• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2D-and 3D-QSBR Studies on the Relationship between Structure and Biodegradability of Phthalates

    2014-12-17 02:53:44HANXingYunSHIJiQiCHENTinMing
    結(jié)構(gòu)化學 2014年8期

    HAN Xing-Yun SHI Ji-Qi CHEN Tin-Ming

    ?

    2-and 3-QSBR Studies on the Relationship between Structure and Biodegradability of Phthalates

    HAN Xiang-Yuna①SHI Jia-QibCHEN Tian-Minga

    a(224051) JGHX201408b(210023)

    Nine phthalates were calculated at the B3LYP/6-311G** level using DFT method. The corresponding linear relationship equations (2were 0.853 and 0.936 respectively) for the biodegradation rate (b) and half-life time (1/2) of biodegradation were obtained with the structural parameters as theoretical descriptors. Furthermore, CoMFA method was also applied to establish 3models which revealed the fields influencing these properties. The relationship between the properties and the structure was obtained. The correlation coefficients of the models were 0.992 and 0.999, respectively. Analyses of 2and 3models demonstrated that the molecular volume was an important factor affecting the biodegradability of these compounds.

    phthalates, biodegradability, density functional theory, comparative molecular field analysis

    1 INTRODUCTION

    Phthalates (referred to as PAEs) are ones of the synthetic organic compounds[1]that are produced in great quantity and used commonly as pesticide carriers and plastic reinforcer and modifier widely in the whole world[2, 3]. There are about 14 phthalates that are used commercially. As worldwide pollutants, they exist widely in air, water, soil and organisms and have caused serious harm to the environment where the human being lives and the health of human body.

    Biodegradation is the chief way by which envi- ronmental pollutants are degraded and eliminated. Quantitative structure-activity/biodegradation rela- tionship (QSAR/QSBR) study is one of the indispen- sable methods used to assess the ecological risk of organic pollutants[4]. A great number of biodegrading properties of compounds may be acquired through constructing the effective models that possess similar structure of the targeted compound, which may help to guide the practical control of pollution.calculation is a calculating method based on non-relativistic approximation, Born-Oppen- heimer approximation and Hartree approximation and does not use any empirical parameter, and it may solve Schrodinger equation through calculating the integration of all molecules in a system; in contrast with the multiple semi-empirical calculating methods used to calculate molecular orbits,method may give the most precise result, and it is the most strict theoretically, but its calculated amount is much greater than that of semi-empirical methods.method includes Hartree-Fock method, density functional theory (DFT), electron correlation method,. In recent years, with the steady increase of calculating speed of computers,method has become the mainstream for quantum chemistry calculation in the world, and it has been applied in the study on the structure activity relationship for a series of different com- pounds[5-12]because the models given by it may correlate better to the targeted compound as com- pared with models given by semi-empirical methods. Comparative molecular field analysis (CoMFA) as a common 3-QSAR method uses micro molecular 3structure as descriptor and it broke through the limitation of 2-QSAR method in the characteri- zation of molecular structure and configuration. Combining 2-QSAR with 3-QSAR may explain the quantitative structure-activity/biodegradation relationship from different aspects such as molecular structure and molecular force field[13-17].

    In this paper, authors used DFT in Gaussian 09 program[18]and 6-311G** basis set to calculate 9 phthalates, and then introduced calculated structural and thermodynamic parameters as theoretical descri- ptors to QSBR method and adopted GQSARF2.0 program[19]to get the quantitative relationship be- tween the biodegradation rate constant and para- meters of half-life time of compounds and their structural and thermodynamic parameters through fitting, and then adopted CoMFA[20]to study the relationship between biodegradation rate constant and half-life time of phthalates and their respective 3structures.

    2 CALCULATING METHODS

    The basic structures of 9 phthalates are shown in Fig. 1, and their specific names are listed in Table 1. Biodegradation rate constantb(d-1) and half-life time1/2(d)[21]of these 9 phthalates are shown in Table 1.

    Table 1. Names and Experimental and Predicted Biodegradation Rate Constant(b) and Half-life Time (1/2) of Degradation for 9 Phthalates

    9 phthalates were calculated with DFT in Gaus- sian 09 program at the B3LYP/6-311G** level to obtain their structural and thermodynamic parame- ters. The structural parameters include dipole mo- ment (), energy of the highest occupied molecular orbital (HOMO), energy of the lowest unoccupied orbital (LUMO), the most negative net atomic charge of molecule (-), net charge of the most positive hydrogen atom (H+), molecular volume (i) and mean molecular polarization (). The thermody- namic parameters include total energy (), zero- point vibrational energy (), enthalpy (), free energy (), corrected thermal energyth(i.e., the total of vibrational energy, rotational energy and translational energy of a molecule), heat capacity at constant volume (C°) and entropy (°). The calcu- lation of vibrational frequency demonstrated that all compounds obtained were with the least energy and no imaginary frequency existed. While calculating the molecular volumei(?3), keyword “Volume” was adopted to indicate how to calculate it by defining it in the range of 0.001 electron/bohr3, and option “Tight” was chosen to enhance the precision of integration. Table 2 shows the structural para- meters calculated at the B3LYP/6-311G** level which affected the biodegradability of phthalates remarkably.

    Table 2. Structural Descriptors Calculated by B3LYP/6-311G** Affecting the Biodegradability of Phthalates Remarkably

    In this paper, authors adopted GQSARF2.0 pro- gram and structural and thermodynamic parameters as arguments of 9 phthalates to make regressive analyses so as to obtain equations associated with their biodegradation rate constants and half-life time, and their qualities were measured with correlation coefficient (2), standard error (), cross corre- lation coefficient (2) andvalue.

    CoMFA analysis was completed by SYBYL 7.3 software package, Tripos standard field was adopted, the threshold of electrostatic field energy and steric field energy was set to 30 kcal·mol–1(1 cal = 4.18 J), and3-hybridized C+ was used as probe to cal- culate values and distributions of the energy of electrostatic field and steric field on the peripheral grids of aligned molecules, detecting points being set at intervals of 2.0 ? and all other values being defaults. The structures of all molecules were optimized based on their energies using Tripos standard molecular force field, the criteria for energy convergence was 0.05 kcal·mol–1·?–1, and the net charge of atoms in a molecule was calculated using Gasteriger-Hückel method to get the molecular configuration of the lowest energy. Dimethyl phtha- late with the highest biodegradation rate was used as template for all phthalates. The skeleton used for molecular alignment is shown in Fig. 2 (hydrogen atoms were removed) and the aligned molecules are shown in Fig. 3.

    Fig. 1. Basic structure for 9 phthalates

    Fig. 2. Skeleton used for alignments

    Fig. 3. Aligned molecules

    Partial least-squares regression (PLS) was used to perform statistical analysis, the best principal com- ponent () and cross-validation correlation coef- ficient (2) were determined through cross validation by leave-one out (LOO) method, and then the result was verified by non-cross validation to construct CoMFA model. The model quality is measured by cross-validation correlation coefficient (2), routine correlation coefficient (2), standard error () and-test values[9].

    3 RESULTS AND DISCUSSIONS

    3. 1 2D-QSBR study on biodegradation rate and half-life time

    3.1.1 2-QSBR model

    The best correlation equations and model parame- ters for biodegradation rate and half-life time ob- tained by GQSARF2.0 program are shown in Table 3.

    Table 3. QSBR Equations for Biodegradation Rate and Half-life Time with Structural and Thermodynamic Parameters as Descriptorsa)

    a)2,,, and2represent respectively the correlation coefficient, standard error,statistical value and cross-validation correlation coefficient of those equations.

    From Table 3 it may be seen thati/100 will appear in the equation firstly when only a variable is taken, demonstrating that a certain linear relation- ship does exist betweenbandi/100 (2= 0.722), and the biodegradation rate of compounds will decrease along with the increase ofi/100;i/100andH+will appear in equation when 2 variables are taken. Meanwhile, the correlation coefficient of the equation will be increased remarkably and the standard error will be decreased noticeably. The biodegradation rate decreases along with the in- crease ofi/100 of compounds, showing that the increase of the spatial volume of a compound will hinder its entering organism, which is disadvanta- geous for biodegradation; the biodegradation rate will increase along with the increase ofH+. Fur- thermore, equation 3 shows that the half-life time (1/2) of biodegradation will increase along with the increase ofi/100 and decrease along with the decrease ofH+.

    3.1.2 Validation of the models

    Stability and predicting ability of constructed QSBR models should be verified to avoid the colinearity among variables in a model. Often, the degree of correlation among all variables in a model is assessed with the variance inflation factor ()[22]defined as= 1/(1–2), whererepresents the multiple regression correlation coefficient between a variable and the others in the equation.= 1.0 means no autocorrelation existing among the variables;= 1.0~5.0 shows that the correlation equation may be acceptable; if> 10, this regres- sion equation is unstable and therefore needs repea- ted validation. For models at the B3LYP/6-311G** level, the correlation coefficients2amongindepen- dent variables in equation (2) are 0.691 and 0.691 respectively, andare 3.236 and 3.236 (as shown in Table 4), indicating equation (2) has great statistical significance.

    Table 4. Correlation Coefficient (r2), Variance Inflation Factors (VIF), Standard Regression Coefficients (SR) and T-scores for Eq. (2)

    3.1.3 Validation of the predicting ability

    Cross-validation correlation coefficient (2) cha- racterizes the predicting ability and stability of the constructed models. Generally speaking,2> 0.5 indicates a higher predicting ability of a model[19], and higher2means higher predicting ability. The cross-validation correlation coefficients for the equation containing 2 variables listed in Table 3 are 0.6958 and 0.8490 respectively, indicating that equations (2) and (3) possess higher predicting ability. Data about the biodegradation of various compounds predicted by equations (2) and (3) are shown in Table 1. Meanwhile, the errors of the predicted values are shown. From Table 1 we can see that the prediction error for dimethyl phthalate is less than 1%, and that for diundecyl phthalate is relatively remarkable.

    3.2 Analysis of the result of CoMFA (3D-QSBR models)

    As Fig. 3 shows, all molecules may be aligned well despite the long chain of phthalates. Statistical parameters and contribution values of various fields for CoMFA models are listed in Table 5.2, SE andvalues demonstrate higher stability of those models.2> 0.5 shows stronger predicting ability of the models. Biodegradation rate constants and data about the half-life time predicted by CoMFA for those compounds, as well as the prediction errors are listed in Table 1. From Table 1 it may be seen that the error of predicted biodegradation rate constant is greater (>25%) for dioctyl phthalate, dinonyl phthalate and diundecyl phthalate, showing that those models are more suitable for analysis and prediction of phthalates with shorter chain. CoMFA shows a strong ability in the prediction of half-life time, as proven by that the error of the predicted half-life time for all phthalates is less than 1%. Statistical parameters demonstrate that stability and predicting ability of CoMFA models are higher remarkably than those of 2models. The con- tribution values of each field demonstrate that the steric field has stronger effect as compared with the electrostatic field.

    Fig. 4 is the 3contour map of each field for CoMFA models, and this contour map reflects clearly the effect of various fields around a molecule on the biodegradability. Dimethyl phthalate with the highest biodegradation rate was taken as reference, and different color represents the effect of energy of different fields. Fig. 4(a) shows the distribution of steric field for the biodegradation rate constant, and the green area in Fig. 4(a) indicates that the volume of substituent group is smaller around here. The biodegradation rate constant of the compound is bigger.Fig. 4(b) shows the distribution of electros- tatic field for biodegradation rate constant, and the blue area in Fig. 4(b) indicates that if the group introduced here has stronger electropositivity, the biodegradation rate constant will be bigger; and the red area shows that the stronger the electronegativity of substituent groups introduced here is, the bigger the biodegradation rate constant will be. As the aliphatic group is electronegative and the electro- negativity decreases with longer aliphaticchain, the fact shown in Fig. 4(b) accords with the experi- mental data. Electronegative groups attract electron and combine with degeneration enzyme in the biological body to make the chemical degrade more easily. Fig. 4(c) shows the distribution of steric field for the half-life time of biodegradation, and, simi- larly, the green area in this figure suggests that the greater volume of substituent groups around here, the longer half-life time of biodegradation; and the yellow area indicates that the smaller the volume of substituent groups introduced around here is, the longer the half-life time of biodegradation will be. The experimental data also reflect this phenomenon. The reason can be that it is more difficult for great molecules to pass through the biological membrane and degrade. Fig. 4(d) shows the distribution of electrostatic field for half-life time of biodegradation, and the blue area in Fig. 4(d) indicates that the stronger electropositivity of substituent groups introduced here, the longer half-life time of biodegradation; and the red area shows that the stronger the electronegativity of substituent groups introduced here is, the longer the half-life time of biodegradation of the compound will be. As steric field plays a more important role in the half-life time (shown in Table 5), Fig. 4(c) reflects the factors affecting the biodegradation to a greater extent. Green near position R1 or R2 (Fig. 1) means small volume of substituent groups around here benefits the biodegradation here. The fact and interpretation are in accordance with that on the biodegradation rate constant.

    Fig. 4. Contour map of CoMFA models

    (a) Steric field forb; (b) electrostatic field forb; (c) steric field for1/2; (d) electrostatic field for1/2

    Table 5. Statistical Parameters of CoMFA Models

    Note:

    4 CONCLUSION

    Parameters of quantum chemistry for 9 phthalates were calculated using DFT at the B3LYP/6-311G** level for constructing 2-QSBR models to predict the biodegradation rate constant (b) and half-life time (1/2) of biodegradation of those compounds.iandH+appeared in the regression equations, showing that they were highly correlated to the biodegradability with less standard error. Further- more, CoMFA analysis on the biodegradation rate constant and half-life time of biodegradation demonstrated that the characters of steric field of substituent groups affect remarkably the biode- gradability of phthalates. All models constructed using the above two methods possess high stability and predicting ability. In the above two kinds of models, the common factor that affects the biode- gradability of phthalates was the molecular volume. The 3-QSBR models were superior remarkably to the 2-QSBR models in terms of the stability and predicting ability.

    (1) Yang, C. F.; Feng, C. J. Investigation into the biodegradability of phthalic acid ester compounds with molecular connectivity indices and electrotopological states indices.. 2007, 29, 36–39.

    (2) Staples, C. A.; Peterson, D. R.; Parkerton, T. F. The environmental fate of phthalate esters – a literature review.1997, 35, 667–749.

    (3) Xia, F. Y.; Zheng, P.; Zhou, Q. Aerobic die-away degradation of nine phthalic acid esters (M).. Beijing, China, Oct. 2001, 8–12.

    (4) Chen, Y. J.; Wang, Z. Y.; Mao, L.; Gao, S. X. QSBR study on the biodegradation rate constant of chloro-phenol compounds.2010, 29, 895–899.

    (5) Han, X. Y.; Wang, Z. Y.; Yang, C. S. Quantitative correlation of the acute toxicity of phenylthio-carboxylates with their structural and thermodynamic parameters by DFT calculation.. 2005, 24, 145–150.

    (6) Zheng, Q.; Wang, L. S. Studies on the quantitative structure-activity relationship of toxicity of chlorophenol serial compounds in themethods and substitutive position of chlorine atom (NPCS).2007, 8, 933–938.

    (7) Eroglu, E.; Türkmen, H. A DFT-based quantum theoretic QSAR study of aromatic and heterocyclic sulfonamides as carbonic anhydrase inhibitors against isozyme CA-II.2007, 26, 701–708.

    (8) Mo, L. Y.; Liu, H. Y.; Yi, Z. S.; Li, Y. H.; Dou, R. N. QSTR study on the freshwater photobacteria toxicity of substituted benzenes.. 2011, 10, 1403–1411.

    (9) Li, X. J.; Shan, G.; Liu, H.; Wang, Z. Y. Determination of lgKow and QSPR study on some fluorobenzene derivatives.. 2009, 10, 1236–1241.

    (10) Yang, D. S.; Dai, Y. Z.; Li, J. H.; Zhu, F. QSBR study on the anaerobic biodegradation of chlorophenols.. 2006, 10, 1183–1188.

    (11) Pasha, F. A.; Srivastava, H. K.; Singh, P. P. Comparative QSAR study of phenol derivatives with the help of density functional theory.2005, 13, 6823–6829.

    (12) Xu, S.; Liu, H.; Liu, H. X.; Yang, G. Y.; Wang, Z. Y. DFT study on the thermodynamic properties of poly-bromine carbazole.. 2010, 4, 535–542.

    (13) Han, X. Y.; Shi, J. Q.; Zheng, Q.; Zhang, Y. G.; Zhang, L. 2D- and 3D-QSBR study on the relationship between the structure and biodegradation property of sulfonylurea herbicides.. 2012, 12, 1693–1700.

    (14) Wang, C. H.; Jiang, M.; Li, X. L.; Shen, X. Q.; Yu, H. X.; Wu, Y. 2D-QSAR using MLR and 3D-QSAR using CoMSIA studies on the toxicity of aromatic hydrocarbons on Larval Sinonvaculina onstricta.. 2012, 31, 420–428.

    (15) Zhao, H. M.; Zhang, C. Y.; Ge, Z. G.; Wang, Z. Y. Toxicity (–lg50) measurement of the mluorobenzene derivants against vibrio qinghaiensis (Q67) and their 2D, 3D-QSAR study.. 2010, 29, 1467–1476.

    (16) Waller, C. L. A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds.. 2004, 44, 758–765.

    (17) Ge, Z. G.; Sun, P.; Liu, H.; Tan, J.; Liu, H. X. Toxicity measurement of halogeno-benzene against vibrio qinghaiensis (Q67) and their 2D,3D-QSAR study.. 2011, 30, 630–637.

    (18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.09,A.9, Gaussian, Inc.: Wallingford CT 2009.

    (19) Liu, S. S.; Liu, H. Y.; Yin, C. S. VSMP: a novel variable selection and modeling method based on the prediction.. 2003, 43, 964–969.

    (20) Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effects of shape on binding of steroids to carrier proteins.. 1988, 110, 5959–5967.

    (21) Xia, F. Y.; Zheng, P.; Zhou, Q.; Feng, X. S. Relationship between quantitative structure and biodegradability for phthalic acid ester compounds.(Agric. & Life Sci.) 2004, 30, 141–146.

    (22) Famini, G. R.; Carl, A. P.; Wilson, L. Y. Using theoretical descriptors in quantitative structure-activity relationships: some physicochemical properties.1992, 5, 395–408.

    16 January 2014;

    17 April 2014

    . Female, associate professor. E-mail: hxy16_2000@163.com

    亚洲七黄色美女视频| 成人三级做爰电影| 久久午夜综合久久蜜桃| 亚洲精品久久午夜乱码| 热99国产精品久久久久久7| 亚洲欧美精品综合一区二区三区| 亚洲欧美色中文字幕在线| 男女床上黄色一级片免费看| 国产精品一区二区在线观看99| 一级,二级,三级黄色视频| 精品国产一区二区久久| 狂野欧美激情性xxxx| 国语对白做爰xxxⅹ性视频网站| 国产欧美亚洲国产| 欧美日韩综合久久久久久| 亚洲七黄色美女视频| 青草久久国产| 美女主播在线视频| 国产精品成人在线| 免费在线观看黄色视频的| 欧美日韩视频精品一区| 亚洲精品国产区一区二| 国产精品久久久久久精品电影小说| 激情视频va一区二区三区| 亚洲专区中文字幕在线| 日本欧美视频一区| 国产欧美日韩一区二区三 | 亚洲五月色婷婷综合| 在线亚洲精品国产二区图片欧美| 欧美av亚洲av综合av国产av| 熟女av电影| 天天添夜夜摸| 制服诱惑二区| 一级毛片电影观看| 一级毛片我不卡| 晚上一个人看的免费电影| 一本一本久久a久久精品综合妖精| 亚洲国产欧美一区二区综合| 国产高清国产精品国产三级| 亚洲精品第二区| 在线观看免费视频网站a站| 久久精品国产亚洲av高清一级| 美女大奶头黄色视频| 最新在线观看一区二区三区 | 啦啦啦中文免费视频观看日本| 国产片特级美女逼逼视频| 男人舔女人的私密视频| 又大又黄又爽视频免费| 免费久久久久久久精品成人欧美视频| 日本欧美国产在线视频| 91成人精品电影| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 手机成人av网站| tube8黄色片| 亚洲精品美女久久av网站| 亚洲五月婷婷丁香| 大码成人一级视频| 一二三四在线观看免费中文在| 日韩精品免费视频一区二区三区| 永久免费av网站大全| 久久久国产一区二区| 久久精品亚洲熟妇少妇任你| 成人午夜精彩视频在线观看| 亚洲av国产av综合av卡| 国产精品一区二区免费欧美 | 伊人久久大香线蕉亚洲五| 国产av一区二区精品久久| kizo精华| 一级毛片我不卡| 两人在一起打扑克的视频| 久久久久久亚洲精品国产蜜桃av| 下体分泌物呈黄色| 亚洲av美国av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图 男人天堂 中文字幕| 亚洲情色 制服丝袜| 性色av一级| 99re6热这里在线精品视频| 人人妻人人添人人爽欧美一区卜| 手机成人av网站| 国产免费又黄又爽又色| 欧美日本中文国产一区发布| 免费观看a级毛片全部| 久久青草综合色| 国产高清视频在线播放一区 | 黄色一级大片看看| 久久精品久久久久久噜噜老黄| 日日摸夜夜添夜夜爱| 嫩草影视91久久| 国产在线视频一区二区| 一本色道久久久久久精品综合| 欧美人与性动交α欧美软件| 欧美黑人精品巨大| 午夜av观看不卡| 亚洲情色 制服丝袜| 久久人人爽人人片av| 亚洲精品一二三| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频 | 亚洲 欧美一区二区三区| 欧美成人午夜精品| 国产淫语在线视频| 亚洲精品自拍成人| 国产精品三级大全| 亚洲精品日本国产第一区| 久热这里只有精品99| 欧美日韩成人在线一区二区| 国产日韩一区二区三区精品不卡| 亚洲午夜精品一区,二区,三区| 精品亚洲成a人片在线观看| 成年美女黄网站色视频大全免费| 亚洲精品国产一区二区精华液| 老司机深夜福利视频在线观看 | 久久狼人影院| 这个男人来自地球电影免费观看| 99国产精品99久久久久| 91成人精品电影| 男女下面插进去视频免费观看| svipshipincom国产片| 日韩中文字幕欧美一区二区 | 日日摸夜夜添夜夜爱| 久久久久久人人人人人| 亚洲欧美精品自产自拍| 校园人妻丝袜中文字幕| 亚洲欧美色中文字幕在线| 日韩av不卡免费在线播放| 久久综合国产亚洲精品| 在线观看人妻少妇| 男女下面插进去视频免费观看| 久久久久精品国产欧美久久久 | 在线观看人妻少妇| 青草久久国产| 亚洲国产最新在线播放| 男人添女人高潮全过程视频| 满18在线观看网站| 黄色怎么调成土黄色| 国产日韩欧美视频二区| 国产精品.久久久| 少妇的丰满在线观看| 久热爱精品视频在线9| 欧美人与善性xxx| 国产极品粉嫩免费观看在线| 老司机亚洲免费影院| 久久毛片免费看一区二区三区| 成年人黄色毛片网站| 国产成人精品久久二区二区免费| 国产精品久久久人人做人人爽| 香蕉国产在线看| 9191精品国产免费久久| 中文字幕制服av| 一级毛片我不卡| 各种免费的搞黄视频| 青春草亚洲视频在线观看| 高潮久久久久久久久久久不卡| 97精品久久久久久久久久精品| 免费黄频网站在线观看国产| 久久精品aⅴ一区二区三区四区| 亚洲人成77777在线视频| 在线观看免费日韩欧美大片| √禁漫天堂资源中文www| 欧美国产精品va在线观看不卡| 丝袜喷水一区| 亚洲男人天堂网一区| 亚洲激情五月婷婷啪啪| 精品国产一区二区久久| 久久综合国产亚洲精品| 一边摸一边做爽爽视频免费| avwww免费| 男女之事视频高清在线观看 | 激情五月婷婷亚洲| 美女国产高潮福利片在线看| 性色av一级| 国产精品久久久人人做人人爽| 纵有疾风起免费观看全集完整版| 国产成人免费观看mmmm| 欧美性长视频在线观看| 中文字幕人妻丝袜一区二区| 国产成人av教育| 9191精品国产免费久久| 人妻一区二区av| 亚洲av成人精品一二三区| 国产在视频线精品| 天天躁狠狠躁夜夜躁狠狠躁| 中文欧美无线码| av国产久精品久网站免费入址| 精品一品国产午夜福利视频| 老司机午夜十八禁免费视频| 亚洲精品成人av观看孕妇| av有码第一页| 久久ye,这里只有精品| 国产一级毛片在线| 久久精品国产亚洲av涩爱| 亚洲一码二码三码区别大吗| 美女大奶头黄色视频| 男女床上黄色一级片免费看| 高清黄色对白视频在线免费看| 国产成人av教育| 9色porny在线观看| 2018国产大陆天天弄谢| 黄色a级毛片大全视频| 国产精品99久久99久久久不卡| 日韩人妻精品一区2区三区| 2018国产大陆天天弄谢| 丰满饥渴人妻一区二区三| 亚洲精品美女久久久久99蜜臀 | 色婷婷久久久亚洲欧美| 成人午夜精彩视频在线观看| 中文欧美无线码| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区蜜桃| 你懂的网址亚洲精品在线观看| 2018国产大陆天天弄谢| 亚洲欧美激情在线| 欧美人与善性xxx| 欧美精品一区二区大全| 观看av在线不卡| 成人影院久久| 国产精品一区二区精品视频观看| 考比视频在线观看| 免费人妻精品一区二区三区视频| 中国国产av一级| 水蜜桃什么品种好| 赤兔流量卡办理| 人成视频在线观看免费观看| av网站在线播放免费| 国产精品久久久久久精品电影小说| 久久亚洲精品不卡| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 美女视频免费永久观看网站| 啦啦啦 在线观看视频| 18禁黄网站禁片午夜丰满| 欧美日韩国产mv在线观看视频| 18禁国产床啪视频网站| 中文字幕人妻熟女乱码| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频| 久久久精品94久久精品| 搡老岳熟女国产| 亚洲天堂av无毛| 下体分泌物呈黄色| 成在线人永久免费视频| 看免费av毛片| a级片在线免费高清观看视频| 成人国语在线视频| 精品国产超薄肉色丝袜足j| 欧美xxⅹ黑人| 女人爽到高潮嗷嗷叫在线视频| 黄片小视频在线播放| 各种免费的搞黄视频| 欧美精品亚洲一区二区| 久久精品国产亚洲av涩爱| 日韩av免费高清视频| 亚洲精品一区蜜桃| 国产一区二区三区av在线| 99九九在线精品视频| 成年动漫av网址| 精品一区二区三区四区五区乱码 | 久久99一区二区三区| 中文字幕av电影在线播放| 国产精品国产av在线观看| 欧美日韩一级在线毛片| netflix在线观看网站| 黄片小视频在线播放| 婷婷丁香在线五月| 日本91视频免费播放| 亚洲熟女精品中文字幕| 手机成人av网站| 亚洲成av片中文字幕在线观看| av片东京热男人的天堂| 欧美日韩黄片免| 老鸭窝网址在线观看| av国产久精品久网站免费入址| a级片在线免费高清观看视频| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 久久精品人人爽人人爽视色| 国产精品免费大片| 精品亚洲成a人片在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人人爽人人片av| 高清黄色对白视频在线免费看| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av涩爱| av一本久久久久| 国产亚洲精品第一综合不卡| 极品人妻少妇av视频| 飞空精品影院首页| 亚洲天堂av无毛| 秋霞在线观看毛片| 国产精品 国内视频| 不卡av一区二区三区| 五月开心婷婷网| 亚洲情色 制服丝袜| 两个人免费观看高清视频| 最新在线观看一区二区三区 | 欧美成狂野欧美在线观看| 九色亚洲精品在线播放| 99国产精品免费福利视频| 久久久久视频综合| 国产成人系列免费观看| 国产成人欧美在线观看 | svipshipincom国产片| 777久久人妻少妇嫩草av网站| 考比视频在线观看| 两人在一起打扑克的视频| 男人爽女人下面视频在线观看| 在线精品无人区一区二区三| 久久影院123| 精品国产一区二区三区四区第35| e午夜精品久久久久久久| 午夜视频精品福利| 亚洲五月婷婷丁香| 精品国产超薄肉色丝袜足j| 视频在线观看一区二区三区| 老司机亚洲免费影院| 国产熟女欧美一区二区| 亚洲欧美清纯卡通| 国产精品av久久久久免费| 久久 成人 亚洲| 午夜免费男女啪啪视频观看| 日本wwww免费看| 亚洲av综合色区一区| 一级,二级,三级黄色视频| 男人爽女人下面视频在线观看| 狠狠婷婷综合久久久久久88av| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| 脱女人内裤的视频| 岛国毛片在线播放| 我的亚洲天堂| 日韩 欧美 亚洲 中文字幕| 国产精品偷伦视频观看了| 一本久久精品| 老司机影院毛片| 少妇猛男粗大的猛烈进出视频| 国产精品二区激情视频| 精品一区二区三区av网在线观看 | 91精品国产国语对白视频| 美女午夜性视频免费| 国产精品偷伦视频观看了| 国产亚洲欧美精品永久| 无限看片的www在线观看| 久久久精品免费免费高清| 成年人黄色毛片网站| 午夜福利影视在线免费观看| 久久精品aⅴ一区二区三区四区| 成人黄色视频免费在线看| 最近手机中文字幕大全| 久久av网站| 18禁裸乳无遮挡动漫免费视频| 亚洲五月色婷婷综合| 人人妻人人澡人人爽人人夜夜| 国产精品免费大片| 在线亚洲精品国产二区图片欧美| 久久99一区二区三区| 日韩人妻精品一区2区三区| 国精品久久久久久国模美| 久久亚洲精品不卡| 激情五月婷婷亚洲| 欧美老熟妇乱子伦牲交| 50天的宝宝边吃奶边哭怎么回事| 黄色视频不卡| 99久久99久久久精品蜜桃| 五月开心婷婷网| 99国产精品99久久久久| 最近中文字幕2019免费版| 午夜福利视频精品| 国产精品.久久久| 午夜福利视频精品| 色网站视频免费| 一级毛片我不卡| 久久人妻福利社区极品人妻图片 | 日韩人妻精品一区2区三区| 老司机在亚洲福利影院| 日韩大码丰满熟妇| 国产一级毛片在线| 精品国产一区二区久久| 日本91视频免费播放| 久久久久久亚洲精品国产蜜桃av| 国产又爽黄色视频| 国产精品欧美亚洲77777| 国产主播在线观看一区二区 | 性高湖久久久久久久久免费观看| 午夜91福利影院| 亚洲av美国av| 激情五月婷婷亚洲| 亚洲,欧美,日韩| 亚洲情色 制服丝袜| 尾随美女入室| xxxhd国产人妻xxx| 精品久久久久久久毛片微露脸 | 曰老女人黄片| 成人亚洲欧美一区二区av| 人人澡人人妻人| 99国产精品免费福利视频| 欧美久久黑人一区二区| 一区二区日韩欧美中文字幕| 亚洲欧洲日产国产| 一本一本久久a久久精品综合妖精| 色视频在线一区二区三区| 老汉色av国产亚洲站长工具| 色播在线永久视频| 久久人妻熟女aⅴ| 女性被躁到高潮视频| 欧美精品人与动牲交sv欧美| a级毛片黄视频| 人体艺术视频欧美日本| 9色porny在线观看| h视频一区二区三区| 国产一区二区在线观看av| 激情视频va一区二区三区| 男女下面插进去视频免费观看| 一级毛片我不卡| 啦啦啦 在线观看视频| 成人三级做爰电影| 亚洲精品一区蜜桃| 成人手机av| 热99国产精品久久久久久7| 女人久久www免费人成看片| 久久热在线av| 搡老岳熟女国产| 女警被强在线播放| 精品少妇一区二区三区视频日本电影| 免费观看人在逋| 一区二区三区四区激情视频| 午夜免费观看性视频| 日韩大片免费观看网站| 在线观看www视频免费| 日韩一本色道免费dvd| 国产精品熟女久久久久浪| 国产av精品麻豆| 一区二区三区四区激情视频| 人人妻人人爽人人添夜夜欢视频| 国产高清videossex| 青春草视频在线免费观看| bbb黄色大片| 亚洲熟女毛片儿| 亚洲一码二码三码区别大吗| 欧美乱码精品一区二区三区| 国产欧美亚洲国产| 青青草视频在线视频观看| 欧美变态另类bdsm刘玥| 777米奇影视久久| 天天躁夜夜躁狠狠躁躁| 久久九九热精品免费| 午夜激情av网站| 久久人妻福利社区极品人妻图片 | 一边亲一边摸免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩制服骚丝袜av| 亚洲伊人色综图| 中文字幕人妻熟女乱码| 激情视频va一区二区三区| 母亲3免费完整高清在线观看| 亚洲人成电影观看| 中文字幕高清在线视频| 国产午夜精品一二区理论片| 熟女少妇亚洲综合色aaa.| 悠悠久久av| 亚洲精品自拍成人| a 毛片基地| 欧美日韩亚洲综合一区二区三区_| 在线观看免费高清a一片| 黄色一级大片看看| 国产av国产精品国产| 男人添女人高潮全过程视频| 国产成人欧美在线观看 | 色94色欧美一区二区| 丰满迷人的少妇在线观看| 成年动漫av网址| 国产男人的电影天堂91| 日本五十路高清| 人人妻人人澡人人看| 国产高清视频在线播放一区 | 两人在一起打扑克的视频| 国产爽快片一区二区三区| 免费观看a级毛片全部| 另类精品久久| 欧美亚洲 丝袜 人妻 在线| 国产黄色视频一区二区在线观看| 国产伦人伦偷精品视频| 欧美日韩国产mv在线观看视频| 90打野战视频偷拍视频| 国产免费视频播放在线视频| 看免费成人av毛片| 脱女人内裤的视频| 黄色视频不卡| 久久 成人 亚洲| 国产一区二区激情短视频 | 欧美精品啪啪一区二区三区 | 成年人免费黄色播放视频| 免费在线观看日本一区| 亚洲,欧美,日韩| 亚洲欧美日韩高清在线视频 | 欧美精品亚洲一区二区| cao死你这个sao货| 手机成人av网站| 母亲3免费完整高清在线观看| 亚洲欧美精品综合一区二区三区| 亚洲人成电影免费在线| 男女无遮挡免费网站观看| 91老司机精品| 免费观看人在逋| 日韩中文字幕欧美一区二区 | 少妇被粗大的猛进出69影院| 91精品伊人久久大香线蕉| 精品福利永久在线观看| 下体分泌物呈黄色| 男女边摸边吃奶| 亚洲 国产 在线| 日本猛色少妇xxxxx猛交久久| 在线天堂中文资源库| 欧美精品啪啪一区二区三区 | 少妇的丰满在线观看| 天天影视国产精品| 精品久久久久久电影网| 久久狼人影院| 中文字幕av电影在线播放| 高清黄色对白视频在线免费看| 蜜桃国产av成人99| 自拍欧美九色日韩亚洲蝌蚪91| 91精品三级在线观看| 亚洲国产成人一精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲久久久国产精品| 国产精品久久久久成人av| 免费高清在线观看视频在线观看| 久久精品久久久久久久性| av福利片在线| 欧美av亚洲av综合av国产av| 国产精品一区二区免费欧美 | 国产精品人妻久久久影院| 亚洲成av片中文字幕在线观看| 中文字幕精品免费在线观看视频| 亚洲美女黄色视频免费看| 国产野战对白在线观看| 午夜久久久在线观看| 1024香蕉在线观看| 我的亚洲天堂| 久久99一区二区三区| 久久久久久久大尺度免费视频| 国产一区亚洲一区在线观看| 人妻一区二区av| 午夜91福利影院| 51午夜福利影视在线观看| 欧美精品啪啪一区二区三区 | 亚洲国产精品一区二区三区在线| 飞空精品影院首页| 日本猛色少妇xxxxx猛交久久| 性高湖久久久久久久久免费观看| 亚洲欧美精品综合一区二区三区| 久久这里只有精品19| 亚洲视频免费观看视频| 亚洲精品国产av成人精品| 最近最新中文字幕大全免费视频 | 国产精品偷伦视频观看了| 亚洲精品国产av蜜桃| 狂野欧美激情性xxxx| 国产欧美日韩精品亚洲av| 国产精品久久久久久精品电影小说| 日本一区二区免费在线视频| 国产午夜精品一二区理论片| 女人爽到高潮嗷嗷叫在线视频| 91国产中文字幕| 国产xxxxx性猛交| 黄色毛片三级朝国网站| 久久精品成人免费网站| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 国产福利在线免费观看视频| 好男人电影高清在线观看| 欧美国产精品一级二级三级| 99国产综合亚洲精品| 欧美日韩黄片免| 日韩av免费高清视频| 久久女婷五月综合色啪小说| 国产亚洲av高清不卡| 狂野欧美激情性xxxx| 大香蕉久久网| 一边摸一边做爽爽视频免费| 日韩中文字幕视频在线看片| 欧美日本中文国产一区发布| 国产黄色视频一区二区在线观看| 亚洲av男天堂| 日本黄色日本黄色录像| 久久久久国产精品人妻一区二区| 十分钟在线观看高清视频www| 久久久久精品人妻al黑| 九色亚洲精品在线播放| 十分钟在线观看高清视频www| 欧美日本中文国产一区发布| 一二三四在线观看免费中文在| 一级毛片 在线播放| 国产欧美日韩精品亚洲av| 亚洲欧美精品综合一区二区三区| 亚洲免费av在线视频| 日韩,欧美,国产一区二区三区| 欧美日韩av久久| 七月丁香在线播放| www.999成人在线观看| 日韩 亚洲 欧美在线| 一本—道久久a久久精品蜜桃钙片| 精品少妇黑人巨大在线播放| 日韩 亚洲 欧美在线| 18禁裸乳无遮挡动漫免费视频| 岛国毛片在线播放| 国产亚洲av高清不卡| 婷婷丁香在线五月| 亚洲av电影在线进入| 蜜桃国产av成人99| 男女高潮啪啪啪动态图| 免费观看人在逋| 亚洲 国产 在线|