Cd元素的耐受性,可以篩選一些具有優(yōu)良耐受性、更加有效的菌株和禾草新品種(系)用于重金屬污染環(huán)境中的植物修復(fù)。但是,各種重金屬在誘導(dǎo)植物自由基產(chǎn)生過程中的角色和地位以及內(nèi)生真菌在禾草耐重金屬中的調(diào)控作用及其機(jī)理仍然需要進(jìn)一步研究。
[1]Myriam SZ,Mari D G,Maria L T,Maria P B.Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana[J].Plant Science,2007,173:190-197.
[2]張芳,方溪,張麗靜.草類對(duì)重金屬脅迫的生理生化響應(yīng)機(jī)制[J].草業(yè)科學(xué),2012,29(4):534-541.
[3]Zhang F Q,Zhang H X,Wang G P,Xu L L,Shen Z G.Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes[J].Journal of Hazardous Materials,2009,168:76-84.
[4]Wong M H.Ecological restoration of mine degraded soils,with emphasis on metal contaminated soils[J].Chemosphere,2003,50:775-800.
[5]Gisbert C,Clemente R,Navarro-Avino J,Carlos B,Alfonso G,Ramon S,David J W,Bernal M P.Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain[J].Environmental and Experimental Botany,2006,56(1):19-27.
[6]Muhammad D,Chen F,Zhao J,Zhang G P,Wu F B.Comparison of EDTA and citric acidenhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia[J].International Journal of Phytoremediation,2009,11(6):558-574.
[7]Barcelo J,Poschenrieder C.Plant water relations as affected by heavy metal stress:A review[J].Joural of Plant Nutrition,1990,13:1-37.
[8]Chaney R L.Zn toxicity[A].Robson A D.Zn in Soils and Plants[M].Dordrecht:Kluwer,1993.
[9]Van Assche F,Clijsters H.Inhibition of photosynthesis by treatment of Phaseolus vulgaris with toxic concentration of Zn:Effects on electron transport and photophosphorylation[J].Plant Physiology,1986,66:717-721.
[10]Van Assche F,Clijsters H.Inhibition of photosynthesis in Phaseolus ulgaris by treatment with toxic concentration of Zn:Effects on ribulose-1,5-bisphosphate carboxylase/oxygenase[J].Journal of Plant Physiology,1986,125:355-360.
[11]Monnet F,Vaillant N,Hitmi A,Coudret A,Sallanao H.Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne[J].Physiologia Plantarum,2001,113:557-563.
[12]南志標(biāo),李春杰.禾草-內(nèi)生真菌共生體在草地農(nóng)業(yè)系統(tǒng)中的作用[J].生態(tài)學(xué)報(bào),2004,24(3):605-616.
[13]Schardl CL,Leuchtmann A.The Epichloёendophytes of grasses and the symbiotic continnuum[A].Dighton J,White JF,Oudemans P.The Fungal Community[M].3rd edtion.Boca Raton:CRCPress,2004:475-503.
[14]Kuldau G,Bacon C.Clavicipitaceous endophytes:Their ability to enhance resistance of grasses to multiple stresses[J].Biological Control,2008,46:57-71.
[15]Malinowski D P,Belesky D P,Lewis G C.Abiotic stresses in endophyte grasses[A].Craig A R,Charles PW,Donald E S.Neotyphodium in Cool-season Grasses[C].Current Research and Application[M].Oxford:Blackwell Scientifie Publicatious,2005:187-200.
[16]Siegel M R,Latch GCM,Bush L P,F(xiàn)annin FF,Rowan D D,Tapper B A,Bacon CW,Johnson M C.Fungal endophyte-infected grasses:Alkaloid accumulation and aphid response[J].Journal of Chemistry Ecology,1990,16:3301-3315.
[17]West CP,Izekor E,Robbins R T,Gergerich R,Mahmood T.Acremonium coenophialum effects on infestations of barley yellow dwarf virus and soil-borne nematodes and insects in tall fescue[A].Proceedings of the International Symposium on Acremonium/Grass Interactions[C].Louisinana,USA,1990:196-198.
[18]Eerens J P J,Visker M H PW,Lucas R J,white JG H.Influence of the ryegrass endophyte(Neotyphodium lolii)on morphology,physiology,and alkaloid synthesis of perennial ryegrass during high temperature and water stress[J].New Zealand Journal of Agricultural Research,1998,41:219-226.
[19]Conover M R.Impact of the consumption of endophyte-infected perennial ryegrass by meadow voles[J].Agriculture,Ecosystems and Environment,2003,97:199-203.
[20]Conover M R.Impact of consuming tall fescue seeds infected with the endophytic fungus,Neotyphodium coenophialum,on reproduction of chickens[J].Theriogenology,2003,59:1313-1323.
[21]Li CJ,Gao JH,Nan Z B.Interactions of Neotyphodium gansuense,Achnatherum inebrians and plant-pathogenic fungi[J].Mycology Research,2007,111:1220-1227.
[22]Bacon CW.Abiotic stress tolerances(moisture,nutrients)and photosynthesis in endophyte-infected tall fescue[J].Agriculture,Ecosystems and Environment,1993,44:123-142.
[23]Zhang X X,Li CJ,Nan Z B.Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense[J].Journal of Hazardous Materials,2010,175:703-709.
[24]Abe T,F(xiàn)ukami M,Ichizen N,Ogasawara M.Susceptibility of weed species to cadmium evaluated in a sand culture[J].Weed Biology and Management,2006,6:107-114.
[25]Soleimani M,Hajabbasi M A,Afyuni M,Mirlohi A,Borggaard O K,Holm P E.Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis[J].International Journal of Phytoremediation,2010,12:535-549.
[26]Pilon-Smits E.Phytoremediation[J].Annual Review of Plant Biology,2005,56:15-39.
[27]鐵梅,張朝紅,董厚德,徐銳,邢志強(qiáng).草坪草對(duì)土壤中鎘的吸收與富集作用的研究[J].遼寧大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,28(2):189-192.
[28]Alkorta I,Becerril H A,Amezaga I.Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc,cadmium,lead,and arsenic[J].Review of Environment and Science Biotechnology,2004,3:71-90.
[29]Orlowska E,Ryszka P,Jurkiewicz A.Effectiveness of arbuscular mycorrhizal fungal(AMF)strains in colonisation of plants involved in phytostabilization of zinc wastes[J].Geoderma,2005,129:92-98.
[30]Khan A G.Mycorrhizoremediation——An enhanced form of phytoremediation[J].Journal of Zhejiang University Science,2006,7:503-514.
[31]G?hre V,Paszkowski U.Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J].Planta,2006,223:1115-1122.
[32]Jankong P,Visoottiviseth P.Effects of arbus-cular mycorrhizal inoculation on plants growing on ar-senic contaminated soil[J].Chemosphere,2008,72:1092-1097.
[33]Malinowski D P,Belesky D P.Adaptation of endophyte-infected cool-season grasses to environment stresses:Mechanisms of drought and mineral stress tolerance[J].Crop Science,2000,40:923-940.
[34]Bonnet M,Camares O,Veisseire P.Effects of zinc and influence of Acremonium lolii on growth parameters,chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass(Lolium perenne L.cv.Apollo)[J].Journal of Experimental Botany,2000,51:945-953.
[35]Monnet F,Vaillant N,Hitmi A,Coudret A,Sallanao H.Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne[J].Plant Physiology,2001,113:557-563.
[36]Rahman M H,Saiga S.Endophytic fungi(Neotyphodium coenophialum)affect the growth and mineral uptake,transport and efficiency ratios in tall fescue(Festuca arundinacea)[J].Plant and Soil,2005,272:163-171.
[37]Ren A Z,Gao Y B,Zhang L,Xie F X.Effects of cadmium on growth parameters of endophyte-infected and endophyte-free ryegrass[J].Journal of Plant Nutrition and Soil Science,2006,169:857-860.
[38]Marschner H.Mineral Nutrition of Higher Plants[M].Second edition.London:Academic Press,1995:889.
[39]多立安,高玉葆,趙樹蘭.重金屬遞進(jìn)脅迫對(duì)黑麥草初期生長(zhǎng)的影響[J].植物研究,2006,26(1):117-122.
[40]David E S,Michael B,Nanda P B A K,Viatcheslav D,Burt D E,Ilan C,Ilya R.Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants[J].Biotechnology,1995,13:468-475.
[41]Zhang X X,F(xiàn)an X M,Li C J,Nan Z B.Effects of cadmium stress on seed germination,seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte[J].Plant Growth Regulation,2010,60(2):91-97.
[42]Zhang X X,Li C J,Nan Z B.Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte[J].Science China Life Sciences,2012,55(9):793-799.
[43]Carrier P,Baryla A,Havaux M.Cadmium distribution and microlocalization in oilseed rape(Brassica napus)after long term growth on cadmium contaminated soil[J].Planta,2003,216:939-950.
[44]Sandalio L M,Dalurzo H C,Gomez M,Romero-Puertas M C,del Rio L A.Cadmium-induced changes in the growth and oxidative metabolism of pea plants[J].Journal of Experimental Botany,2001,52:2115-2126.
[45]陸秀君,關(guān)欣,李常猛,王國(guó)娟.鎘對(duì)草類幼苗生長(zhǎng)的影響[J].北方園藝,2007(4):56-58.
[46]徐衛(wèi)紅,熊治庭,李文一.4品種黑麥草對(duì)重金屬Zn的耐性及Zn積累研究[J].西南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,27(6):785-790.
[47]王慧忠,何翠屏.重金屬離子脅迫對(duì)草坪草根系生長(zhǎng)及其活力的影響[J].中國(guó)草地,2002,24(3):55-63.
[48]Ouzounidou G,Moustakas M,Eleftheriou E P.Physiologial and ultrastructural effects of cadmium on wheat(Triticum aestivum)leaves[J].Archives of Environmental Contamination and Toxicology,1997,32:154-160.
[49]Vitoria A P,Lea P J,Azevedo R A.Antioxidant enzymes responses to cadmium in radish tissues[J].Phytochemistry,2001,57:701-710.
[50]Melis T,Selim E,F(xiàn)aruk O,Soren H,Ismail C.Antioxidant defense system and cadmium uptake in barely genotypes differing in cadmium tolerance[J].Journal of Trace Elements in Medicine and Biology,2006,20:181-189.
[51]張興旭.醉馬草——內(nèi)生真菌共生體對(duì)脅迫的響應(yīng)及其次生代謝產(chǎn)物的活性研究[D].蘭州:蘭州大學(xué),2012.
[52]Grant C A,Buckley W T,Bailey L D,Selles F.Cadmium accumulation in crops[J].Canadian Journal of Plant Science,1998,78:1-17.
[53]Hegedusü A,Erdei S,Horvath G.Comparative studies of H2O2detoxifying enzymes in green and greening barley seedlings under cadmium stress[J].Plant Science,2001,160:1085-1093.
[54]Liu H,Heckman JR,Murphy JA.Screening fine fescues for aluminum tolerance[J].Journal of Plant Nutrition,1996,19:677-688.
[55]Zaurov D E,Bonos S,Murphy J A,Richardson M,Belanger F C.Endophyte infection can contribute to aluminum tolerance in fine fescues[J].Crop Science,2001,41:1981-1984.
[56]Ren A Z,Li C,Gao Y B.Endophytic fungus improves growth and metal uptake of Lolium arundinaceum Darbyshire Ex.Schreb[J].International Journal of Phytoremediation,2011,13:233-243.
[57]王萍,張興旭,趙曉靜,李春杰.3種重金屬元素脅迫對(duì)醉馬草生長(zhǎng)及生理生化指標(biāo)的影響[J].草業(yè)科學(xué),2014.31(6):1080-1086.
[58]Sinha S,Rai U N,Tripathi R D,Chandra P.Chromium and manganese uptake by Hydrilla verticillata(l.f.)Royle:amelioration of chromium toxicity by manganese[J].Journal of Environmental Science and Health,Part A.Toxic/Hazardous Substances and Environmental Engineering,1993,28:1545-1552.
[59]Krupa Z,Baszyński T.Some aspects of heavy metals toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactions[J].Acta Physiologiae Plantarum,1995,17:177-190.
[60]Parys E,Romanowska E,Siedlecka M,Poskuta J W.The ffect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum[J].Acta Physiologiae Plantarum,1998,20:13-322.
[61]Patra M,Sharma A.Mercury toxicity in plants[J].Botanical Review,2000,66:379-422.
[62]Tomar M,KaurNeelu I,Bhatnagar A K.Tomar M,Kaur I,Effect of enhanced lead in soil on growth and development of Vigna radiata(L).Wilczek[J].Indian Journal of Plant Physiology,2000,5:13-18.
[63]Schat H,Sharma SS,Vooijs R.Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris[J].Plant Physiology,1997,101:477-482.
[64]Shah K,Dubey R S.Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings:Role of proline as a possible enzyme protectant[J].Biology Plantarum,1998,40:121-130.
[65]Mehta SK,Gaur JP.Heavy metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris[J].New Phytologist,1999,143:253-259.
[66]Zengin F K,Munzuroglu O.Effect of some heavy metals on content of chlorophyll,proline and some antioxidant chemicals in bean seedling[J].Acta Biologica Cracoviensia Series Botanica,2005,47:157-164.
[67]Lutts S,Kinet J M,Bouharmont J.Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice(Oryza sativa L.)callus cultures[J].Journal of Plant Physiology,1996,149:186-195.
[68]Siripornadulsil S,Train S,Verma D PS,Sayre R T.Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae[J].The Plant Cell,2002,14:2837-2847.
[69]Molinari H B C,Marur CJ,Daros E,De Campos M K F,De Carvalho JF R P,F(xiàn)ilho JCB,Pereira L F P,Vieira L GE.Evaluation of the stress-inducible production of proline in transgenic sugarcane(Saccharum spp.):Osmotic adjustment chlorophyll fluorescence and oxidative stress[J].Plant Physiology,2007,130:218-229.
[70]Elbersen H W,West C P.Growth and water relations of field-grown tall fescue as influenced by drought and endophyte[J].Grass and Forage Science,1996,51:333-342.
[71]Yeh CM,Chien PS,Huang H J.Distinct signalling pathways for induction of MAPkinase activities by cadmium and copper in rice roots[J].Journal of Experimental Botany,2007,58:659-671.
[72]Maksymiec W,Krupa Z.The effects of short-term exposition to Cd,excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana[J].Environmental and Experimental Botany,2006,57:187-194.
[73]Wahid A,Perveen M,Gelani S,Shahzad M A B.Pretreatment of seed with H2O2improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins[J].Journal of Plant Physiology,2007,164:283-294.
[74]Doussiere J,Gaillard J,Vignais P V.The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds[J].Biochemistry,1999,38:3694-3703.
[75]Olmos E,Martinez-Solano J R,Piqueras A,Hellin E.Early steps in the oxidative burst induced by cadmium in cultured tobacco cells(BY-2 line)[J].Journal of Experimental Botany,2003,54:291-301.
[76]Rodríguez-Serrano M,Romero-Puertas M C,Zabalza A,Corpas F J,Gomez M,Delrio L,Sandalio L.Cadmium effect on oxidative metabolism of pea(Pisum sativum L.)roots.Imaging of reactive oxygen species and nitric oxide accumulation in vivo[J].Plant,Cell and Environment,2006,29:1532-1544.
[77]Hsu Y T,Kao CH.Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation[J].Plant and Soil,2007,298:231-241.
[78]Foyer C H,Noctor G.Redox homeostasis and antioxidant signaling:A metabolic interface between stress perception and physiological responses[J].Plant Cell,2005,17:1866-1875.
[79]Shao H B,Liang Z S,Shao M A,Sun SM,Hu Z M.Investigation on dynamic changes of photosynthetic characteristics of 10 wheat(Triticum aestivum L.)genotypes during two vegetative-growth stages at water deficits[J].Colloids and Surfaces B:Biointerfaces,2005,43:221-227.
[80]Freeman JL,Persans M W,Nieman K.Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators[J].The Plant Cell,2004,16:2176-2191.
[81]Sharma SS,Dietz K J.The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress[J].Journal of Experimental Botany,2006,57:711-726.
[82]Yadav SK.Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants[J].South African Journal of Botany,2010,76:167-179.
[83]Memon A R,Chino M,Yatazawa M.Microdistribution of aluminum and manganese in the tea leaf tissue as revealed by X-ray microanalyzer[J].Soil Science and Plant Nutrition,1981,27:317-328.
[84]Rauser W E.Phytochelatins and related peptides,structure,biosynthesis,and function[J].Plant Physiology,1995,109:1141-1149.
[85]Piechalak A,Tomaszewska B,Baralkiewicz D,Malecka A.Accumulation and detoxification of lead ions in legumes[J].Phytochemistry,2002,60:153-162.
[86]Howden R,Goldsbrough PB,Andersen CR,Cobbett CS.Cadmium sensitive,cad1 mutants of Arabidopsis thaliana are phytochelatin deficient[J].Plant Physiology,1995,107:1059-1066.
[87]Schm?ger M E,Oven M,Grill E.Detoxification of arsenic by phytochelatins in plants[J].Plant Physiology,2000,122:793-801.
[88]Dennis SB,Allen V G,Saker K E,F(xiàn)ontenot JP,Ayad JY,Brown CP.Influence of Neotyphodium coenophialum on copper concentration in tall fescue[J].Journal of Animal Science,1998,76:2687-2693.
[89]Allen V G,F(xiàn)ontenot J P,Bagley C P.Effects of seaweed treatment of tall fescue on grazing steers[A].In Williams M J.Proceeding of the 1997 Animal and Forage Grassland Council Conference[C].Fort Worth,TX,1997:13-15.