• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Chemical Study on the Structural Characteristics and Stability of AlSn±Clusters①

    2014-12-15 09:06:26ZHAOGuoXiangYANGLiJunWANGYanFangMAWenJin
    結(jié)構(gòu)化學(xué) 2014年5期

    ZHAO Guo-Xiang YANG Li-Jun WANG Yan-Fang MA Wen-Jin

    ?

    Quantum Chemical Study on the Structural Characteristics and Stability of AlS±Clusters①

    ZHAO Guo-Xiang YANG Li-Jun WANG Yan-Fang MA Wen-Jin②

    (,041004,)

    The geometric configurations and electronic structures of AlS±(= 1~10) clusters were studied by the B3LYP (DFT) method at the 6-311G** level. The changing rules of the ground state structure features, charge transfer and bonding characteristics of the aluminum-sulfur doped clusters were discussed in detail. The ground states of AlS±(> 2) are all AlcoreSshellplanar or solid double ring structures formed by inserting one Al atom to the Sand S-m(<) rings at the same time. Their molecular orbitals are mainly composed of Al- and-states mixed with S-states. Finally, the stabilities of AlS±clusters have been obtained by analyzing the energy of the ground state structures.

    DFT, AlS±cluster, ground state structure, stability

    1 INTRODUCTION

    In recent years, the relevant theories and expe- riments about the metal-nonmetal binary clusters have captured great interest with the development of researches on binary clusters[1]. Since doping metal atoms into nonmetal clusters can greatly chan- ge their electronic structures and physicochemical properties[2-10], people would like to reveal the formation mechanism and stability rules of these kinds of binary clusters in theory. Sulfur owns many isomers[11-17], and sulfur clusters doped with metal aluminum have important application prospects in molecular catalysis, chemical nitrogen fixation, superconducting materials and so on[18], so the theoretical and experimental researches on sulfur binary clusters have drawn wide attention.

    Guichemerre[19]studied the electronic states of AlS and AlS±by using the MRCI method, and obtained the spectral parameters of electronic states. Liu[20]got the time of flight mass spectrum of AlS–through the time of flight mass spectrometry measurement. Nakajima[21-23]obtained the ionization energy, affinity energy and the relevant photoelectron spectrum of AlS–clusters by using themethod and the photoelectron spec- troscopy measurements. Zhang[24]studied the geometric configurations and the vertical and adiabatic ionization energies of AlS–clustersusing the B3LYP method as well as mass spectrometry and X-ray photoelectron spectroscopy experiments. Jensen[25, 26]studied the geometric configura- tions and oscillation frequency of Al4S6and Al8S12clustersby using HF and B3LYP methods, respec- tively. Zhang[27]got the geometric configura- tions, the time of flight mass spectrum, the enthalpy and ionization energy of (Al2S3)clustersvia themethod and made the experiments of pho-toelectron spectroscopy. Ault[28]studied the geometric configurations and oscillation frequency of Al2S3using the LDF method, also obtaining the powder of Al2S3through the reaction of (CH3)3Al and H2S at high temperature. Zhong[29]studied the geometric configurations of AlSclus- ters and the electronic properties of oxide by using the B3PW91 method.Li[30]studied the geo- metric configurations of AlSclusters by using the B3LYP method, and compared the structure with other sulfur clusters.

    In this article, the ground state structures and stability rules are prospected through theory study on the AlS±(= 1~10) clusters. The obtained results can provide some useful references for understanding the formation mechanism and the physical and chemical properties of AlS±clusters, also for the theoretical and experimental studies of finding larger clusters.

    2 CALCULATION METHODS

    The optimization process is carried out with the following three steps: firstly, the possible struc- tures considering all the designed configurations with different spin multiplicity were optimized at the B3LYP/3-21G[31, 32]level, and the optimization pro- cess does not consider the symmetry in order to verify the possibility of all calculated structures; secondly, the split basis sets with polarization and diffuse functions were adopted in the stable struc- tures which are obtained in the first step, and weuse the point group adjustment on the possible symmetry, re-optimize the structures at the B3LYP/6-31G* level and decide the stable structures with lower energy; in the end, the obtained structures with lower energy were optimized by using the B3LYP/6-311G** method and proceeded with the calculation of frequency, finally affording the ground state structures of AlS±(= 1~10) clusters. All the calculations were carried out with the Gaussian 03 program[33].

    3 RESULTS AND DISCUSSION

    3. 1 Geometricconfigurations of the ground state structures

    3. 1. 1 Selection and confirmation of the ground state structures

    In studying the properties of the clusters, the ground state structures including geometric confi- gurations and electronic structures should be firstly determined. Theoretically, various AlS±cluster topology structures with different sizes should be input as possible initial configurations. Therefore, all the possible geometric configurations of AlS±(≤4) were designed by the method of exhaustion. The calculated results show similarity on the changing rules of geometric configurations and stability of AlS[29, 30]. With increasing the geometric sizes of AlS±clusters, the quantity of the initially designed possible configurations increases greatly. The initial configurations of AlS±(>5) are obtained by two methods. One refers to the reported theory results of AlSclusters, and the other is to find certain rules in the features ofgeometric configurations of AlS±with lower energy during optimizing the AlS±clusters.

    Fig. 1 shows the geometric configurations and symmetries of the ground state structures of AlS±(= 1~10) clusters by using the B3LYP/6-311G**theory. It can be seen that the ground state structures of AlS±(≤2) are all linear (the order is positive and then negative ion structure in the next discussion), among which the Al-S bonds are 0.221 and 0.212 nm, 0.004 and 0.002 nm longer than Al-S in 0.217 and 0.210 nm by using the MRCI[19]method, respectively. The bond lengths of Al-S in the AlS2±structures are 0.277 and 0.207 nm, respectively. The former is 0.069 nm longer than the bond length of Al-S in AlS2(0.208 nm)[30], and the latter is 0.001 nm shorter, which reveals that losing one electron could weaken the Al-S bond strength in a large degree.

    Fig. 1. Geometric configuration and symmetry of the ground state structures of AlS±clusters

    The ground state structures of AlS±(> 2) clusters can be taken as planar or solid double ring structures formed by inserting one Al atom to the Sand S-m(<) rings at the same time. Most of the Al atoms are four-coordinated and most of the S atoms are two-coordinated in the structure. With increasing the cluster size, the ring structures of Sand S-min the ground state change from planar to solid staggered structure through sharing Al atoms. The ranges of the Al-S bond distances are 0.213~0.277 and 0.207~0.230 nm. The average bond distances are 0.231 and 0.222 nm, which are 0.010 and 0.001 longer than that of Al-S (0.221 nm) in a neutral structure[30], respectively. The ranges of S-S bond distances are 0.193~0.218 and 0.210~0.226 nm, with their averages to be 0.207 and 0.216 nm, respectively. Compared with the bond distance of S-S (0.211 nm) in a neutral structure, the former is 0.004 nm shorter, and the latter is 0.005 nm longer.

    As seen from the changing rules of the above aluminum-sulfur binary clusters, the ground state structures of AlS±(= 1~10) clusters are linear or zigzag when≤ 2; the ground state structures of AlS±(>2) are planar or solid double ring. After analyzing the features of geometric configurations of the ground state structures, we can find that: the planar and solid double ringstructures of AlS±clusters can be taken as double-ring structure formed by inserting one Al atom to the Sand S-m(<) rings simultaneously and matching with four S atoms. The sizes of Sand S-mrings in the structure increase in an equal degree, and the structure of AlcoreSshellformed through sharing Al atoms is the most stable, while the stability declines when Al atoms appear in other places of the double-ring structure. After analyzing the symmetry of the ground state structure and the feature of chemical bonds, we can find that the symmetry of the structures of AlSand AlS-mdecreases owing to the distortion caused by Al atoms inserted to the Sand S-mrings[13]to form Al–S bonds. Most of the Al and S atoms are respectively four- and two-coordinated, and this is identical with the reported conclusion in literature[13], which suggests that most S atoms are two-coordinated except for some with 1,3-coordina- tion and the Al atoms are four-coordinated[34]in non-crystal clusters. The studies on the properties of structure and bond formation in this work present a shortcut to find and confirm the larger-sized AlS±clusters more quickly in the future.

    3. 1. 2 Vibrational frequency

    The vibrational frequencies of the structures in Fig. 1 can be calculated at the B3LYP/6-311G** level, and Table 1 shows the obtained values of minimum vibrational frequency () and the corres- ponding vibration frequency with maximum vibra- tional intensity (I) of the ground state structures of AlS±(= 1~10) clusters, and that in paren- thesis shows the symmetry of the vibrational mode. The minimum vibrational frequency () can reflect whether the obtained structures exist or not, while the vibrational frequency with maximum vibrational intensity (I) can reflect the location of the strongest absorption peaks in the infrared spectrum. As seen from Table 1, the minimum vibrational frequencies of the ground state structures of AlS±clusters concentrate in the ranges of 14~428 and 21~552 cm-1, and the vibrational mode is mainly bend vibration of the Al-S bond. The vibrational frequen- cies with the maximum vibrational intensity concen- trate in the 160~674 and 419~746 cm-1ranges, and the vibrational mode is mainly stretching vibration of the Al-S and S-S bonds. All the vibra- tional frequencies are positive, which means that all the optimized structures locate at stable positions on the potential energy surface.

    Table 1. Vibrational Frequencies of the Ground State Structures of AlSn± Clusters

    : vibrational frequency;: vibrational intensity, the symmetry of the vibrational mode is in parenthesis.

    3. 1. 3 Net charge distribution and bond formation of the atoms

    After analyzing the net charge distribution of the atoms in NBO of the ground state structures of AlS±clusters, we can see that Al atoms locate at bridges of the Sand S-mrings, and this is beneficial to charge transfer between the Al and S atoms, and finally makes Al atoms show positive electricity, S atoms show negative electricity and Al–S bond ionize. Therefore, gaining or losing one electron would strengthen or weaken the intensity of Al–S bond, and the variation range means that the bond length is 0.009 nm.

    The bond formation modes and shapes of HOMO (the highest occupied molecular orbital) and NHOMO (the next highest occupied molecular orbital) of the molecules reflect the features of the structures of the chemical bonds directly, and the changing rules of the geometric configurations and stability information of the molecules can be obtained through analyzing HOMO and NHOMO. Fig. 2 presents the molecular orbital figurations of 2D→3D structure. It can be found that a largebond is formed between Al and S atoms, and the S-Sbond in the HOMO structuresof planar AlS3±and AlS4-. It reveals that HOMO contributes to the formation of both Al-S and S-S bonds. The S chain of NHOMO also hasbond, which proves the contribution of NHOMO to the S-S bond formation. If we further investigate the electron cloud figures of the structures of AlS3±, we can find that the electron cloud density between Al–S and S–S bonds of the AlS3-structure is apparently bigger than that of AlS3+, although their configurations and point groups as well as the bond formation modes of HOMO and NHOMO are totally identical. Thebonds in the HOMO and NHOMO of AlS4+struc- tures stagger with each other, and concentrate be- tween the Al–S and S–S bonds, which means both HOMO and NHOMO contribute to the formation of ST(staggered) solid structure with2dsymmetry. The molecular orbitals of AlS±are mainly com- posed of Al- and-states mixed with S-states.-states from Al and S atoms form bigbond in the rings and S chain, and the electron delocalization effect makes the charge of different atoms well distribute, and also makes the bond lengths of Al-S and S-S become average and eventually enhan- ces the stability of the whole structure.

    Fig. 2. HOMO and NHOMO of the ground state structures of AlS±clusters HOMO: the highest occupied molecular orbital NHOMO: the next highest occupied molecular orbital

    3. 2 Stability of the ground state structure

    3. 2. 1 Thermodynamical properties and energy

    Table 2 presents the values of total energy (ET), zero-point energy (EZ), atom energy (ΔEn±), molar heat capacity (CP) and standard entropy (SΘ) of the ground state structures of AlS±clusters, in order to find the changing rules of the ground state structures of AlS±(= 1~10) clusters with size n. It can be concluded that: the values ofZ, ΔE±,PandΘof AlS±clusters increase with the increment of n in an equal degree. As seen from Table 2, the average increment ranges ofof AlS±clusters with positive and negative electrons are 4.53 and 4.37 kJ·mol-1, and those of ΔE±are 432.95 and 432.46 kJ·mol-1; while forPthey are 21.09 and 21.24 J·mol-1·K-1and forΘthey are 37.67 and 36.55 J·mol-1·K-1, respectively. The average increment rates of the values ofZ, ΔE±,PandΘof the ground state structures of AlS±clusters are basically identical.

    3. 2. 2 Dissociation energy and second-order difference of energy

    The relative stability of AlS±clusters was further investigated through analyzing the variation charac- teristics of the dissociation energy and second-order difference of energy versus the cluster sizes. Consi- dering the following chemical reactions

    AlS±→ AlS-1±+ S (1)

    2(AlS±) → AlS+1±+ AlS-1±(2)

    the energy variation is defined as:

    Δd±= (AlSn-1±+S) –AlSn±(3)

    Δ2E±= (AlSn+1±+AlSn-1±) – 2AlSn±(4)

    The energy variation Δd±in Eq. (3) is the disso- ciation energy of AlS±cluster. The value of Δd±can be used as a sign of the relative stability of the cluster[35]: the greater the numerical value, the better the stability of the corresponding structure. As seen from the relationship of Δd±of AlS±clusters versusin Fig. 3 as calculated according to Eq. (3), the dissociation energy (Δd±) of AlS±clusters shows an alternate oscillation downward trend with the increment of size, among which the Δd±values of AlS2-, AlS4-and AlS6-clusters are rela- tively higher. It concludes that they are more stable than other clusters; also it explains why the AlS-(≤6) clusters are easier to come into being in the experiment[20].

    Table 2. Energy and Thermodynamic Parameters of the Ground State Structures of AlSn±Clusters

    T: total energy;Z: zero-point energy; ΔE±: atom energy;P: molar heat capacity;Θ: standard entropy

    Fig. 3. Δd±of AlS±clusters versusΔd±: dissociation energy

    Fig. 4. Δ2E±of AlS±clusters versusΔ2E±: the second-order difference of energy

    The energy variation Δ2E±in Eq. (4) is the second-order difference of the energy for AlS±cluster. The value of Δ2E±can be used to judge the relative stability of the cluster with better sensi- tivity[36], and the bigger or smaller numerical value reflects the higher or lower relative stability of the structure. As seen from the relationship of Δ2d±of AlS±clusters versusin Fig. 4 as calculated according to Eq. (4), the values of Δ2d±decrease with the increment of n generally; the variation rule of Δ2d±is somewhatsimilar with that of Δd±.When= 3, 5, 7 and 9 as odd numbers, the values of Δ2E±are smaller or the decline is faster; and the values of Δ2E±decline more slowly or appear in peaks when= 2, 4, 6, 8 as even numbers. It con- cludes that the relative stability of the correspon- ding structures of AlS±clusters is worse when= 3, 5, 7, 9 as odd numbers; meanwhile, it is better when= 2, 4, 6 and 8 as even numbers.

    4 CONCLUSION

    In conclusion, the ground state structures of AlS±(= 1~10) clusters are linear or zigzag when≤2; the ground states of AlS±(>2) are AlcoreSshellplanar or solid double ring structures formed by inserting one Al atom into the Sand S-m(<) rings at the same time. The ground state structures of AlS±clusters can be found quickly when the Al atom is inserted into Sand S-m(<) rings simultaneously and matched with four S atoms to act as the matrix of designing the structures of AlS±clusters. The stability of the structures is better when Al atoms locate at the double ring bridge than at other places. The size of the ground state structure of Sand S-mcircles increases equally. Most of the Al atoms are four-coordinated and S atoms are mostly two-coordinated in the structure. The molecular orbitals are mainly composed of Al- and-states mixed with S-states. The stability of the ground state structures of AlS±(= 1~10) clusters decreases with the increment of n as a whole, and the stability of the structures of the corre- sponding clusters when n is an even number is better than that of n as an odd number.

    (1) Zhai, H. J.; Ni, G. Q.; Zhou, R. F.; Wang, Y. Z. Research progress in mixed/doped clusters.1997, 17, 265–288.

    (2) Zhao, Y. C.; Yuan, J. Y.; Zhang, Z. G.; Xu, H. G.; Zheng, W. J. Structures of manganese polysulfides: mass-selected photodissociation and density functional calculation.. 2011, 40, 2502–2508.

    (3) Liang, B.; Wang, X.; Andrews, L. Infrared spectra and density functional theory calculations of group 8 transition metal sulfide molecules.2009,113, 5375–5384.

    (4) Liang, B.; Wang, X.; Andrews, L. Infrared spectra and density functional theory calculations of group 10 transition metal sulfide molecules and complexes.2009, 113, 3336–3343.

    (5) Wang, J. F.; Jia, J. F.; Ma, L. J.; Wu, H. S. Structure and stability of TiB(= 1~12) clusters: aninvestigation.2012,70,1643–1649.

    (6) Guo, L. The structure and energetic of AlAs(= 1~15) clusters: a first-principles study.2010, 498, 121–129.

    (7) Feng, X. J.; Luo, Y. H. Structure and stability of Al-doped boron clusters by the density-functional theory.2007, 111, 2420–2425.

    (8) Li, X.; Wang, L. S.; Boldyrev, A. I.; Simons, J. Tetracoordinated planar carbon in the Al4C-anion. a combined photoelectron spectroscopy andstudy.1999,121, 6033–6038

    (9) Averkiev, B. B.; Boldyrev, A. I.; Li, X.; Wang, L. S.Probing the structure and bonding in Al6N-and Al6N by photoelectron spectroscopy andcalculations.2007,111, 34–41.

    (10) Averkiev, B. B.; Call, S.; Boldyrev, A. I.; Wang, L. M.; Huang, W.; Wang, L. S.Photoelectron spectroscopy andstudy of the structure and bonding of Al7N-and Al7N.2008,112, 1873–1879.

    (11) Zakrzewski, V. G.; Niessen, W. V. Structures, stabilities and adiabatic ionization and electron affinity energies of small sulfur clusters S3-S5.1994, 88, 75–96.

    (12) Suontamo, R. J.; Laitinen, R. S.; Pakkanen, T. A. Molecular valence calculations on small sulfur clusters S2-S5.() 1994, 313, 189–197.

    (13) Chen, M. D.; Liu, M. L.; Luo, H. B.; Zhang, Q. E.; Au, C. T. Geometric structures and structural stabilities of neutral sulfur clusters.2001, 548, 133–141.

    (14) Bai, Y. L.; Chen, X. R.; Yang, X. D.; Lu, P. F. Structures of small sulfures S(= 2~8) from langevin molecular dynamics methods.2003, 19, 1102–1107.

    (15) Chen, M, D.; Liu, M, H.; Liu, J. W.; Jiao, Y. C.; Zhang, Q. E. Structural stabilities of small cationic sulfur clusters.2002, 15, 357–362.

    (16) Chen, M. D.; Liu, M. H.; Liu, J. W.; Jiao, Y. C.; Zhang, Q. E. Structural stabilities of small cationic sulfur clusters.2002, 21, 557–561.

    (17) Chen, M. D.; Liu, M. H.; Luo, H. B.; Qiu, Z. J.; Zhang, Q. E. Structural stabilities of small cationic sulfur clusters.2001,20, 399–405.

    (18) Cui, M.; Feng, J. K.; Ge, M. F.; Wang, S. F.; Sun, J. Z.of lead-sulfur binary PbS-1+(= 2~4) clusters.1999, 57, 1062–1067.

    (19) Guichemerre, M.; Chambaud, G. Theoretical study of the electronic states of AlS, AlS+, AlS-.2000, 104, 2105–2111.

    (20) Liu, Z. Y.; Wang, C. R.; Huang, R. B.; Zheng, L. S. Mass distributions of binary aluminium cluster anions AlX-(X = O, S, P, As, C).1995, 141, 201–208.

    (21) Nakajima, A.; Taguwa, T.; Nakao, K.; Hoshino, K.; Iwata, S.; Kaya, K. Photoelectron spectroscopy of AlS1–clusters (= 1~9).1995, 102, 660–665.

    (22) Nakajima, A.; Zhang, N.; Kawamata, H.; Hayase, T.; Nakao, K.; Kaya, K. Photoelectron spectroscopy and mass distributions of aluminum-sulfur cluster anions (AlS-).1995, 241, 295–300.

    (23) Nakajima, A.; Taguwa, T.; Nakao, K.; Hoshino, K.; Iwata, S.; Kaya, K. Photoelectron spectroscopy of binary-metal cluster anions containing sulfur atom.1996, 3, 417–421.

    (24) Zhang, Z. G.; Xu, H. G.; Feng, Y.; Zheng, W. Communications: investigation of the superatomic character of Al13via its interaction with sulfur atoms.. 2010, 132, 161103.

    (25) Jensen, J. O. Vibrational frequencies and structural determination of Al4S6.() 2003, 664, 37–45.

    (26) Jensen, J, O. Vibrational frequencies and structural determination of Al8S12.2004, 60, 2547–2552.

    (27) Zhang, N.; Shi, Y.; Gao, Z.; Kong, F.; Zhu, Q. Aluminum-sulfur cluster ions: formation and photolysis.. 1994, 101, 1219–1224.

    (28) Ault, B. S. Matrix isolation study of the reaction of (CH3)3Al with hydrogen sulfide and mercaptans: synthesis and spectra of molecular Al2S3.1994, 98, 77–80.

    (29) Zhong, M. M.; Kuang, X. Y.; Wang, Z. H.; Shao, P.; Ding, L. P. Probing the structural and electronic properties of aluminum-sulfur AlS(2 ≤+≤6) clusters and their oxides.. 2013,19, 263–274.

    (30) Li, T. X.; Wang, L.; Wang, F.; Chen, J.; Jiang, Z. Y.; Li, L. S. Density functional theory study of neutral AlS(= 2~9) clusters.2011, 20, 033101.

    (31) Becke, A. D. Density functional thermochemistry III. The role of exact exchange correlation functions.1993, 98, 5648–5652.

    (32) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density.1988, 37, 785–789.

    (33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C. J.; Pople, A.; Gaussian, Inc.; Wallingford CT 2004.

    (34) Gutiérrez, G.; Johansson, B. Molecular dynamics study of structural properties of amorphous Al2S3.2002, 65, 104202.

    (35) Bonacic, K. V.; Fantucci, P.; Koutecky, J. Quantum chemistry of small clusters of elements of groups 1a, 1b, and 11a: fundamental concepts, predictions, and interpretation of experiments.1991, 91, 1035–1042.

    (36) Wang, J. F.; Wang, G. H.; Zhao, J. J. Structure electronic properties of Ge(= 2~25) clusters from density-functional theory..2001, 64, 205411.

    7 January 2013;

    11 March 2014

    ① The project was supported by the Natural Science Foundation of Shanxi Province (No. 2012011009-4)

    . E-mail: ma_w_j@163.com

    一级毛片aaaaaa免费看小| 人人妻人人澡人人爽人人夜夜| 欧美 日韩 精品 国产| 亚洲欧美日韩另类电影网站| 2021少妇久久久久久久久久久| 国产片特级美女逼逼视频| 亚洲av免费高清在线观看| 久久久久网色| 性色av一级| 国产成人精品一,二区| 欧美激情极品国产一区二区三区 | 我的老师免费观看完整版| 街头女战士在线观看网站| 国产男人的电影天堂91| 欧美 亚洲 国产 日韩一| 18禁动态无遮挡网站| 久久婷婷青草| 22中文网久久字幕| 亚洲av中文av极速乱| 观看av在线不卡| 精品久久久久久久久亚洲| 精品久久久久久久久亚洲| 亚洲精品色激情综合| 欧美精品国产亚洲| 精品午夜福利在线看| 国产亚洲最大av| 男男h啪啪无遮挡| 51国产日韩欧美| 极品少妇高潮喷水抽搐| 成人午夜精彩视频在线观看| 国产免费又黄又爽又色| 久久女婷五月综合色啪小说| 国产一区有黄有色的免费视频| av在线老鸭窝| 国产精品不卡视频一区二区| 十八禁网站网址无遮挡| 精品熟女少妇av免费看| 久久久午夜欧美精品| 在线观看免费日韩欧美大片 | 亚洲熟女精品中文字幕| 视频在线观看一区二区三区| 中文天堂在线官网| 亚洲激情五月婷婷啪啪| 日韩人妻高清精品专区| 肉色欧美久久久久久久蜜桃| 国产精品一区二区三区四区免费观看| 国产成人freesex在线| 久久久久国产网址| 国产女主播在线喷水免费视频网站| 日韩中字成人| 久久久久久久久大av| 黑人高潮一二区| 亚洲天堂av无毛| 精品久久国产蜜桃| 亚洲,一卡二卡三卡| 老司机影院成人| 高清欧美精品videossex| a 毛片基地| 国产乱人偷精品视频| 亚洲第一av免费看| 免费高清在线观看日韩| 亚洲色图 男人天堂 中文字幕 | 亚洲欧美一区二区三区黑人 | 在线观看免费视频网站a站| 久热这里只有精品99| 国产精品99久久久久久久久| 亚洲久久久国产精品| 免费看光身美女| 国产成人精品在线电影| 麻豆成人av视频| 国产又色又爽无遮挡免| 在线观看免费视频网站a站| 美女中出高潮动态图| 久久久国产欧美日韩av| 国产乱人偷精品视频| 亚洲av在线观看美女高潮| 亚洲国产成人一精品久久久| 丰满饥渴人妻一区二区三| 欧美xxxx性猛交bbbb| a级毛片黄视频| av国产久精品久网站免费入址| 亚洲情色 制服丝袜| 国产男人的电影天堂91| 国产精品秋霞免费鲁丝片| 26uuu在线亚洲综合色| 欧美日韩成人在线一区二区| 男女边摸边吃奶| 少妇人妻 视频| 日本vs欧美在线观看视频| av福利片在线| 日日撸夜夜添| 久久影院123| 校园人妻丝袜中文字幕| 国产日韩一区二区三区精品不卡 | 91久久精品国产一区二区成人| 国精品久久久久久国模美| 国产成人91sexporn| 中国三级夫妇交换| 五月玫瑰六月丁香| 大片电影免费在线观看免费| 啦啦啦中文免费视频观看日本| 久久精品夜色国产| 中文字幕久久专区| 街头女战士在线观看网站| 日韩强制内射视频| 三级国产精品片| 男女无遮挡免费网站观看| 久久久久久久久久人人人人人人| 国产 一区精品| 精品一区在线观看国产| 亚洲国产精品成人久久小说| 99久久精品一区二区三区| 插逼视频在线观看| 爱豆传媒免费全集在线观看| 亚洲精品日本国产第一区| 乱码一卡2卡4卡精品| 国产欧美亚洲国产| 午夜福利网站1000一区二区三区| 日韩av在线免费看完整版不卡| 两个人的视频大全免费| 成年美女黄网站色视频大全免费 | 高清不卡的av网站| 日韩欧美精品免费久久| 麻豆精品久久久久久蜜桃| 三上悠亚av全集在线观看| 日本91视频免费播放| av专区在线播放| 精品人妻熟女毛片av久久网站| 岛国毛片在线播放| 人妻夜夜爽99麻豆av| 久久久久久久久久久久大奶| 免费人妻精品一区二区三区视频| 看非洲黑人一级黄片| 2018国产大陆天天弄谢| 亚洲精品av麻豆狂野| 18禁观看日本| 久久久久久久久久人人人人人人| 国产精品人妻久久久影院| 水蜜桃什么品种好| 日韩成人伦理影院| 成人黄色视频免费在线看| 黑人欧美特级aaaaaa片| 人妻人人澡人人爽人人| 免费人成在线观看视频色| 三级国产精品欧美在线观看| 国产男女内射视频| 秋霞在线观看毛片| 尾随美女入室| 中国三级夫妇交换| 久久久久精品性色| 国产av一区二区精品久久| 亚洲av欧美aⅴ国产| 在线观看三级黄色| 亚洲欧美日韩另类电影网站| 国产精品不卡视频一区二区| 91午夜精品亚洲一区二区三区| 母亲3免费完整高清在线观看 | 国产高清不卡午夜福利| 91精品三级在线观看| 夫妻性生交免费视频一级片| 亚洲欧美一区二区三区黑人 | 亚洲色图综合在线观看| 91久久精品国产一区二区成人| 日本欧美国产在线视频| 高清毛片免费看| 女性生殖器流出的白浆| 中国三级夫妇交换| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 国产精品国产三级国产专区5o| 人人妻人人爽人人添夜夜欢视频| 九九久久精品国产亚洲av麻豆| 曰老女人黄片| 中国美白少妇内射xxxbb| 欧美日韩成人在线一区二区| 一区二区三区免费毛片| 夜夜爽夜夜爽视频| 少妇被粗大猛烈的视频| 最后的刺客免费高清国语| 秋霞伦理黄片| 人人妻人人澡人人看| 热re99久久国产66热| 一级毛片aaaaaa免费看小| 日韩av不卡免费在线播放| 男女高潮啪啪啪动态图| 免费黄色在线免费观看| 国产有黄有色有爽视频| 中文字幕最新亚洲高清| 在线观看人妻少妇| 国产黄色免费在线视频| 亚洲,一卡二卡三卡| 97在线人人人人妻| 日韩av在线免费看完整版不卡| 久久精品久久精品一区二区三区| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 卡戴珊不雅视频在线播放| 欧美3d第一页| 亚洲第一av免费看| 看十八女毛片水多多多| 啦啦啦在线观看免费高清www| 久久久久精品性色| 免费看光身美女| 777米奇影视久久| 国产精品99久久99久久久不卡 | 男女边吃奶边做爰视频| 欧美亚洲日本最大视频资源| 亚洲成色77777| 一级毛片电影观看| 99热这里只有精品一区| 亚洲精品aⅴ在线观看| 亚洲欧美日韩卡通动漫| 成人综合一区亚洲| 国产伦精品一区二区三区视频9| 一本久久精品| 午夜免费观看性视频| 日韩伦理黄色片| 精品国产国语对白av| 亚洲精品456在线播放app| 制服丝袜香蕉在线| 欧美日韩视频高清一区二区三区二| 丁香六月天网| 大香蕉久久成人网| videossex国产| 国产又色又爽无遮挡免| 婷婷色综合大香蕉| 美女国产高潮福利片在线看| 亚洲精品一二三| av免费观看日本| 日韩亚洲欧美综合| 国产精品一区二区三区四区免费观看| 亚洲av福利一区| 午夜精品国产一区二区电影| 国产女主播在线喷水免费视频网站| 亚洲欧美日韩卡通动漫| 一级毛片aaaaaa免费看小| av在线观看视频网站免费| 日韩欧美精品免费久久| 日韩在线高清观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 五月开心婷婷网| 色哟哟·www| 国产一级毛片在线| 亚洲欧美一区二区三区黑人 | 成人亚洲欧美一区二区av| www.色视频.com| 妹子高潮喷水视频| 国产精品一区二区三区四区免费观看| 天堂8中文在线网| 丝袜喷水一区| 亚洲av日韩在线播放| 欧美国产精品一级二级三级| 亚洲国产毛片av蜜桃av| 哪个播放器可以免费观看大片| 日韩欧美精品免费久久| 国产成人精品福利久久| 一级a做视频免费观看| 亚洲成人一二三区av| 高清午夜精品一区二区三区| 亚洲情色 制服丝袜| 亚洲精品一区蜜桃| 制服诱惑二区| 一级毛片我不卡| 国产精品麻豆人妻色哟哟久久| 欧美日韩视频精品一区| av不卡在线播放| 日韩熟女老妇一区二区性免费视频| 亚洲精品色激情综合| a级毛色黄片| 国产成人精品无人区| 国产高清国产精品国产三级| av线在线观看网站| 久久99蜜桃精品久久| 午夜老司机福利剧场| 亚洲精品一区蜜桃| 久久精品国产自在天天线| 婷婷色综合www| 国产又色又爽无遮挡免| 大码成人一级视频| 纯流量卡能插随身wifi吗| 一级毛片黄色毛片免费观看视频| 多毛熟女@视频| 女性被躁到高潮视频| 亚洲精品一二三| 日韩在线高清观看一区二区三区| 热re99久久精品国产66热6| tube8黄色片| 久久精品夜色国产| 国产亚洲av片在线观看秒播厂| 99国产精品免费福利视频| 免费人妻精品一区二区三区视频| 亚洲精品国产色婷婷电影| 午夜老司机福利剧场| 国产乱人偷精品视频| 人人妻人人爽人人添夜夜欢视频| 亚洲成色77777| 久久久久视频综合| 一本久久精品| 黄色欧美视频在线观看| 成人毛片60女人毛片免费| 自拍欧美九色日韩亚洲蝌蚪91| 久久国内精品自在自线图片| 大又大粗又爽又黄少妇毛片口| 在线看a的网站| 欧美日韩国产mv在线观看视频| 成人午夜精彩视频在线观看| 国产一区二区在线观看av| 婷婷色av中文字幕| 天天操日日干夜夜撸| 久久人人爽av亚洲精品天堂| 午夜免费观看性视频| 色吧在线观看| 极品少妇高潮喷水抽搐| 桃花免费在线播放| 日日啪夜夜爽| 一级毛片 在线播放| 韩国高清视频一区二区三区| 久久免费观看电影| 我要看黄色一级片免费的| 极品少妇高潮喷水抽搐| 亚洲av日韩在线播放| 大码成人一级视频| 国产高清三级在线| 一级毛片 在线播放| 建设人人有责人人尽责人人享有的| 人成视频在线观看免费观看| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 亚洲精品,欧美精品| 国产精品久久久久成人av| 大陆偷拍与自拍| 久久午夜综合久久蜜桃| 精品99又大又爽又粗少妇毛片| 免费观看a级毛片全部| 国产精品嫩草影院av在线观看| 99精国产麻豆久久婷婷| 亚洲欧美日韩卡通动漫| av在线老鸭窝| 97超视频在线观看视频| 日本黄色片子视频| 黄色配什么色好看| 久久久久视频综合| 久久国产精品男人的天堂亚洲 | 亚洲av成人精品一二三区| 久久国内精品自在自线图片| 欧美三级亚洲精品| 黑人欧美特级aaaaaa片| 丁香六月天网| 精品午夜福利在线看| 中文字幕亚洲精品专区| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| 欧美xxⅹ黑人| 美女福利国产在线| 亚洲精华国产精华液的使用体验| 在线观看三级黄色| 一区二区日韩欧美中文字幕 | 男女边摸边吃奶| 毛片一级片免费看久久久久| 久久久久久久久久成人| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩一区二区三区在线 | 国产成人av激情在线播放 | 亚洲精品日韩av片在线观看| 国产片特级美女逼逼视频| 久久久久久久久久久免费av| 人人澡人人妻人| 亚洲精华国产精华液的使用体验| 有码 亚洲区| 高清在线视频一区二区三区| 国产精品人妻久久久影院| 欧美3d第一页| 最新中文字幕久久久久| 欧美亚洲日本最大视频资源| 亚洲一区二区三区欧美精品| 天堂8中文在线网| 另类亚洲欧美激情| 有码 亚洲区| 两个人免费观看高清视频| 久久久久人妻精品一区果冻| 另类亚洲欧美激情| 视频中文字幕在线观看| 九草在线视频观看| 国精品久久久久久国模美| 老女人水多毛片| 亚洲怡红院男人天堂| 久久99热6这里只有精品| freevideosex欧美| 久久精品国产亚洲网站| 三级国产精品欧美在线观看| 久久久久精品性色| 大话2 男鬼变身卡| 一本久久精品| 91久久精品电影网| 久久国内精品自在自线图片| 高清黄色对白视频在线免费看| 丝袜美足系列| 久久鲁丝午夜福利片| 亚洲色图综合在线观看| 亚洲久久久国产精品| 男女高潮啪啪啪动态图| 人妻 亚洲 视频| 中国国产av一级| 在线观看免费视频网站a站| 国产精品成人在线| 欧美 亚洲 国产 日韩一| 久久久国产欧美日韩av| 美女脱内裤让男人舔精品视频| 欧美bdsm另类| 丰满少妇做爰视频| 夜夜爽夜夜爽视频| 国产精品国产三级专区第一集| 人人妻人人添人人爽欧美一区卜| 亚洲国产成人一精品久久久| 一级毛片黄色毛片免费观看视频| 国国产精品蜜臀av免费| 国产片特级美女逼逼视频| 免费少妇av软件| 国产精品 国内视频| 黄色怎么调成土黄色| 丝瓜视频免费看黄片| 免费观看在线日韩| 男女国产视频网站| 日本黄色片子视频| 黄色一级大片看看| 成人国产av品久久久| 国产国拍精品亚洲av在线观看| 插逼视频在线观看| av网站免费在线观看视频| 女人精品久久久久毛片| 国产在视频线精品| 人妻一区二区av| 美女主播在线视频| 国产精品久久久久成人av| 热99久久久久精品小说推荐| 制服诱惑二区| 精品久久久精品久久久| 大又大粗又爽又黄少妇毛片口| 九草在线视频观看| 免费不卡的大黄色大毛片视频在线观看| 精品久久久精品久久久| 久久久久久久大尺度免费视频| 国产av精品麻豆| 五月玫瑰六月丁香| 精品人妻熟女av久视频| 精品久久久噜噜| 久久99蜜桃精品久久| 午夜久久久在线观看| 国产老妇伦熟女老妇高清| 欧美变态另类bdsm刘玥| 国产精品一区二区三区四区免费观看| 最近最新中文字幕免费大全7| 国内精品宾馆在线| 丝袜喷水一区| 亚洲精品中文字幕在线视频| 欧美97在线视频| 国产精品无大码| 久久综合国产亚洲精品| 成年av动漫网址| 国产精品国产av在线观看| av在线观看视频网站免费| 国产成人a∨麻豆精品| 爱豆传媒免费全集在线观看| 简卡轻食公司| 街头女战士在线观看网站| 性色av一级| 欧美亚洲 丝袜 人妻 在线| 少妇 在线观看| 国产免费一级a男人的天堂| 2021少妇久久久久久久久久久| videosex国产| 国产高清国产精品国产三级| 久久精品国产亚洲av天美| 99视频精品全部免费 在线| 国产亚洲最大av| 日本欧美视频一区| xxx大片免费视频| 久久久久久久大尺度免费视频| 黄片无遮挡物在线观看| 天堂俺去俺来也www色官网| 亚洲欧美精品自产自拍| 视频中文字幕在线观看| 日韩电影二区| 制服诱惑二区| 免费人妻精品一区二区三区视频| 亚洲熟女精品中文字幕| 亚洲欧洲日产国产| 免费日韩欧美在线观看| 亚洲国产精品国产精品| 国产av码专区亚洲av| 又粗又硬又长又爽又黄的视频| 国产日韩欧美视频二区| 免费高清在线观看日韩| 男女高潮啪啪啪动态图| 高清毛片免费看| 亚洲精品亚洲一区二区| 91精品伊人久久大香线蕉| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 五月天丁香电影| 看十八女毛片水多多多| 国产高清有码在线观看视频| 一区二区日韩欧美中文字幕 | 国产精品欧美亚洲77777| 丝袜在线中文字幕| 日韩一本色道免费dvd| 久久午夜福利片| a级毛片黄视频| 街头女战士在线观看网站| av在线app专区| 男女国产视频网站| 午夜免费观看性视频| 精品少妇久久久久久888优播| 亚洲精品美女久久av网站| 2021少妇久久久久久久久久久| 欧美精品人与动牲交sv欧美| 最近的中文字幕免费完整| 人人妻人人澡人人看| 国产日韩欧美亚洲二区| 日日撸夜夜添| 大又大粗又爽又黄少妇毛片口| 搡女人真爽免费视频火全软件| 亚洲国产成人一精品久久久| 国产欧美亚洲国产| 最新中文字幕久久久久| 久久午夜福利片| 青春草视频在线免费观看| 肉色欧美久久久久久久蜜桃| 久久久精品94久久精品| 美女视频免费永久观看网站| 高清黄色对白视频在线免费看| 男男h啪啪无遮挡| 91精品一卡2卡3卡4卡| 各种免费的搞黄视频| 18禁动态无遮挡网站| 亚洲精品日韩在线中文字幕| 性色avwww在线观看| 久久精品国产亚洲av涩爱| 国产国拍精品亚洲av在线观看| 99久久人妻综合| 午夜av观看不卡| 三上悠亚av全集在线观看| 亚洲精品乱码久久久久久按摩| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 99九九在线精品视频| 久久久久久久久久久免费av| 国精品久久久久久国模美| 免费看不卡的av| 久久久国产一区二区| 久久久精品免费免费高清| 在线观看美女被高潮喷水网站| 另类亚洲欧美激情| 国产亚洲午夜精品一区二区久久| 精品人妻在线不人妻| 亚洲三级黄色毛片| 如日韩欧美国产精品一区二区三区 | 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 欧美亚洲日本最大视频资源| 蜜臀久久99精品久久宅男| 久久人人爽人人片av| 成人毛片a级毛片在线播放| videossex国产| 九草在线视频观看| 国产黄片视频在线免费观看| 日韩成人伦理影院| 亚洲精品国产色婷婷电影| 成年女人在线观看亚洲视频| 中国三级夫妇交换| 午夜影院在线不卡| www.色视频.com| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| a级毛色黄片| 在线观看免费日韩欧美大片 | 波野结衣二区三区在线| 人成视频在线观看免费观看| 一区二区三区免费毛片| 亚洲,欧美,日韩| 国产亚洲欧美精品永久| 国产精品麻豆人妻色哟哟久久| 一级毛片 在线播放| 高清毛片免费看| 国产极品天堂在线| 青春草亚洲视频在线观看| 考比视频在线观看| 一边亲一边摸免费视频| 精品久久久噜噜| 久久人人爽人人爽人人片va| 一个人免费看片子| 色吧在线观看| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 国产成人91sexporn| 亚洲av成人精品一区久久| 国产视频首页在线观看| 两个人免费观看高清视频| 男女边吃奶边做爰视频| 亚洲三级黄色毛片| 欧美日韩视频高清一区二区三区二| 成年av动漫网址| 亚洲欧洲国产日韩| 999精品在线视频| 成人黄色视频免费在线看| 欧美亚洲日本最大视频资源| 一区二区av电影网| 亚洲人成网站在线播| 国产国语露脸激情在线看| 在线观看一区二区三区激情| 在线观看国产h片| 色94色欧美一区二区|