• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超聲萃取-氣流式液相微萃取-氣相色譜質(zhì)譜在線聯(lián)用快速檢測(cè)蔬菜中有機(jī)磷農(nóng)藥殘留

    2014-12-20 02:00:10南京熙畢程程金京一
    食品與機(jī)械 2014年5期
    關(guān)鍵詞:延吉續(xù)表延邊

    南京熙 畢程程 金京一 吳 學(xué)

    (1.延邊大學(xué)理學(xué)院化學(xué)系,吉林 延吉 133002;2.延邊出入境檢驗(yàn)檢疫局,吉林 延吉 133000)

    In the stages of cultivation,harvest and storage,pesticides are widely used to protect crops from pests and bacteria and provide quality assurance(Wang,Willis,Daniel,2012).The extensive use of pesticides has resulted in numerous negative effects on food security,the ecological environment and human health(Kaushik,Satya,Naik,2009).Food safety is receiving increasing attention all over the world.Many international organizations and countries(such as the WHO,the United Nations Food and Agriculture Organization,the Eu-ropean Union and the United States of America,among others)have limited the residues of pesticides in international trade(Shinger,Elbashir,Ahmed,Aboul-Enein,2012).

    Vegetables are an important source of food but are also a potential source of pesticides(Latif,Sherazin,Bhanger,2011).Pesticide residues in vegetables have been listed as the priority project of food risk monitoring (Lee,Law,Wong,1996).Organophosphorus pesticides (OPPs)are widely used in the world.At present,the varieties and dosages of OPPs have outnumbered other types of pesticides in China.The monitoring of OPPs can ensure the safe supply of food.The analysis methods of OPPs in vegetables in previous reports were time-consuming and difficult.In particular,the sample extraction required tedious clean-up procedures and reconcentration for the final instrument analysis due to matrix interference(Lee,Law,Wong,1996),which hinders the analysis of OPPs.Therefore,a fast and easy analysis method of OPPs has already been urgently sought.

    Ultrasonic extraction was widely used in the extraction of trace organic compounds in various plant samples.Compared with Soxhlet extraction(Wang,Jin,Ma,Lu,Lin,2011)and liquid-liquid extraction(Hajlová,Holadová,Kocourek,Poustka,Godula,Cuhra,Kempny,1998;Mekebri,Grane,Blondina,Oros,Rocca,2008),ultrasonic extraction is less solvent-and time-consuming.Compared with the accelerated solvent extraction (Nerín,Battle,Cacho,1998)and supercritical fluid extraction (Valverde-García,F(xiàn)ernandez-Alba,Contreras,Agüera,1996),ultrasonic extraction has a lower instrument cost,is more universally applicable and is simpler.This paper adopted ultrasonic extraction to extract the OPPs in vegetable samples.Matrix interference in the sample remains a significant difficulty for the analysis methods.The extracted sample is often treated by purification and reconcentration methods,such as column chromatography(Vázquez,Mughari,Galera,2008;Hoeck,David,Sandra,2007),solid phase extraction(Díaz,Vàzquez,Ventura,Galceran,2004;Columé,Cárdenas,Gallego,2001;Albero,Sánchez-Brunete,Tadeo,2003)and the gel permeation chromatography technique(Ouyang,Zhao,Janusz,2005;Li,Lee,2009;Alcudia-León,Lucena,Cárdenas,Valcárcel,2009).The above purification techniques are used with large quantities of materials,significant time and a high cost.The most important thing is that the purified sample is not appropriate for on-line instrument analysis and is usually injected into an analytical instrument after concentration.Gas flow liquid phase microextraction(also known as gas purge-microsyringe extraction,GP—MSE),which is an open extraction system with a gas purge,is a novel headspace liquid phase microextraction technology(Li,Lee,2002;Piao,Bi,Yang,Wang,Wang,Li,2011).In GP—MSE,the volatile and semivolatile organic compounds are brought into a microsyringe that contains extracting solvent at a microliter grade.After the extraction,the samples can be directly analyzed by the GC—MS(Yang,Piao,Qiu,Wang,Ren,Li,2011).The GP—MSE possesses the following advantages:the process is usually completed within a few minutes;the system can quickly distinguish between volatile and semivolatile organic compounds and the matrix;the system can play the role of enrichment,purification and reconcentration;and samples can be directly brought into the terminal detector.The application of GP—MSE in sample pretreatment requires further development as a novel microextraction technique.In the study,GP—MSE was applied for a re-extraction of a sample extracted by ultrasonic extraction.

    This paper established an analysis system of ultrasonic extraction and gas flow liquid phase microextraction coupled with on-line gas chromatography – mass spectrometry(GC—MS)for the determination of 28types of organic phosphorus pesticide residues in vegetables.The detailed contents are as follows:the extraction conditions of ultrasonic extraction and gas flow liquid phase microextraction;the selection of qualitative and quantitative ions with GC—MS;and the comparison between gas flow liquid phase microextraction and solid phase extraction.The analysis system was also used for the analysis of real vegetable samples.The proposed method would provide a rapid determination for organic phosphorus pesticide residues in vegetable samples,especially for the mass vegetable samples with short analysis times,thereby saving manpower and material resources.

    1 Experimental section

    1.1 Chemicals and Materials

    Pesticide-residue-grade acetone, acetonitrile, dichloromethane,ethyl acetate and n-hexane were obtained from Fisher(America).Analytical-grade anhydrous sodium sulfate was purchased from Shanghai Ling Feng Chemical Reagent Co.Ltd.(Shanghai,China).Twenty-eight types of pesticides standards(dichlorvos,methamidophos,ethoprophos,phorate,methacrifos,thiometon,terbufos,diazinon,fonofos,disulfoton,chlorpyrifos,chlorpyrifos-methyl,dimethoate,tolcolfos-methyl, pirimiphos-methyl, parathionmethyl,malathion,fenthion,fenitrothion,dimethylvinfos,parathion,quinalphos,chlorfenvinphos,isocarbophos,ph-enthoate,edifenphos triazophos and EPN)were purchased from the Agro-environmental Protection Institute,Ministry of Agriculture(China).The purity of the standards was 9 9.8%,and the concentrations of all standards were 1 00μg/mL.A mixed stock standard solution (2.0mg/L)was prepared with 28types of pesticides standards in h exane∶acetone(4∶1,V/V).Standard working solutions of different concentrations were prepared by diluting the stock solutions with hexane∶acetone(4∶1,V/V).The standard solutions were stored in the dark at 0~4℃until used.

    1.2 Sample Preparation

    The Chinese cabbage and celery was purchased from a local market of Yanji City (China).These samples were crushed by a high-speed rotary cutting mill (GM-200,Retsch,Germany).The standard working solutions were spiked into the samples at levels of 0.01mg/kg for OPPs.

    1.3 Ultrasonic Extraction

    The procedure of ultrasonic extraction was as follows:the sample was homogenized by a high-speed homogenizer(T25,IKA,Germany),and 10g of the homogeneous sample was then inserted into a 100mL conical flask.Ethyl acetate was then added into the conical flask.After ultrasonic extraction(AS10200AT,Tianjin ossett company,China)for 5min,the sample was filtered into another conical flask.Six grams of sodium chloride was added into the conical flask,shaken violently for 1min,and left to stand at room temperature.When the organic phase and the aqueous phase were stratified,the upper solution was pipetted and was then dried by anhydrous sodium sulfate.The solution was concentrated in a 40℃water bath to nearly dry by a Termovap sample concentrator (R-210v,Buchi,Switzerland).Finally,the volume was set to 0.1mL with ethyl acetate and waited for further processing.

    1.4 GP—MSE

    GP—MSE was used to purify and enrich the extract by ultrasonic extraction in the 1.3section.The specific operation was conducted using the GP—MSE apparatus named ME-101Multifunctional Microextraction Apparatus (ME-101,Key Laboratory of Natural of Changbai Mountain &functional Molecules,Ministry of Education,China)in Figure 1(Piao,Bi,Yang,Wang,Wang,Li,2011).As in previous reports,the extraction process can be briefly described as follows(Yang,Piao,Qiu,Wang,Ren,Li,2011):10μL of the extract obtained by ultrasonic extraction was inserted into the sample pool and covered with a polytetrafluoroethylene(PTFE)pad,and inserted into a 100μL microsyringe(710RN,Hamilton,Australia);10μL n-hexane was also inserted into the microsyringe as an extraction solvent.The extraction parameters were set as follows:the gas flow rate was 2mL/min,the extraction temperature was-2℃,the sample temperature was 250℃,and the extraction time was 3min.The apparatus then ran the program and started the re-extraction.After the extraction was completed,the secondary extract(1μL)was injected into a gas chromatography/mass spectrometry system for analysis.

    圖1 多功能微萃取儀裝置圖Figure 1 Apparatus of gas purge-microsyringe extraction(GP—MSE)

    1.5 Solid Phase Extraction

    Solid phase extraction was used for comparison with GP—MSE;the extraction procedure was as follows:a 5 00mg ENVI-Carb(Sigma-Aldrich,America)/PSA (Agilent Technologies,America)composited column was eluted with 8mL of ethyl acetate/hexane(1∶1,V/V);the extract obtained by ultrasonic extraction in the 1.3section was then transferred to the column.After the solution flowed through the column,the column was eluted with ethyl acetate/hexane(1∶1,V/V)and collected the elution.The elution was concentrated using a Termovap Sample Concentrator in a 40℃water bath to nearly dry;the volume was then set to 1mL with ethyl acetate for GC—MS analysis.

    1.6 GC—MS Analysis

    Analysis of organic phosphorus pesticides(OPPs)was performed on a CLARUS 600Gas Chromatography—Mass Spectrometry (GC—MS) (CLARUS 600,PerkinElmer(PE),America)with an electron impact ion source (EI source)by injecting 1μL of each extract.The analytes were separated on a DB1701ms fused-silica capillary column (3 0m ×0.25mm;thickness 0.25μm)(J & W by Agilent Technologies)and detected on a PE Clarus600quadrupole mass spectrometer system.The GC oven program started at an initial temperature of 70℃and was held for 2min,then increase by 20℃/min to 150℃,by 5℃/min to 190℃and kept 2min,by 10℃/min to 280℃,and held for 8min.Other operating conditions were as follows:the injection temperature was 250℃in splitless mode;the column flow was 1.0mL/min;and helium (99.999%pure)was used as a carrier gas.The GC—MS interface temperature was 2 80℃.The directly coupled mass spectrometer analyzed the substances after electron impact ionization at 70eV in selected ion monitoring(SIM)mode.The selected ions of quantification and identification for the targets are given in Table 1.

    2 Results and discussion

    2.1 Optimization of Ultrasonic Extraction Conditions

    The ultrasonic extraction was selected as the extraction method in the research by the comparison of different extraction methods.Compared to conventional extractions,the high-speed ultrasonic extraction method required less time and less solvent and comparatively advantageous extraction efficiency.These results were consistent with that found in previous literature(Hajlová,Holadová,Kocourek,Poustka,Godula,Cuhra,Kempny,1998).The effects of extraction solvents in ultrasonic extraction were investigated with a spiked celery sample(0.010mg/kg pesticide).The extraction solvent was selected by considering the extraction efficiency,matrix interference,stability and other factors.The results showed that the ethyl acetate with low toxicity was the most suitable for the research.

    2.2 Optimization of GP—MSE Conditions

    The GP—MSE was used for the re-extraction in the research to realize the purification and enrichment of the target compounds.Matrix effects in vegetable samples (such as chlorophyll)were the biggest problem for a reliable quantitative analysis of pesticide residues(Lee,Law,Wong,1996).The experiment optimized the key factors in GP—MSE influencing the extraction efficiency,which included the gas flow rate,the temperature of the sample phase,the extraction time and the extraction solvent,to reduce the sample matrix interference and achieve satisfactory extraction efficiency.A spiked blank sample(0.010mg/kg)was used for the optimization of the GP—MSE conditions.

    表1 28種農(nóng)藥的保留時(shí)間及質(zhì)譜分析定性、定量離子參數(shù)Table 1 Ions selected for quantification and identification of compounds

    2.2.1 Gas Flow Rate In the GP—MSE system,the volatile and semivolatile compounds were driven to the extraction phase by gas flow,so the gas flow was the basic factor affecting the extraction efficiency(Yang,Piao,Qiu,Wang,Ren,Li,2011).To understand the effect of the gas flow rate on the extraction,the gas flow rate was set at 1.0,2.0,3.0and 4.5mL/min(1.0and 4.5mL/min are the minimum and maximum velocities of the instrument,respectively).The recoveries of 28types of organic phosphorus pesticide residues in spiked Chinese cabbage samples were studied,and the results were shown in Figure 2.Figure 2showed that the recoveries of the targets showed no obvious dependence on the gas flow rate.The targets could be completely extracted by the extraction phase over the entire gas flow range.To effectively control the volume of the extraction phase,the gas flow was set to 2.0mL/min.

    圖2 氣流速率對(duì)萃取效率的影響Figure 2 Effect of gas flow rate on the extraction efficiency

    圖3 樣品相溫度對(duì)萃取效率的影響Figure 3 Effect of sample temperatures on extraction efficiency

    2.2.2 Sample Temperature Pesticide compounds mostly belong to the volatile and semivolatile compounds.When the samples were given a certain temperature,the targets could reach the extraction phase quickly.The temperatures of the samples were set at 150,200,250and 280℃.The recoveries of the targets were shown in Figure 3.The result showed that the recoveries of the targets with low boiling points were high and had good stability at a lower temperature,but the recoveries of the targets with high boiling points were relative low.When the temperature was increased to 250℃,the recoveries of the targets with low and high boiling points could all meet the requirements.Therefore,the temperature was set at 250℃in later experiments.

    2.2.3 Extraction Time In most previous studies,the extraction time of microextraction was controlled at 15~20min(Wang,Kwok,He,Lee,1998;Wu,Xia,Chen,Hu,2008).However,a shorter extraction time was required in the GP—MSE technique.As shown in Fig.4,the extraction was finished within 3min,and the recoveries of the target compounds were higher than 85%;the recoveries did not va-ry with increasing extraction time after 2min.This result indicates that after trapping by the organic solvent,chemicals were not evaporated from the GP—MSE system.Therefore,the extraction time can be chosen to match the properties of target chemicals or experimental objectives.An extraction time of 3min was used in the following experiments,taking account of both the simplicity of operation and the reproducibility.

    圖4 萃取時(shí)間對(duì)萃取效率的影響Figure 4 Effect of extraction time on the extraction efficiency

    2.2.4 Extracting Solvent The“l(fā)ike-dissolve-like”rule is a well-established principle in extraction techniques that can also be applied in GP—MSE.Five organic solvents(dichloromethane,acetonitrile,hexane,acetone,ethyl acetate)were selected,and the results were compared.The pesticides selected have high solubilities in those organic solvents,so similar recoveries were obtained for all cases.Based on the toxicity and suitability in the GC—MS analysis,the hexane was selected as an extraction solvent in the following experiments.

    2.3 Selection of Monitoring Ions

    Twenty-eight types of pesticide mixed standard solutions were prepared for the selection of monitoring ions.In the mixed standard solutions,the concentrations of pesticides were 0.01mg/kg.A full scan was run at the instrument conditions of GC—MS.The principles of choosing the monitoring ions were as follows:larger mass-charge ratio,larger abundance and the least interference at the retention time of the analyte according to the mass spectrum and background interference.The results were shown in Table 1.Figure 5 gave the chromatograms of 28pesticides in the selected ion mode.

    圖5 28種有機(jī)磷農(nóng)藥的基質(zhì)匹配標(biāo)準(zhǔn)溶液選擇離子監(jiān)測(cè)色譜圖Figure 5 Chromatograms of quantification ions of organophosphorus pesticides(OPPs)in mixed OPPs standard(0.01mg/kg)analyzed by GC—MS with the selected ion mode

    2.4 Evaluation of Method Performance

    The minimum detection limit(LOD)and quantification limit(LOQ)of the method was calculated as three times and ten times the noise response of the blank sample(S/N=3),respectively.These values were 3μg/kg and 10μg/kg,respectively,for the 28OPPs(Table 2).Twenty-eight types of pesticide in spiked blank samples showed a good linear relationship in the range of 50~1 000μg/kg,and the correlation coefficients(R2)were greater than 0.99(Table 2).The recoveries of the OPPs ranged from 85.5%to 100.2%with RSD values of 1.6%~6.9%.

    表2 28種農(nóng)藥的線性方程、線性范圍、相關(guān)系數(shù)、檢出限和定量限Table 2 Quality Parameters of UAE—GPMSE—GC—MS analysis system for anaysis of OPPs in vegetable samples

    2.5 Analysis of Real Samples

    Five types of vegetable samples were selected randomly from the local market and were analyzed by the method in this study.The results showed that chlorpyrifos was detected from the radish sample at a content level of 0.045mg/kg,and dimethoate was detected in celery and Chinese cabbage samples at content levels of 0.037mg/kg and 0.018mg/kg,respectively.The target ingredients were not detected in all samples.Three levels of spiked samples(0.010,0.020,0.040mg/kg)were used for the quality control of the method.The recoveries were 80.2%~1 22.6%,and the RSD were 1.6%~12.1% (see Table 3).The results showed that the method had high recoveries and sensitivity and could meet the requirements of the determination of pesticide residues.The chromatography of real samples and spiked real samples were given in Figure 6.

    圖6 白菜加標(biāo)溶液選擇離子監(jiān)測(cè)色譜圖Figure 6 Chromatograms of quantification ions of organophosphorus pesticides(OPPs)in spiked Chinese cabbage sample(0.01mg/kg)analyzed by GC-MS with the selected ion mode

    表3 白菜和芹菜樣品中28種有機(jī)磷農(nóng)藥的加標(biāo)回收率及相對(duì)標(biāo)準(zhǔn)偏差Table 3 Recoveries and relative standard derives(RSDs)of OPPs at spiked real samples by UAE—GPMSE—GC—MS(in this study)and UAE—SPE—GC—MS(n=3)

    續(xù)表3

    續(xù)表3

    Solid-phase extraction was also used for analysis of the spiked real samples.Compared with this method,the method in this study achieved comparable results(Table 3)but had a shorter analysis time,less solvent consumption and the advantage of direct injection into GC—MS.

    3 Conclusions

    This study developed a rapid analysis system for detecting organophosphorus pesticides residues in vegetables and edible fungi using ultrasonic extraction,gas purge liquid phase microextraction and gas chromatography–mass spectrometry.The sample was extracted using ultrasonic techniques in ethyl acetate for 5min and was later extracted to 1 0μL of n-hexane using GP—MSE at a gas flow rate of 2 mL/min and a sample temperature of 250℃for 3min.The extract was directly injected into GC—MS.The recoveries of the 28organophosphorus pesticides reached 80.2%to 1 22.6%,with RSD values of 1.6%to 12.1%.The method exhibited a low detection limit,agood linear relationship,and comparable results with SPE.The analysis system effectively utilized the advantages of GP—MSE(less solvent consumption,short extraction time,good separation and purification function and enrichment function).This system was suitable for the rapid determination of organophosphorus pesticides residues in vegetables for food safety.

    1 Albero B,Sánchez-Brunete C,Tadeo J L.Determination of endosulfan isomers and endosulfan sulfate in tomato juice by matrix solid-phase dispersion and gas chromatography[J].J.Chromatogr.A,2003,1 007:137~143.

    2 Alcudia-León M C,Lucena R,Cárdenas S,et al.Stir membrane extraction:a useful approach for liquid sample pretreatment[J].Anal.Chem.,2009,81:8 957~8 961.

    3 ColuméA,Cárdenas S,Gallego M,et al.Semiautomatic multiresidue gas chromatographic method for the screening of vegetables for 25organochlorine and pyrethroid pesticides[J].Anal.Chim.Acta.,2001,436:153~162.

    4 Díaz A,Vàzquez L,Ventura F,et al.Estimation of measurement uncertainty for the determination of nonylphenol in water using solid-phase extraction and solid-phase microextraction procedures[J].Anal.Chim.Acta,2004,506:71~80.

    6 Hoeck E V,David F,Sandra P.Stir bar sorptive extraction for the determination of pyrethroids in water samples:A comparison between thermal desorption in a dedicated thermal desorber,in a split/splitless inlet and by liquid desorption[J].J.Chromatogr.A,2007,1 157:1~9.

    7 Kaushik G,Satya S,Naik S N.Food processing a tool to pesticide residue dissipation:a review[J].Food Research International,2009,42:26~40.

    8 Latif Y,Sherazin S T H,Bhanger M I.Assessment of pesticide residues in commonly used vegetables in Hyderabad,Pakistan[J].Ecotox.Environ.Safe,2011,74:2 299~2 303.

    9 Lee W O,Law M L M,Wong S K.Determination of methamidophos residues in food remnants[J].Food Addit Contam,1996,13:687~694.

    10 Li X,Lee H K.Solvent-bar microextraction—Using a silica monolith as the extractant phase holder[J].J.Chromatogr.A,2009,1 216:5 483~5 488.

    11 Li H,Lee H K.Application of static and dynamic liquid-phase microextraction in the determination of polycyclic aromatic hydrocarbons[J].J.Chromatogr.A,2002,976(1~2):377~385.

    12 Mekebri A,Grane D B,Blondina G J,et al.Extraction and analysis methods for the determination of pyrethroid insecticides in surface water,sediments and biological tissues at environmentally relevant concentrations[J].Bull Environ ContamToxicol.,2008,80:455~460.

    13 Nerín C,Battle R,Cacho J.Determination of pesticides in highwater-content samples by off-line supercritical fluid extractiongas chromatography-electron-capture detection[J].J.Chromatogr.A,1998,795:117~124.

    14 Ouyang G F,Zhao W N,Janusz P.Kinetic calibration for automated headspace liquid-phase microextraction [J]. Anal.Chem.,2005,77:8 122~8 128.

    15 Piao X Y,Bi J H,Yang C,et al.Automatic heating and cooling system in a gas purge microsyringe extraction[J].Talanta.,2011,86:142~147.

    16 Shinger M I,Elbashir A A,Ahmed H E,et al.Simultaneous determination of cypermethrin and fenvalerate residues in tomato by gas chromatography and their applications to kinetic studies after field treatment[J].Biomed.Chromatogr.,2012,26:589~593.

    17 Valverde-Garcia A,F(xiàn)ernández-Alba A R,Contreras M,et al.Supercritical fluid extraction of pesticides from vegetables using anhydrous magnesium sulfate for sample preparation[J].J.Agric.Food Chem.,1996,44(7):1 780~1 784.

    18 Vázquez P P,Mughari A R,Galera M M.Application of solidphase microextraction for determination of pyrethroids in groundwater using liquid chromatography with post-column photochemically induced fluorimetry derivatization and fluorescence detection[J].J.Chromatogr.A,2008,1 188:61~68.

    19 Wang J,Willis C,Daniel L.Application of ultrahigh-performance liquid chromatography and electrospray ionization quadrupole orbitrap high-resolution mass spectrometry for determination of 166pesticides in fruits and vegetables[J].J.Agric.Food Chem.,2012,60:12 088~12 104.

    20 Wang Y,Jin H Y,Ma S C,et al.Determination of 195pesticide residues in Chinese herbs by gas chromatography-mass spectrometry using analyte protectants[J].J.Chromatogr.A,2011,1 218:334~342.

    21 Wang Y,Kwok Y C,He Y,et al.Application of dynamic liquid-phase microextraction to the analysis of chlorobenzenes in water by using a conventional microsyringe[J].Anal.Chem.,1998,70:4 610~4 614.

    22 Wu Y L,Xia L B,Chen R,et al.Headspace single drop microextraction combined with HPLC for the determination of trace polycyclic aromatic hydrocarbons in environmental samples[J].Talanta.,2008,74:470~477.

    23 Yang C,Piao X Y,Qiu J X,et al.Gas purge microsyringe extraction for quantitative direct gas chromatographic-mass spectrometric analysis of volatile and semivolatile chemicals[J].J.Chromatogr.A,2011,1 218:1 549~1 555.

    猜你喜歡
    延吉續(xù)表延邊
    Analysis of hub genes in small-cell lung carcinoma by weighted gene co-expression network※
    Landslide displacement prediction based on the Genetic Simulated Annealing algorithm
    《延邊大學(xué)學(xué)報(bào)》(社科版)2020年總目錄
    羅永浩
    智族GQ(2020年10期)2020-10-26 02:22:48
    延吉冷面
    Novel analgesic targets and corresponding analgesic leading compounds
    “圖們江論壇2018”在延邊大學(xué)舉行
    ?? -?? ?? ?? ?? ????? ?????? ?? ??
    Estimation of the Ballistic Effectiveness of 3,4- and 3,5-Dinitro-1-(trinitromethyl)-1H-Pyrazoles as Oxidizers for Composite Solid Propellants
    美麗的延邊歡樂(lè)的海
    99精品欧美一区二区三区四区| av电影中文网址| 国产成人一区二区三区免费视频网站| 久久天躁狠狠躁夜夜2o2o| 欧美zozozo另类| 精品欧美国产一区二区三| 精品欧美一区二区三区在线| 亚洲精品av麻豆狂野| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片免费观看直播| 久久久久久久午夜电影| 色播亚洲综合网| 老司机午夜十八禁免费视频| 免费观看精品视频网站| 777久久人妻少妇嫩草av网站| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻丝袜一区二区| 亚洲久久久国产精品| 日韩欧美 国产精品| 99久久久亚洲精品蜜臀av| 午夜福利18| 97碰自拍视频| 免费在线观看影片大全网站| 精品一区二区三区视频在线观看免费| 黄网站色视频无遮挡免费观看| 少妇粗大呻吟视频| 两性夫妻黄色片| 久久中文字幕一级| 麻豆成人午夜福利视频| 国产av在哪里看| 日本三级黄在线观看| 久久青草综合色| 成人国产综合亚洲| 操出白浆在线播放| 久久性视频一级片| 制服诱惑二区| 色av中文字幕| 午夜老司机福利片| 亚洲av成人av| 88av欧美| 美女午夜性视频免费| 999精品在线视频| www日本在线高清视频| 天堂影院成人在线观看| 国产极品粉嫩免费观看在线| 高清毛片免费观看视频网站| 在线永久观看黄色视频| 男女做爰动态图高潮gif福利片| 国产精品久久久久久精品电影 | 久9热在线精品视频| 亚洲一区高清亚洲精品| 国产激情偷乱视频一区二区| 在线观看舔阴道视频| 好男人电影高清在线观看| 日韩欧美一区视频在线观看| 亚洲欧美一区二区三区黑人| 国产亚洲av嫩草精品影院| 久久九九热精品免费| xxx96com| 亚洲五月色婷婷综合| 在线观看一区二区三区| 91av网站免费观看| 99精品久久久久人妻精品| 天堂影院成人在线观看| 久久国产精品影院| 国产精品久久久久久精品电影 | 成人精品一区二区免费| 一本综合久久免费| 法律面前人人平等表现在哪些方面| 国产成人欧美在线观看| a级毛片在线看网站| a级毛片a级免费在线| 国产欧美日韩一区二区三| 波多野结衣高清作品| 美女高潮喷水抽搐中文字幕| 国产99白浆流出| 美女国产高潮福利片在线看| 成熟少妇高潮喷水视频| aaaaa片日本免费| 久9热在线精品视频| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久国产高清桃花| 18禁美女被吸乳视频| 一个人观看的视频www高清免费观看 | 午夜日韩欧美国产| 欧美黑人巨大hd| 一夜夜www| 亚洲性夜色夜夜综合| 一级片免费观看大全| 精品久久久久久久末码| 久久精品国产亚洲av高清一级| 亚洲无线在线观看| 欧美激情高清一区二区三区| 淫秽高清视频在线观看| 一本久久中文字幕| 中亚洲国语对白在线视频| 无人区码免费观看不卡| 国产精品一区二区免费欧美| 亚洲最大成人中文| 国产99白浆流出| 嫩草影视91久久| 美女高潮喷水抽搐中文字幕| 色精品久久人妻99蜜桃| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| 91在线观看av| 成年版毛片免费区| 丝袜在线中文字幕| 女性被躁到高潮视频| 在线十欧美十亚洲十日本专区| 99久久综合精品五月天人人| 麻豆av在线久日| 亚洲av熟女| 一边摸一边抽搐一进一小说| 成人免费观看视频高清| 欧美激情 高清一区二区三区| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区三| 一进一出好大好爽视频| 91麻豆精品激情在线观看国产| 国产主播在线观看一区二区| 久久精品国产清高在天天线| netflix在线观看网站| 精品久久久久久久久久免费视频| av电影中文网址| 老汉色∧v一级毛片| 国产亚洲精品第一综合不卡| 伊人久久大香线蕉亚洲五| 中文资源天堂在线| 亚洲精品色激情综合| 日本成人三级电影网站| 久久久久久久久免费视频了| 成人午夜高清在线视频 | av天堂在线播放| 少妇熟女aⅴ在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | www.999成人在线观看| 91麻豆精品激情在线观看国产| 男女下面进入的视频免费午夜 | 嫩草影院精品99| 久久久久久大精品| 国产精品自产拍在线观看55亚洲| 99在线视频只有这里精品首页| 级片在线观看| 变态另类成人亚洲欧美熟女| 久久久国产欧美日韩av| 制服丝袜大香蕉在线| 在线av久久热| 曰老女人黄片| 国产又爽黄色视频| 午夜免费激情av| 午夜久久久久精精品| 美女国产高潮福利片在线看| 亚洲av美国av| 高清毛片免费观看视频网站| 亚洲avbb在线观看| 亚洲中文字幕日韩| 国产精品九九99| 免费在线观看黄色视频的| 亚洲欧美日韩高清在线视频| 丁香六月欧美| 亚洲一区中文字幕在线| www日本在线高清视频| 久久精品91无色码中文字幕| 国产主播在线观看一区二区| 亚洲精品美女久久久久99蜜臀| 久久精品亚洲精品国产色婷小说| 国产99久久九九免费精品| 怎么达到女性高潮| 99国产精品99久久久久| 又紧又爽又黄一区二区| 日韩免费av在线播放| 自线自在国产av| 亚洲国产毛片av蜜桃av| 亚洲激情在线av| av在线天堂中文字幕| 国产成人影院久久av| 男人的好看免费观看在线视频 | 午夜a级毛片| 日本 av在线| 久久天堂一区二区三区四区| 在线视频色国产色| 久久婷婷人人爽人人干人人爱| 久久人人精品亚洲av| 久久久精品国产亚洲av高清涩受| 国产精品 国内视频| 黄片大片在线免费观看| 人人妻人人澡人人看| 国产亚洲欧美精品永久| 色综合欧美亚洲国产小说| 麻豆一二三区av精品| 超碰成人久久| 变态另类成人亚洲欧美熟女| 日本免费一区二区三区高清不卡| 黄色女人牲交| 波多野结衣高清作品| 免费女性裸体啪啪无遮挡网站| 日韩一卡2卡3卡4卡2021年| 手机成人av网站| 精品国产一区二区三区四区第35| av视频在线观看入口| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 美女高潮喷水抽搐中文字幕| 欧美丝袜亚洲另类 | 国产三级黄色录像| 亚洲免费av在线视频| 好看av亚洲va欧美ⅴa在| 午夜福利欧美成人| 一边摸一边抽搐一进一小说| 久久精品国产综合久久久| 91成人精品电影| 久久中文字幕一级| 中文字幕久久专区| 天天躁狠狠躁夜夜躁狠狠躁| 黄片大片在线免费观看| 午夜免费鲁丝| 国产亚洲精品久久久久久毛片| 亚洲熟妇中文字幕五十中出| 三级毛片av免费| 在线观看66精品国产| 亚洲片人在线观看| 老鸭窝网址在线观看| 久久久精品国产亚洲av高清涩受| 最近最新中文字幕大全电影3 | 亚洲成人国产一区在线观看| 丰满的人妻完整版| 满18在线观看网站| 精品欧美一区二区三区在线| 国产1区2区3区精品| 黄色成人免费大全| 亚洲成av片中文字幕在线观看| 满18在线观看网站| 成人亚洲精品av一区二区| 欧美一级a爱片免费观看看 | 两个人看的免费小视频| 欧美精品亚洲一区二区| 香蕉av资源在线| 国产伦人伦偷精品视频| bbb黄色大片| 国产精品1区2区在线观看.| 久久天堂一区二区三区四区| 一区二区三区精品91| 不卡av一区二区三区| av在线播放免费不卡| 亚洲性夜色夜夜综合| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 欧美一级毛片孕妇| 999久久久国产精品视频| 国内毛片毛片毛片毛片毛片| 欧美黄色淫秽网站| 神马国产精品三级电影在线观看 | 亚洲国产精品sss在线观看| 大型av网站在线播放| www.熟女人妻精品国产| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 又黄又粗又硬又大视频| 天堂动漫精品| 亚洲第一电影网av| 日韩精品青青久久久久久| 男女视频在线观看网站免费 | 香蕉久久夜色| 成人国产一区最新在线观看| 国产色视频综合| 91在线观看av| 国产精品九九99| 国产亚洲欧美98| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 色综合欧美亚洲国产小说| 神马国产精品三级电影在线观看 | www日本黄色视频网| 狂野欧美激情性xxxx| 中文字幕最新亚洲高清| 日日摸夜夜添夜夜添小说| 色婷婷久久久亚洲欧美| 午夜福利高清视频| 在线免费观看的www视频| 国产精品久久视频播放| 亚洲一区高清亚洲精品| 可以在线观看毛片的网站| 久久国产精品影院| 国产又色又爽无遮挡免费看| 亚洲av成人av| 久久这里只有精品19| 国产成人av激情在线播放| 婷婷亚洲欧美| 精品人妻1区二区| 中文字幕人妻丝袜一区二区| 91成年电影在线观看| 嫁个100分男人电影在线观看| 免费电影在线观看免费观看| 999久久久精品免费观看国产| 少妇 在线观看| 啦啦啦免费观看视频1| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲欧美精品永久| 老司机深夜福利视频在线观看| 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 日韩高清综合在线| 91老司机精品| 欧美成人午夜精品| 午夜福利一区二区在线看| 狠狠狠狠99中文字幕| 亚洲欧美激情综合另类| 757午夜福利合集在线观看| 久久国产乱子伦精品免费另类| 欧美日韩乱码在线| 可以免费在线观看a视频的电影网站| 搡老熟女国产l中国老女人| av在线播放免费不卡| 99在线视频只有这里精品首页| 亚洲va日本ⅴa欧美va伊人久久| 国产精品自产拍在线观看55亚洲| 国产又黄又爽又无遮挡在线| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 手机成人av网站| 国产亚洲精品久久久久5区| 欧美一级a爱片免费观看看 | www.熟女人妻精品国产| 亚洲欧美日韩无卡精品| 男人操女人黄网站| 美女国产高潮福利片在线看| 久久久久久大精品| 久久久久久亚洲精品国产蜜桃av| 男人舔奶头视频| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 啦啦啦免费观看视频1| 久久天躁狠狠躁夜夜2o2o| 亚洲一区中文字幕在线| 叶爱在线成人免费视频播放| 中文在线观看免费www的网站 | 国产一区二区三区视频了| 国产精品,欧美在线| 国产成人一区二区三区免费视频网站| 欧美一区二区精品小视频在线| 久久精品成人免费网站| 中文字幕高清在线视频| 成人亚洲精品一区在线观看| 91大片在线观看| 午夜福利一区二区在线看| 在线看三级毛片| 波多野结衣高清无吗| 91国产中文字幕| 欧美精品啪啪一区二区三区| 亚洲av第一区精品v没综合| 成人欧美大片| 91成年电影在线观看| 高潮久久久久久久久久久不卡| 韩国精品一区二区三区| 最近在线观看免费完整版| 窝窝影院91人妻| 亚洲全国av大片| 1024视频免费在线观看| 真人做人爱边吃奶动态| 亚洲国产精品999在线| 在线观看日韩欧美| 熟女电影av网| 宅男免费午夜| 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 国产真实乱freesex| xxx96com| 一级a爱片免费观看的视频| 国产亚洲欧美98| 免费在线观看影片大全网站| 亚洲人成电影免费在线| 久久香蕉精品热| 一区二区三区精品91| 久久久久国产精品人妻aⅴ院| 两个人视频免费观看高清| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| www.精华液| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 久久 成人 亚洲| 久久久久久久久久黄片| 脱女人内裤的视频| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 亚洲在线自拍视频| 天堂动漫精品| 欧美最黄视频在线播放免费| 黄色视频不卡| 窝窝影院91人妻| videosex国产| 午夜日韩欧美国产| 亚洲成av片中文字幕在线观看| 日本在线视频免费播放| 欧美在线黄色| 99热这里只有精品一区 | 色综合欧美亚洲国产小说| 久久久久久九九精品二区国产 | 欧美在线一区亚洲| 亚洲av片天天在线观看| 精品免费久久久久久久清纯| 欧美日本视频| 欧美在线一区亚洲| 色婷婷久久久亚洲欧美| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 久久精品国产亚洲av高清一级| 亚洲国产日韩欧美精品在线观看 | 三级毛片av免费| 不卡一级毛片| 99在线视频只有这里精品首页| 日韩精品中文字幕看吧| 亚洲七黄色美女视频| 久久久久久久久中文| 亚洲成人久久性| 天天一区二区日本电影三级| 男人舔女人的私密视频| 国产三级黄色录像| 1024手机看黄色片| 国产v大片淫在线免费观看| 手机成人av网站| 免费电影在线观看免费观看| 91国产中文字幕| 国产aⅴ精品一区二区三区波| 欧美亚洲日本最大视频资源| 亚洲无线在线观看| 天堂影院成人在线观看| 午夜福利高清视频| а√天堂www在线а√下载| 伦理电影免费视频| 色在线成人网| 麻豆av在线久日| 亚洲av中文字字幕乱码综合 | 久久精品国产亚洲av高清一级| 人妻久久中文字幕网| 亚洲色图av天堂| or卡值多少钱| 午夜成年电影在线免费观看| 亚洲三区欧美一区| 亚洲精品美女久久久久99蜜臀| 国产真实乱freesex| 国产精品 国内视频| www.精华液| 侵犯人妻中文字幕一二三四区| 国产一区在线观看成人免费| 亚洲黑人精品在线| 免费在线观看日本一区| 精品国产美女av久久久久小说| 亚洲色图 男人天堂 中文字幕| 精品国产国语对白av| 国产欧美日韩一区二区精品| 一级毛片精品| 一区二区日韩欧美中文字幕| 精品久久久久久成人av| 亚洲,欧美精品.| 亚洲欧洲精品一区二区精品久久久| 国产又爽黄色视频| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人下体高潮全视频| 男女那种视频在线观看| 免费在线观看完整版高清| 国产1区2区3区精品| 亚洲熟妇中文字幕五十中出| 黄片播放在线免费| 久久久久久大精品| 国产在线精品亚洲第一网站| 国产亚洲欧美在线一区二区| 精品高清国产在线一区| 亚洲七黄色美女视频| 99国产精品一区二区三区| 久久精品成人免费网站| 中文亚洲av片在线观看爽| av在线天堂中文字幕| 国产熟女xx| 他把我摸到了高潮在线观看| 日日爽夜夜爽网站| 久久久久久大精品| 免费无遮挡裸体视频| 免费搜索国产男女视频| 国产99白浆流出| 午夜精品在线福利| 2021天堂中文幕一二区在线观 | 9191精品国产免费久久| 久久久久久久精品吃奶| 国产精品乱码一区二三区的特点| a级毛片在线看网站| 国产精品一区二区精品视频观看| 国产av又大| 久久婷婷成人综合色麻豆| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 成熟少妇高潮喷水视频| av在线播放免费不卡| 高潮久久久久久久久久久不卡| 亚洲国产欧洲综合997久久, | 欧美午夜高清在线| 欧美中文综合在线视频| 亚洲熟妇中文字幕五十中出| 欧美久久黑人一区二区| 一二三四社区在线视频社区8| av福利片在线| 久久久久久人人人人人| 在线av久久热| 色综合亚洲欧美另类图片| 免费一级毛片在线播放高清视频| 免费人成视频x8x8入口观看| 午夜视频精品福利| 欧美日韩亚洲国产一区二区在线观看| 中文字幕人妻丝袜一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲黑人精品在线| 人妻丰满熟妇av一区二区三区| 免费电影在线观看免费观看| 亚洲avbb在线观看| 亚洲在线自拍视频| 丁香欧美五月| 欧美黄色淫秽网站| 天天躁狠狠躁夜夜躁狠狠躁| 可以在线观看的亚洲视频| 一二三四在线观看免费中文在| 夜夜爽天天搞| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区精品视频观看| 日韩av在线大香蕉| 日本熟妇午夜| 一个人观看的视频www高清免费观看 | 99国产精品一区二区三区| 两个人视频免费观看高清| 久久 成人 亚洲| 国产一区在线观看成人免费| 亚洲欧美精品综合久久99| 久久国产乱子伦精品免费另类| 久久久精品国产亚洲av高清涩受| 丰满的人妻完整版| 黄色a级毛片大全视频| 男女之事视频高清在线观看| 午夜激情av网站| av福利片在线| 免费看a级黄色片| 久久人妻av系列| 中文字幕人妻丝袜一区二区| 欧美精品啪啪一区二区三区| 麻豆av在线久日| av天堂在线播放| 国产单亲对白刺激| АⅤ资源中文在线天堂| 热re99久久国产66热| av超薄肉色丝袜交足视频| 亚洲人成网站在线播放欧美日韩| 成人手机av| 国产三级在线视频| 国产精品美女特级片免费视频播放器 | 免费看十八禁软件| 日本成人三级电影网站| 亚洲成av人片免费观看| 熟女电影av网| 免费看日本二区| 国产av一区二区精品久久| 久久 成人 亚洲| 欧美日韩亚洲综合一区二区三区_| 亚洲电影在线观看av| 亚洲人成电影免费在线| 国产免费av片在线观看野外av| 国产aⅴ精品一区二区三区波| 欧美激情高清一区二区三区| 国产黄片美女视频| 很黄的视频免费| 在线观看一区二区三区| 亚洲男人的天堂狠狠| 亚洲第一青青草原| 久久久国产成人精品二区| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久男人| 国产麻豆成人av免费视频| 午夜两性在线视频| 男女之事视频高清在线观看| 日本一本二区三区精品| 老汉色av国产亚洲站长工具| 色尼玛亚洲综合影院| 搡老岳熟女国产| 国内精品久久久久久久电影| 亚洲成人免费电影在线观看| 啪啪无遮挡十八禁网站| 熟妇人妻久久中文字幕3abv| cao死你这个sao货| 欧美性长视频在线观看| 天天添夜夜摸| 色婷婷久久久亚洲欧美| 免费观看人在逋| 在线观看舔阴道视频| 亚洲一码二码三码区别大吗| 欧美乱色亚洲激情| 亚洲狠狠婷婷综合久久图片| 久久国产亚洲av麻豆专区| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 露出奶头的视频| 久久国产亚洲av麻豆专区| 亚洲熟妇熟女久久| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 怎么达到女性高潮| 国产高清有码在线观看视频 | 欧美久久黑人一区二区| 国产一区二区激情短视频| 又紧又爽又黄一区二区| 一进一出抽搐动态| 亚洲成人国产一区在线观看| 一区二区三区国产精品乱码| 久久性视频一级片| 国产高清视频在线播放一区|