• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      自平衡控制系統(tǒng)穩(wěn)定性分析與驗證

      2014-12-14 01:37:14毅,張磊,羅
      關鍵詞:平衡位置陀螺儀角速度

      張 毅,張 磊,羅 元

      (重慶郵電大學智能系統(tǒng)及機器人研究所,重慶400065)

      0 引言

      自平衡控制系統(tǒng)的主要任務是精確地獲取系統(tǒng)當前準確的傾角及實時產(chǎn)生合適的控制量,使系統(tǒng)維持在平衡狀態(tài)。由于自平衡控制系統(tǒng)自身的優(yōu)點,廣泛應用在火箭發(fā)射中的垂直度控制、倒立擺控制,兩足行走機器人以及兩輪電動雙輪車直立控制等方面,因此,對其穩(wěn)定的研究具有重要意義[1]。

      對于自平衡控制系統(tǒng),主要任務是準確獲取當前系統(tǒng)的傾角,采取一定的策略快速地調(diào)節(jié)系統(tǒng)保持穩(wěn)定。通常對自平衡系統(tǒng)的理論及穩(wěn)定性分析比較復雜,在系統(tǒng)傾角獲取上一般采用卡爾曼濾波、互補濾波等算法獲取系統(tǒng)當前的傾角數(shù)據(jù)[2],但誤差仍然存在。對于后續(xù)系統(tǒng)平衡的控制,一般采用模糊比例積分微分(proportion integral differential,PID)控制、線性二次型調(diào)節(jié)器或自適應控制器等方法控制系統(tǒng)達到并維持平衡狀態(tài) 。為提高控制精度,部分算法需細分控制范圍,但會導致控制規(guī)則呈幾何級數(shù)增加,即所謂的“規(guī)則爆炸”問題[4],影響控制實時性。

      本文針對自平衡系統(tǒng)采用重心運動方程來分析系統(tǒng)的穩(wěn)定性及維持系統(tǒng)穩(wěn)定的控制方法,通過實際和理論分析,降低維持系統(tǒng)穩(wěn)定性分析和算法的復雜性,同時根據(jù)所用的獲取傾角數(shù)據(jù)的方案,配合理論分析與校正得到當前更精確的傾角數(shù)據(jù)。同時為完成對系統(tǒng)平衡的調(diào)節(jié),用濾波后的傾角和陀螺儀數(shù)據(jù)分別配以對應的參量,組成比例微分(proportion differential,PD)控制,計算出驅(qū)動機構(gòu)的控制量,完成系統(tǒng)的調(diào)節(jié)過程。

      1 數(shù)學模型的建立及簡化

      根據(jù)自平衡控制系統(tǒng)的定義與應用場合,其行為特性與倒立擺有很大的相似性[5],故在分析自平衡控制系統(tǒng)的特性時可以參考對倒立擺穩(wěn)定性分析的控制方法。但相比于倒立擺,自平衡控制系統(tǒng)有其自身的特點,由于其調(diào)整平衡機構(gòu)的質(zhì)量相對于整個系統(tǒng)的質(zhì)量很小,在分析過程中可以忽略驅(qū)動機構(gòu)的質(zhì)量,這樣不但簡化了理論分析,而且簡化算法的設計,降低控制系統(tǒng)運算的復雜程度。下面將對比倒立擺的建模,引出自平衡控制系統(tǒng)的建模,如圖1所示。

      圖1 倒立擺的受力分析Fig.1 Stress analysis for Inverted Pendulum

      圖1中,對其水平和垂直方向受力分析、結(jié)合剛體動力學方程可得出倒立擺的運動方程[6]:

      (1)-(2)式中:x為小車的相對基準位移;x˙為小車的速度;x為小車的加速度;θ為擺線對垂線的角位移;˙θ為擺線對垂線的角速度;¨θ為擺線對垂線的角加速度;J為擺繞其重心的轉(zhuǎn)動慣量;m為擺的質(zhì)量;M為小車的質(zhì)量;l為擺重心到轉(zhuǎn)軸之長;H為小車對擺的水平反力;V為小車對擺的垂直反力;c為擺轉(zhuǎn)動時的摩擦系數(shù);b為小車的滑動系數(shù);F為作用在小車上的外力。

      由傳統(tǒng)的對自平衡系統(tǒng)的分析方法可知,其分析方法復雜,運算求解時間長,為此特簡化自平衡系統(tǒng),降低分析的復雜度。忽略驅(qū)動機構(gòu)的質(zhì)量M,簡化后的倒立擺模型,即等效的自平衡控制系統(tǒng)模型如圖2所示,對模型受力分析如圖3所示。

      圖2 自平衡控制系統(tǒng)等效圖Fig.2 Equivalent chart for self-balancing control system

      圖3 自平衡控制系統(tǒng)受力分析圖Fig.3 Stress analysis for self-balancing control system

      將模型等效為可繞底部支點左右轉(zhuǎn)動的倒立擺,其重心距底部距離為L,質(zhì)量為m。假設由于外力的干擾引起系統(tǒng)向右傾斜產(chǎn)生角加速度x(t),偏離數(shù)值方向一個角度θ,忽略驅(qū)動機構(gòu)的質(zhì)量,控制系統(tǒng)檢測到此傾角后立即控制驅(qū)動機構(gòu)驅(qū)動底部支點向右加速運動,此時,在質(zhì)心m所在位置進行分析,它就會受到額外的慣性力,該力作用在系統(tǒng)質(zhì)心上,與底部驅(qū)動調(diào)節(jié)的加速度方向相反,大小為macosθ,且與a成正比,故在質(zhì)心m運動的速度方向上。

      等式兩邊消去m,得

      在實際調(diào)節(jié)過程中,調(diào)節(jié)速度很快,通常偏離平衡位置很小角度,故運動方程簡化為

      2 穩(wěn)定性分析與極點配置

      2.1 實際模型穩(wěn)定性分析

      自平衡控制系統(tǒng)是一個高階次、非線性、不穩(wěn)定的系統(tǒng),在實際的單擺模型中,當物體偏離平衡位置時,受到回復力(重力的切向分力)與物體的位移方向呈鈍角α,故單擺在偏離平衡位置時,重力的切向分力對擺動物體做負功,同時由于空氣阻力及其它因素,最終使擺動物體停止在平衡位置。而對于自平衡控制系統(tǒng),其重心在支撐點之上,重心位于支撐點正上方時,系統(tǒng)處于不穩(wěn)定的平衡狀態(tài),由于制造誤差和其他外界干擾因素的存在,物體很難停止在支撐點的正上方,一旦偏離支撐點的正上方,擺動物體重力的切向分量與其位移s呈銳角β,即對脫離正上方支撐點的物體做正功,加速擺動物體的偏離程度。2種狀態(tài)分別如圖4和圖5所示。

      圖4 單擺穩(wěn)定性分析示意圖Fig.4 Schematic diagram for stability of pendulum

      圖5 倒立擺穩(wěn)定性分析示意圖Fig.5 Schematic diagram for stability of Inverted pendulum

      2.2 系統(tǒng)極點配置

      由公式(5),當自平衡系統(tǒng)靜止時,a(t)=0,化簡得

      系統(tǒng)傳遞函數(shù)為

      驅(qū)動機構(gòu)通過調(diào)節(jié)底部支點加減速運動來完成調(diào)節(jié)平衡的過程。驅(qū)動機構(gòu)進行調(diào)節(jié)時,系統(tǒng)會在擺動的質(zhì)心處就會受到額外的慣性力,該力與底部調(diào)節(jié)機構(gòu)運動的加速度方向相反,大小成正比(見圖3),此時擺動質(zhì)心處受到的回復力為

      在實際的調(diào)節(jié)過程中,調(diào)節(jié)速度很快,通常偏離平衡位置角度很小,故對運動方程線性化為

      由(8)式,如果k1>g,回復力的方向便與位移方向相反,當物體偏離平衡位置時,受到指向平衡位置的回復力,使系統(tǒng)重心趨于平衡位置。

      為使系統(tǒng)盡快在平衡位置穩(wěn)定下來,還需增加阻尼力。增加的阻尼力與偏角的速度成正比,方向相反。因此,(8)式變?yōu)?/p>

      增加阻尼項后,把倒立擺模型等效成單擺模型,能夠穩(wěn)定在平衡位置附近。因此,可得到控制系統(tǒng)的加速度控制算法。

      (8)-(11)式中:θ為偏離平衡位置的傾角;θ'為角速度;k1,k2為比例系數(shù)。兩項相加后作為系統(tǒng)調(diào)節(jié)平衡的控制量。只要保證k1>g,k2>0的條件下,可以使得自平衡系統(tǒng)像單擺一樣維持在近似直立的狀態(tài)。k2決定了回到平衡位置的阻尼系數(shù),選取合適的阻尼系數(shù)可以保證系統(tǒng)盡快穩(wěn)定在平衡位置;k1決定了系統(tǒng)是否能夠穩(wěn)定到垂直平衡位置,它必須大于重力加速度。

      得出自平衡控制系統(tǒng)保持穩(wěn)定性的條件和控制系統(tǒng)的加速度控制算法后,對控制系統(tǒng)引入比例、微分反饋控制,如圖6所示。

      在圖6中,引入了角度反饋控制,與角度成比例的控制量為比例控制;與角速度成比例的控制量為微分控制。其中,微分參數(shù)相當于阻尼力,可以有效抑制系統(tǒng)的震蕩。引入比例、微分控制后系統(tǒng)穩(wěn)定性分析如下。

      系統(tǒng)的傳遞函數(shù)為

      此時,系統(tǒng)的極點為

      系統(tǒng)要保持穩(wěn)定,2個極點都位于S平面的左半平面[7]。要滿足條件,需要k1>g,k2>0。因此,當k1>g,k2>0時,自平衡控制系統(tǒng)便可以保持平衡的狀態(tài)。在實際測試中通過適當調(diào)整比例和微分的系數(shù),可使系統(tǒng)快速回到平衡位置,并維持穩(wěn)定狀態(tài)。

      圖6 引入比例、微分反饋后的系統(tǒng)框圖Fig.6 System block diagram for the introduction of proportional,differential

      3 控制策略及結(jié)果分析

      3.1 獲取與處理傾角信息

      對自平衡系統(tǒng)穩(wěn)定性的分析,有助于采用合理控制策略對系統(tǒng)穩(wěn)定性的控制。由于實際自平衡系統(tǒng)的振動及硬件電路的干擾,會對加速度傳感器信號的輸出產(chǎn)生很大的干擾。陀螺儀動態(tài)性能很好,不易受振動和速度的影響,但容易產(chǎn)生漂移誤差,很小誤差經(jīng)過積分運算后會產(chǎn)生很大誤差,因此,都不適合單獨使用。結(jié)合各自的優(yōu)缺點及系統(tǒng)調(diào)解平衡所需的條件,同時采用2種傳感器,經(jīng)過算法處理共同完成角度檢測和產(chǎn)生控制量的任務。

      為精確獲取傳感器輸出的角度信息,采用卡爾曼濾波對傳感器輸出的數(shù)據(jù)進行處理。在應用卡爾曼濾波算法過程中,先對陀螺儀輸出的角速度信息進行積分,求得陀螺儀傳感器對應的角度信息Angle_gyro:

      (14)式中,Gyro_data為陀螺儀輸出的角速度信息,對比加速度傳感器輸出的角度信息,求得當前的角度誤差為

      (15)式中:Angle-error為當前的角度誤差;Angle_data是加速度傳感器輸出的經(jīng)過計算的角度信息,依據(jù)卡爾曼濾波的第3個公式,并進行簡化得

      (16)式中,等號左邊的Angle就是經(jīng)過運算之后當前比較準確的角度信息,等式右邊的Angle是上一次經(jīng)過卡爾曼濾波后比較準確的角度信息。在整個卡爾曼濾波運算過程中,需要不斷遞推卡爾曼增益Kg以及當前的協(xié)方差P,以便進行下一次角度的計算和更新。同時也要更新b,求得當前的、經(jīng)過濾波后的真實角速度Gyro_real,具體控制過程如圖7所示。

      圖7 傳感器信息處理方法Fig.7 Processing method of Sensor information

      利用加速度傳感器所獲得的角度數(shù)據(jù)Angle_data,與陀螺儀積分之后的角度Angle_gyro進行比較,將比較的誤差經(jīng)過比例1/Tg放大之后與陀螺儀輸出的角速度數(shù)據(jù)疊加,抵消陀螺儀的積分誤差,之后再進行積分,此時獲取的角度更接近真實的系統(tǒng)傾角。

      3.2 產(chǎn)生控制量

      由系統(tǒng)穩(wěn)定性分析與極點配置,系統(tǒng)快速回到平衡位置并維持穩(wěn)定需引入比例和微分控制。通過系統(tǒng)對傾角信息的獲取及處理,已得到精確的角度和角速度信息。在數(shù)學運算關系上,對角度微分得到角速度。系統(tǒng)通過獲取傳感器的信息并處理,分別得到精確的角度和角速度信息,角度信息看成是比例項的一部分,則獲取的角速度信息為微分項的一部分,二者配合適當?shù)南禂?shù)組成比例微分PD控制器,便可以產(chǎn)生恰當?shù)目刂屏?,控制?qū)動機構(gòu)完成調(diào)解過程。具體控制過程如圖8所示。

      圖8中,k1和k2分別是比例系數(shù)和微分系數(shù),具體意義和功能上面已論述,產(chǎn)生控制量的表達式為

      (17)式中,Kp和Kd相當于圖8中的k1和k2。適當?shù)恼{(diào)節(jié)Kp和Kd,便可得到合適的控制量,控制驅(qū)動機構(gòu)完成平衡的調(diào)整。

      圖8 產(chǎn)生控制量的方法Fig.8 Method for generating control quantity

      3.3 測試結(jié)果及分析

      在測試平臺上搭建自平衡控制系統(tǒng),精確獲取系統(tǒng)角度和角速度信息,適當調(diào)節(jié)控制量相關的參數(shù),便可完成對自平衡系統(tǒng)穩(wěn)定性的控制。將自平衡控制系統(tǒng)運行中的參數(shù)實時傳送到上位機,便可觀察各參數(shù)之間的變化,濾波前的角度與濾波后的角度各放大1 000倍后對比如圖9所示。

      圖9 濾波前后的角度對比Fig.9 Angle Contrast before and after filtering

      圖9中,下方曲線是濾波前的角度數(shù)據(jù),上方曲線是經(jīng)過濾波和誤差比較放大后的角度數(shù)據(jù)。從圖9中可知,由于機械振動對加速度輸出的影響及硬件電路電磁干擾的存在,濾波前采集到的角度數(shù)據(jù)混有高頻干擾信號,經(jīng)過濾波后,角度數(shù)據(jù)比較光滑,更為接近實際的角度數(shù)據(jù)。

      系統(tǒng)調(diào)節(jié)產(chǎn)生的控制量需要當前比較準確的角度數(shù)據(jù)和角速度數(shù)據(jù),故需對采集的角度和角速度數(shù)據(jù)進行濾波,獲得相對精確的數(shù)據(jù)。各放大1 000倍后上傳到上位機,圖10為濾波前后角度波形與濾波后陀螺儀數(shù)據(jù)變化情況,中間2條頻率比較低的波形為濾波前后的角度數(shù)據(jù),位置關系見圖9。頻率和幅值比較高的曲線是濾波后陀螺儀波形。

      濾波后的角度、角速度與控制量之間的波形如圖11所示。圖11中,角度數(shù)據(jù)放大100倍,陀螺儀數(shù)據(jù)放大10倍,控制量不放大。其中,處于上方頻率較低的波形為濾波后的角度數(shù)據(jù),中間頻率比較低的波形為產(chǎn)生的控制量,下方的頻率和幅值比較高的波形為濾波后的陀螺儀數(shù)據(jù)。由圖11可知,由PD控制器產(chǎn)生控制量波形與角度數(shù)據(jù)波形比較相近,主要原因是角度數(shù)據(jù)在控制量的產(chǎn)生中占有很大的比重。

      圖10 濾波前后角度和角速度波形Fig.10 Angle and angular velocity before and after filtering

      圖11 濾波后的角度、角速度與控制量之間的波形Fig.11 Waveform of angle,angular velocity and control quantity after filtering

      4 結(jié)束語

      本文從理論和實際2個方面對自平衡控制系統(tǒng)的穩(wěn)定性進行分析,依據(jù)理論和實際的分析結(jié)果,推導出維持系統(tǒng)保持穩(wěn)定性所需的條件。設計了自平衡控制系統(tǒng)測試平臺,在測試平臺上進行算法和改進控制策略的驗證。通過測試,系統(tǒng)能很好地完成傾角數(shù)據(jù)的處理,調(diào)節(jié)系統(tǒng)處于平衡狀態(tài),同時,將系統(tǒng)獲得的角度、角速度及相關的控制量數(shù)據(jù)實時傳送到上位機,生成波形圖,方便了解各參量之間的關系。

      [1]屠運武,徐俊艷,張培仁,等.自平衡控制系統(tǒng)的建模與仿真[J].系統(tǒng)仿真學報,2004,16(4):839-841.TU Yunwu,XU Junyan,ZHANG Peiren,et al.Model and Simulation of Self-balance Control System[J].Jour-nal of system simulation,2004,16(4):839-841.

      [2]肖樂.兩輪自平衡機器人建模及智能控制研究[D].哈爾濱:哈爾濱理工大學,2011:5-14.XIAO Le.Two-wheel Self-balancing Robot Modeling and Intelligent Control[D].Harbin:Harbin University of Science and Technology,2011:5-14.

      [3]孫建勤.兩輪自平衡小車大范圍鎮(zhèn)定方法研究[D].西安:西安電子科技大學,2010:34-54.SUN Jianqin.Research on Methods of the Two-wheeled Self-balancing Vehicle’s Wide-range Stability[D].Xi an:Xidian University,2010:34-54.

      [4]YONG T K,BIEN Zeungnam.Robust self-learning fuzzy controller design for a class of nonlinear MIMO systems[J].Fuzzy Sets and Systems,2000,111(2):117-135.

      [5]HYUNGJIK L,SEUL J.Balancing and navigation control of a mobile inverted pendulum robot using sensor fusion of low cost sensors[J].Mechatronics,2012(2):95-105.

      [6]SHIROMA N,MATSUMOTO O,KAJITA S,et al.Cooperative behavior of a wheeled inverted pendulum for object transportation[C]//Proceedings of the 1996 IEEE/RSJ International Conference on.Intelligent Robots and Systems.Japan,Osaka:IEEE Press,1996,2:396-401.

      [7]胡壽松.自動控制原理[M].4版.北京:科學出版社,2007.HU Shousong.Automatic control theory[M].4th Edition.Beijing:Science Press,2007.

      [8]SPONG M W,CORKE P,LOZANO R.Nonlinear control of the reaction wheel pendulum[J].Automatica,2001,37(11):1845-1851.

      猜你喜歡
      平衡位置陀螺儀角速度
      波動方程的理解與應用
      兩種非常見簡諧振動的分析
      基于EMD的MEMS陀螺儀隨機漂移分析方法
      我國著名陀螺儀專家——林士諤
      圓周運動角速度測量方法賞析
      對一道高考選擇項的再解析
      微機械陀螺儀概述和發(fā)展
      MEMS三軸陀螺儀中不匹配干擾抑制方法
      半捷聯(lián)雷達導引頭視線角速度提取
      基于構(gòu)架點頭角速度的軌道垂向長波不平順在線檢測
      十堰市| 武鸣县| 清河县| 新宁县| 库车县| 大新县| 株洲市| 顺义区| 鞍山市| 根河市| 瓮安县| 龙海市| 漯河市| 常宁市| 巴彦淖尔市| 临洮县| 斗六市| 无棣县| 成都市| 祁阳县| 蕉岭县| 安阳市| 万安县| 江达县| 梅州市| 南丰县| 镇赉县| 汝城县| 宜章县| 吐鲁番市| 菏泽市| 纳雍县| 长沙市| 沂水县| 贵阳市| 庆安县| 金平| 磐石市| 万全县| 荥阳市| 都匀市|