• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rank regression: an alternative regression approach for data with outliers

    2014-12-08 07:38:34TianCHENWanTANGYingLUXinTU
    上海精神醫(yī)學 2014年5期
    關鍵詞:性健康正態(tài)分布線性

    Tian CHEN, Wan TANG, Ying LU, Xin TU*

    ?Biostatistics in psychiatry (23)?

    Rank regression: an alternative regression approach for data with outliers

    Tian CHEN1, Wan TANG1, Ying LU2, Xin TU1*

    normal distribution, non-normal distribution, linear regression, semi-parametric regression models, rank regression, sexual health

    1. Introduction

    Regression is widely used in mental health research and related services research to model relationships involving health and service utilization outcomes and clinical and socio-demographic factors. Regression models measure changes in the dependent variable in response to changes in a set of independent variables of interest. Linear regression focuses on continuous dependent variables, while other regression models such as logistic and log-linear regression consider noncontinuous dependent variables such as binary and count outcomes. The dependent variable is often called the response, while the independent variables are frequently referred to as the explanatory variables,predictors, or covariates.

    Linear regression is arguably the most popular regression model in practice, because of the ubiquity of continuous outcomes and because it is relatively easy to understand the modeled relationship and interpret the model estimates. Fitting such models is convenient because all major software packages (R,SAS, SPSS and STATA) provide both the model estimates and the diagnostics of the model fit. However, the wide popularity and routine use of the linear regression also creates some problems. Many researchers apply the model without first checking assumptions about the normal distribution of the data underlying the validity of model estimates. The classic normal-based linear regression imposes strong constraints on data, and its estimates are also quite sensitive to departures from assumed mathematical models. Without careful checking of the model assumptions, estimates generated by linear regression models may be difficult to interpret and conclusions drawn from such estimates may be misleading.

    2. Different approaches to deal with non-normal study data in regression analyses

    Classic linear regression assumes a normally distributed response,yi, and models the mean of this response variable as a function of a set of independent variables,xi= (xi1 , xi2 ...., xip)Tas follows∶

    whereβ= (β1, β2, ..., βp)Tis the vector of parameters,nis the sample size,εidenotes the error term,N(μ,σ2)denotes a normal distribution with meanμand varianceσ2, andεi~N(0,σ2) means thatεifollows a normal distribution with mean 0 and varianceσ2. The wellshaped bell curve of the normal distribution is often at odds with the distribution of data arising in real studies,because of its symmetric shape and extremely thin tails(exponential decay). Over the years, various methods have been developed to improve the limitations of the classic linear model. All the different methods can be grouped into 3 major categories.

    One approach is to use mathematical distributions that more closely resemble the data distribution in the study.[1]For example, by positing a t-distribution for the errorεi, the resulting linear model can accommodate data distributions with thicker tails. This is possible because the t-distribution has an additional degree of freedom parameter to control the thickness of the tail.However, like the normal distribution, the t-distribution is also symmetric. To model skewed data distributions,a popular approach is to use the chi-square distribution.Although this parametric alternative broadens the scope of data distributions that can be accommodated, it is still quite limited because mathematical distributions always have more regular shapes than those arising in practice.

    A second popular alternative is to use semiparametric or distribution-free models.[2]Under this approach, no mathematical model is assumed for the data distribution (the non-parametric part) and the relationship betweenyiandxiis represented by the mean ofyiafter adjustment forxi(parametric component). The latter parametric component is implied by the specification of the classic linear regression in (1)and is given by∶

    whereE(yi|xi) denotes mathematical expectation. For those unfamiliar with mathematical expectation, the above expression simply means that the population-level average of the responseyiis a linear function ofxi. This linear relationship is also implicit in the normal-based linear regression in (1). Thus, the semi-parametric linear model in (2) only requires a linear relationship between the response and the set of explanatory variables,thereby offering valid inference for a wide class of data distributions.

    Although significantly improving the utility of linear regression, the semi-parametric model still has limited applications. A major problem is that like the classic model it continues to model the mean of the response.Like the sample mean of a variable, model estimates from this approach can be quite biased when there are extremely large or small values, or outliers, in the response.

    Various approaches have been developed to address this important issue of outliers. A common approach in psychosocial research is to trim outliers using ad-hoc rules. For example, limiting the values of all observations to 3 times the interquartile range when estimating the mean of an outcome (i.e., a ‘trimmed’mean).[3]However, these ad-hoc methods induce artifacts because of their dependence on the specific rules used, and the use of different rules can result in different outcomes.

    Another approach to limiting the influence of outliers is to employ rank tests. The Mann-Whitney-Wilcoxon rank sum test is widely used to compare two groups in such situations. Within the setting of regression analysis, rank regression is a popular approach for dealing with outliers.[4,5]Like the Mann-Whitney-Wilcoxon rank sum test, rank regression does not use the observed responsesyidirectly, but,rather, uses information about the ranking of these observations, thereby yielding estimates that are much less sensitive to outliers.

    3. Simulation studies to compare different approaches

    The data were simulated from a study with one binary variable and one continuous covariate. To show differences across the different methods, we selected a large sample size (n=500) to reduce the effect of sampling variability on model estimates. We performed simulation of data and fitted the different models to the data generated using the R software. All simulations were performed with a Monte Carlo sample size M=1000 and a type I errorα=0.05.

    We simulatedyifrom the following linear model∶

    We then simulated 50 (or 10% of the sample size) values from a uniformU(500, 1000000), ordered them as∶

    and added the valuesu(1)from the uniform to the 50 largest values ofyi, i.e.,

    to form a set of outlying observations, i.e.,

    To assess the robustness of the different methods,we replacedy(451)<y(452)< ...< y(500)in the original sample with the valuesz(451)<z(452)< ...< z(500), and fit the models to the resulting observations∶

    Table 1 shows the estimates ofβ1andβ2, the corresponding standard errors, and type I error rates from fitting the three methods to data simulated from the normal-distributed errorN(0, 1/2) based on 1000 Monte Carlo simulations both with and without included outliers. (The interceptβ0is estimated by the rank regression and so this estimate is missing in the table.) In the table, values in the column titled‘mean’ are the averaged estimates of each parameter over 1000 Monte Caro replications; the ‘asymptotic standard error’ is the model-based standard error; the‘empirical standard error’ is the standard errors of the 1000 estimates of each parameter; and the ‘type I error’is the percent of times the null hypothesis - that the estimated parameter is equal to the true parameter -is rejected. For example, the empirical type I error rates forβ1in the data set without outliers is the percent oftimes of rejecting the nullH0∶β1=1.

    If a model performs well, (a) the averaged value of estimates of each parameter (in the ‘mean’ column)should be close to the true value of the respective parameter; (b) the magnitude of the asymptotic standard error should be close to that of the empirical standard error; and (c) the empirical type I error rate should be close to the nominal value 0.05. As shown in Table 1, in the absence of outliers, all three methods performed well, with the averaged estimates all nearly identical to the true value 1, the asymptotic standard errors all close to their empirical counterparts, and the type I error rate all close to the nominal levelα=0.05.Further, all three methods yielded near identical standard errors, indicating that there is practically no loss of power by using the two robust alternatives instead of the classic linear model for the simulated normal data.

    However, results are very different in the presence of outliers. As shown in the Table 1, both the classic and semi-parametric models yielded extremely large estimates that are un-interpretable, impossibly large standard errors, and type I errors close to 1. In contrast,the rank regression model for bothβ1andβ2generated estimates close to the true value 1, reasonable asymptotic and empirical standard errors that were equal to each other, and type I errors that, though elevated, were close to the nominal 0.05 level.

    Table 2 shows the results of a similar simulation when the data were simulated from t-distributed error, ,instead of from normal-distributed error. In the absence of outliers the mean estimate and type 1 error of the two parameters were acceptable for all three models;however, the empirical standard error was much larger than the asymptotic standard error for the classical and semi-parametric models while these two types of standard error were similar in magnitude in the rank regression model. In the presence of outliers, as was the case in the normal-error simulation, the estimates generated by the classic and semi-parametric models were un-interpretable while those generated by the rank regression model were acceptable. Thus, for data with t-distribution error the rank regression model preforms better than the classic linear and the semiparametric models both in the absence and in the presence of outliers.

    4. A real-life example

    To illustrate the three approaches to dealing with outliers, we use results from a recent randomizedcontrolled study[6]to evaluate the efficacy of a sexual risk-reduction intervention program targeting teenage girls in low-income urban settings who are at elevated risk for HIV, sexually transmitted infections, and unintended pregnancies. The study recruited sexuallyactive urban adolescent girls aged 15 to 19 and randomized them to a sexual risk reduction intervention or to a structurally-equivalent health promotion control group. Assessments and behavioral data were collected at baseline, 3, 6 and 12 months post-baseline.The primary interest of the study was to compare the frequency of unprotected vaginal sex between the two treatment conditions. A difficult problem with the study data was the extremely large values reported by some subjects for their sexual activities. For example, five subjects reported over 100 episodes of unprotected vaginal sex over the past 3 months at the 6 month follow-up. If linear regression is applied directly to this outcome, estimates will be severely biased and become un-interpretable. Alternative models need to be considered when analyzing the data.

    Table 1. Estimates (mean), asymptotic and empirical standard errors, and empirical type I error rates from fitting the classic linear, semi-parametric, and rank regression models to data simulated from normal-distributed errors

    The linear regression for the different methods is specified as follows∶

    whereyiis the number of episodes of unprotected vaginal sex,xi1is the binary indicator for the treatment condition (1 for the intervention and 0 for the control group), andεiis the model error. The model errorεifollows the normal distribution for the classic linear regression, while the distribution is unspecified for the semi-parametric and rank regression methods.

    To highlight the differences in the models we removed zero observations (i.e., individuals who reported no episodes of unprotected sex in the prior three months) and fit all three models (classic linear,semi-parametric, and rank regression) to the remaining data. In addition, we also recomputed the estimates for the classic linear model and the semi-parametric model after trimming the observed responses to decrease the influence of outliers. We trimmed the observed responses of number of episodes of unprotected vaginal sex in the prior three months at 3 times the interquartile range; the 25%, 50% and 75% quartiles were 2, 4, and 10 episodes, respectively, so the interquartile range was 8 (10 - 2) and any observations below -20 (4 - 3*8)or above +28 (4 + 3*8) were considered outliers. There were no observations below -20 so no lower-level trimming was necessary, but all observations above 28 were trimmed to 28.

    Table 3 shows the resulting estimates ofβ1for the treatment condition in the linear model (3) and the corresponding asymptotic standard errors and p-values using the different models. As was the case in the simulation study with outliers, the huge values for the estimates and standard errors using the classic linear and semi-parametric models clearly show that the estimates are profoundly affected by the outliers and,thus, are un-interpretable. In comparison, the classic and semi-parametric methods yielded more reasonable estimates when applied to the trimmed observations.However, results using the trimmed data were still quite different from those generated from the rank regression model; the estimates from the two models that used trimmed data were more than 50% higher than that using the rank regression method and the standard errors were more than double that from the rank regression analysis. Results from the simulation study suggest that rank regression is quite robust against outliers and, unlike models that use trimmed data,are not vulnerable to change when different trimming criteria are employed.

    Table 2. Estimates (mean), asymptotic and empirical standard errors, and empirical type I error rates from fitting the classic linear, semi-parametric, and rank regression models to data simulated from t-distributed errors

    Table 3. Estimates, standard errors, and p-values from fitting the classic linear, semi-parametric,rank regression, classic linear with trimmed outliers, and semi-parametric with trimmed outliers models to the risk-reduction intervention study

    5. Sotfware for alternative linear regression models

    Most major software such as R and SAS has the capability of fitting the semi-parametric linear regression model. In R, there are several packages available for fitting the generalized estimating equations (GEE).Although GEE is an extension of the semi-parametric method for longitudinal data, we may still use these packages for fitting the semi-parametric model to crosssectional data by introducing an ‘ID’ variable that has unique values for each of the observations. For example,if the GEE package is installed, then one may apply the following codes to fit the semi-parametric linear regression model∶

    where y is the outcome and x is the covariate matrix.

    Similarly, SAS also offers ‘Procedures’ for fitting the GEE which can be utilized to provide estimates for semiparametric linear regression models. For example, by adding an ID variable to the SAS data set, we may apply the Procedure GENMOD to fit the semi-parametric model∶

    At the time of writing, SAS does not have the capability to fit the rank regression. For our simulated and real study examples, packages in R were used to fit this robust alternative model. To perform this regression model, first download the R functions from the website∶http∶//www.stat.wmich.edu/mckean/HMC/Rcode/AppendixB/ww.r. Then, we use the following command in R to obtain estimates from fitting the rank regression∶

    where y is the outcome and x is the covariate matrix.

    Note that while SAS is a commercial software package, R is free to download, install, and run. In addition, software for newer statistical methods are generally first available in R. However, unlike SAS, R has no designated technical support so users generally rely on peer-support, web postings, and books for resolving issues concerning applications of specific packages and general data management problems.

    6. Discussion

    Classic linear regression has a number of weaknesses,limiting its applications to real study data. We discussed two robust alternatives, the semi-parametric model and the rank regression model. Although the former yields more valid estimates than the classic linear model, it breaks down when there are extremely large (or small)observations in the response (i.e., the dependent variable). In the presence of such outliers, the rank regression model provides much more robust estimates.Unlike ad-hoc methods such as trimming outliers based on 3 x interquartile range, rank regression generates the same estimates regardless of the actual values of the response as long as the rankings of the observations remain the same. This formal approach not only removes any subjective element in the estimates, but it also makes it easier to compare results of different analyses based on the same study data and to compare results between different studies. Further, the rank regression model is also capable of addressing outliers in the independent variables, although this tutorial only discussed outliers in the response variable.

    Currently, rank regression is only available in some selected software packages such as R - we included sample R codes for fitting this robust regression model in this report to facilitate its use by readers. As this approach becomes more popular, it is likely that other major software giants such as SAS will have similar offerings.

    Unlike the classic and semi-parametric linear regression models, rank regression is only available for fitting cross-sectional data. This is, in part, due to the complexity of computing estimates and asymptotic standard errors. However, as longitudinal studies become the norm rather than the exception in modern clinical research, it will become increasingly important to develop software that can extend this robust model to longitudinal research data and, thus, help investigators more effectively deal with imperfections in real study data.

    Conflict of interest

    The authors report no conflict of interest related to this manuscript.

    Funding

    The preparation of this manuscript was supported in part by DA027521 and GM108337 from the National Institutes of Health.

    1. Kowalski J, Tu XM, Day RS, Mendoza-Blanco JR. On the rate of convergence of the ECME algorithm for multiple regression models with t-distributed errors.Biometrika. 1997; 84∶269-281. doi∶ http∶//dx.doi.org/10.1093/biomet/84.2.269

    2. Tang W, He H,Tu XM.Applied Categorical and Count Data Analysis. Boca Raton, Florida, USA∶ Chapman & Hall/CRC Press. 2012

    3. Schroder EB, Liao DP, Chambless LE, Prineas RJ, Evans GW,Heiss G. Hypertension, blood pressure, and heart rate variability∶ the Atherosclerosis Risk in Communities (ARIC)study.Hypertension.2003; 42(6)∶ 1106-1111. doi∶ http∶//dx.doi.org/10.1161/01.HYP.0000100444.71069.73

    4. Jaeckel LA. Estimating regression coefficients by minimizing the dispersion of the residuals.Ann Math Statist. 1972;43(5)∶ 1449-1458

    5. Jureckova J. Nonparametric estimate of regression coefficients.Ann Math Statist.1971; 42(4)∶ 1328-1338

    6. Morrison-Beedy D, Jones S, Xia Y, Tu XM, Crean H, Carey M. Reducing sexual risk behavior in adolescent girls∶results from a randomized controlled trial.J Adolesc Health.2013; 52∶ 314-321. doi∶ http∶//dx.doi.org/10.1016/j.jadohealth.2012.07.005

    ∶ 2014-10-08; accepted∶ 2014-10-10)

    Ms. Tian Chen is a fifth-year PhD student in the Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester. Her PhD thesis focuses on semiparametric and rank-based statistical models, and variable selection methods for regression models for both cross-sectional and longitudinal data. She has applied these statistical methods in the analysis of mental health and related research.

    等級回歸:離群數(shù)據的另一種回歸方法

    Tian CHEN, Wan TANG, Ying LU, Xin TU

    正態(tài)分布,非正態(tài)分布,線性回歸,半參數(shù)回歸模型,等級回歸,性健康

    Summary:Linear regression models are widely used in mental health and related health services research.However, the classic linear regression analysis assumes that the data are normally distributed, an assumption that is not met by the data obtained in many studies. One method of dealing with this problem is to use semi-parametric models, which do not require that the data be normally distributed. But semi-parametric models are quite sensitive to outlying observations, so the generated estimates are unreliable when study data includes outliers. In this situation, some researchers trim the extreme values prior to conducting the analysis, but the ad-hoc rules used for data trimming are based on subjective criteria so different methods of adjustment can yield different results. Rank regression provides a more objective approach to dealing with non-normal data that includes outliers. This paper uses simulated and real data to illustrate this useful regression approach for dealing with outliers and compares it to the results generated using classical regression models and semi-parametric regression models.

    [Shanghai Arch Psychiatry. 2014; 26(5)∶ 310-316. doi∶ http∶//dx.doi.org/10.11919/j.issn.1002-0829.214148]

    1Department of Biostatistics and Computational Biology, University of Rochester, NY, USA

    2Department of Biostatistics, Stanford University, Stanford, CA, USA

    *correspondence∶ xin_tu@urmc.rochester.edu

    A full-text Chinese translation of this article will be available at www.shanghaiarchivesofpsychiatry.org on November 25, 2014.

    概述: 線性回歸模型被廣泛應用于精神衛(wèi)生和衛(wèi)生服務相關研究。然而,經典線性回歸分析是假設該數(shù)據為正態(tài)分布的,但是很多研究所獲得的數(shù)據并不符合這種假設。解決該問題的方法之一是采用不要求數(shù)據為正態(tài)分布的半參數(shù)模型。但是,半參數(shù)模型對離散數(shù)據相當敏感,因此在處理包含離散值的數(shù)據時產生的估計值是不可靠的。在這種情況下,一些研究者在刪減這些極端值后再進行分析,但是,刪減數(shù)據的事先法則(ad-hoc rules)是基于主觀標準的,所以不同的調整方法就會產生不同的結果。等級回歸為處理包括離散值的非正態(tài)分布數(shù)據提供了更為客觀的方法。本文采用虛擬和實際數(shù)據來闡述這個非常有用的處理離散值的回歸方法,并與采用經典回歸模型和半參數(shù)回歸模型所得出的結果進行比較。

    本文全文中文版從2014年11月25日起在www.shanghaiarchivesofpsychaitry.org可供免費閱覽下載

    猜你喜歡
    性健康正態(tài)分布線性
    我國高職學生性健康知信行量表的構建及應用
    護理研究(2023年20期)2023-10-27 08:16:26
    漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
    性健康教育,教師怎么做?
    新班主任(2022年4期)2022-04-27 06:20:49
    利用主題活動淺析小班幼兒進行性健康教育的意義和研究策略
    速讀·中旬(2021年12期)2021-10-14 08:05:57
    線性回歸方程的求解與應用
    關注性健康教育 促進兒童青少年健康
    教育家(2018年41期)2018-11-20 11:49:56
    二階線性微分方程的解法
    基于對數(shù)正態(tài)分布的出行時長可靠性計算
    正態(tài)分布及其應用
    正態(tài)分布題型剖析
    人妻丰满熟妇av一区二区三区| 久久精品国产清高在天天线| 午夜亚洲福利在线播放| 热99re8久久精品国产| 国产 一区 欧美 日韩| 久久久久久久久久成人| 精品人妻偷拍中文字幕| 亚洲av美国av| 亚洲婷婷狠狠爱综合网| 日本黄色片子视频| 国产精品人妻久久久久久| 身体一侧抽搐| 高清日韩中文字幕在线| 一个人观看的视频www高清免费观看| 秋霞在线观看毛片| av专区在线播放| 国产一级毛片七仙女欲春2| 婷婷六月久久综合丁香| 日本a在线网址| 夜夜夜夜夜久久久久| 国产av麻豆久久久久久久| 欧美三级亚洲精品| 国产私拍福利视频在线观看| videossex国产| 蜜桃久久精品国产亚洲av| 久久久欧美国产精品| 久久亚洲国产成人精品v| 97超碰精品成人国产| 欧美日本视频| 欧美高清成人免费视频www| 亚洲中文日韩欧美视频| 国产精品99久久久久久久久| 国产精品99久久久久久久久| 亚洲av五月六月丁香网| 精品久久久久久久久亚洲| 观看美女的网站| aaaaa片日本免费| 波多野结衣巨乳人妻| 日韩人妻高清精品专区| 国产成人福利小说| 亚洲欧美日韩高清专用| 国产精品一区二区免费欧美| 国产熟女欧美一区二区| 国产蜜桃级精品一区二区三区| 欧美日韩乱码在线| 色视频www国产| 亚洲成av人片在线播放无| 亚洲激情五月婷婷啪啪| 久久久久久国产a免费观看| 色吧在线观看| 免费大片18禁| 国产单亲对白刺激| 国产免费男女视频| 精品人妻视频免费看| 18禁在线播放成人免费| 久久久久性生活片| 日韩在线高清观看一区二区三区| 国产女主播在线喷水免费视频网站 | 久久精品国产自在天天线| 欧美日韩乱码在线| 特大巨黑吊av在线直播| 日韩国内少妇激情av| 蜜臀久久99精品久久宅男| 久久精品综合一区二区三区| 午夜激情欧美在线| 精品久久久久久久久久免费视频| 成人亚洲欧美一区二区av| 国产精品av视频在线免费观看| 欧美zozozo另类| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放 | av在线蜜桃| 国产亚洲91精品色在线| 最近在线观看免费完整版| 亚洲人成网站高清观看| 色哟哟哟哟哟哟| 欧美精品国产亚洲| 国产淫片久久久久久久久| 天堂网av新在线| 一区二区三区高清视频在线| 国产一区二区亚洲精品在线观看| 亚洲人与动物交配视频| 欧美日本视频| 18禁黄网站禁片免费观看直播| 国产黄色小视频在线观看| 国产精品久久久久久久久免| 国产毛片a区久久久久| 欧美bdsm另类| 18禁在线无遮挡免费观看视频 | 丰满乱子伦码专区| 麻豆乱淫一区二区| 91在线观看av| av国产免费在线观看| 亚洲av熟女| 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 国产一区亚洲一区在线观看| 亚洲人与动物交配视频| 伦精品一区二区三区| 3wmmmm亚洲av在线观看| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 成人美女网站在线观看视频| 欧美日韩国产亚洲二区| 白带黄色成豆腐渣| 蜜臀久久99精品久久宅男| 国产国拍精品亚洲av在线观看| 夜夜爽天天搞| 午夜福利成人在线免费观看| 美女被艹到高潮喷水动态| 黄色日韩在线| 免费看a级黄色片| 国产不卡一卡二| 91狼人影院| 麻豆久久精品国产亚洲av| 成人国产麻豆网| 91久久精品国产一区二区三区| 亚洲精品影视一区二区三区av| 3wmmmm亚洲av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 精品国内亚洲2022精品成人| 看黄色毛片网站| 日韩精品中文字幕看吧| 不卡一级毛片| 成人三级黄色视频| 免费电影在线观看免费观看| 国产精品日韩av在线免费观看| 女人十人毛片免费观看3o分钟| 51国产日韩欧美| 真实男女啪啪啪动态图| 婷婷亚洲欧美| 免费看a级黄色片| 有码 亚洲区| 国模一区二区三区四区视频| 亚洲一区高清亚洲精品| av在线老鸭窝| 日韩,欧美,国产一区二区三区 | 亚洲久久久久久中文字幕| 国产精品人妻久久久久久| 99久久久亚洲精品蜜臀av| 91麻豆精品激情在线观看国产| 一本久久中文字幕| 国产精品野战在线观看| 亚洲成人精品中文字幕电影| 一个人观看的视频www高清免费观看| 丝袜喷水一区| 91午夜精品亚洲一区二区三区| 欧美性感艳星| 在线播放国产精品三级| 亚洲成人久久性| 日韩强制内射视频| 国产v大片淫在线免费观看| 黄色日韩在线| 亚洲国产欧美人成| 精品午夜福利视频在线观看一区| 高清午夜精品一区二区三区 | 成人av在线播放网站| 国产午夜精品论理片| 日韩制服骚丝袜av| 99在线视频只有这里精品首页| 少妇的逼水好多| 深夜a级毛片| 欧美成人a在线观看| 国产色婷婷99| 亚洲国产精品sss在线观看| 日韩欧美精品免费久久| 赤兔流量卡办理| 欧美bdsm另类| 久久午夜亚洲精品久久| 国产亚洲精品综合一区在线观看| 一边摸一边抽搐一进一小说| 亚洲在线观看片| 成年女人看的毛片在线观看| 免费大片18禁| 国产色爽女视频免费观看| 大型黄色视频在线免费观看| 91在线精品国自产拍蜜月| av黄色大香蕉| 此物有八面人人有两片| 亚洲高清免费不卡视频| 国产在线男女| 欧美日韩精品成人综合77777| 国产精华一区二区三区| 亚洲欧美成人精品一区二区| 18禁黄网站禁片免费观看直播| 最近手机中文字幕大全| 人人妻人人看人人澡| 国产不卡一卡二| 最近在线观看免费完整版| 搞女人的毛片| 亚洲av免费在线观看| 精品无人区乱码1区二区| 亚洲最大成人中文| 亚洲av美国av| 一级av片app| 亚洲第一区二区三区不卡| 深爱激情五月婷婷| 国产av一区在线观看免费| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 久久精品国产鲁丝片午夜精品| 麻豆久久精品国产亚洲av| 免费大片18禁| 黄色欧美视频在线观看| 色在线成人网| 久久久久九九精品影院| 亚洲无线观看免费| 久久中文看片网| 久久人人爽人人片av| 婷婷精品国产亚洲av| 久久人人爽人人爽人人片va| 又爽又黄无遮挡网站| 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 99久国产av精品| 国产精品久久久久久久电影| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 日韩精品青青久久久久久| 卡戴珊不雅视频在线播放| 联通29元200g的流量卡| 欧美bdsm另类| 秋霞在线观看毛片| 欧美三级亚洲精品| av在线播放精品| 日韩大尺度精品在线看网址| 在线观看一区二区三区| 老司机影院成人| 不卡视频在线观看欧美| 国产男人的电影天堂91| 精品日产1卡2卡| 人妻夜夜爽99麻豆av| 亚洲欧美日韩卡通动漫| 成人精品一区二区免费| 国产精品一及| 精品人妻熟女av久视频| 免费黄网站久久成人精品| 97超碰精品成人国产| 12—13女人毛片做爰片一| 精品乱码久久久久久99久播| 男人和女人高潮做爰伦理| 欧美3d第一页| 尾随美女入室| 国产一区二区三区av在线 | 一个人观看的视频www高清免费观看| 成年av动漫网址| 女同久久另类99精品国产91| 日韩三级伦理在线观看| 99在线视频只有这里精品首页| 国产激情偷乱视频一区二区| 日产精品乱码卡一卡2卡三| 18禁在线播放成人免费| 国产单亲对白刺激| h日本视频在线播放| 亚洲精品粉嫩美女一区| 久久久久久久久久久丰满| 人人妻,人人澡人人爽秒播| 丝袜美腿在线中文| 老师上课跳d突然被开到最大视频| 在线观看66精品国产| 日韩精品有码人妻一区| 天美传媒精品一区二区| a级毛色黄片| 国产欧美日韩精品一区二区| 12—13女人毛片做爰片一| 夜夜爽天天搞| 久久久久久久久久成人| 久久久精品94久久精品| 亚洲第一电影网av| 亚洲成人精品中文字幕电影| 日韩 亚洲 欧美在线| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久| 啦啦啦韩国在线观看视频| 国产高清激情床上av| 国产亚洲欧美98| 一区二区三区高清视频在线| 一本久久中文字幕| 欧美不卡视频在线免费观看| 免费大片18禁| 99久久精品一区二区三区| 久久中文看片网| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| 亚洲欧美清纯卡通| 国语自产精品视频在线第100页| 亚洲性夜色夜夜综合| 精品久久久噜噜| 国产伦精品一区二区三区视频9| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在 | 亚洲av熟女| 日韩成人伦理影院| 国产一区二区激情短视频| 观看免费一级毛片| 精品一区二区免费观看| 午夜精品国产一区二区电影 | 男女做爰动态图高潮gif福利片| a级毛色黄片| 22中文网久久字幕| 亚洲va在线va天堂va国产| 少妇高潮的动态图| 搡老妇女老女人老熟妇| 91狼人影院| 国国产精品蜜臀av免费| 啦啦啦韩国在线观看视频| 免费电影在线观看免费观看| 久久精品国产亚洲av天美| 美女大奶头视频| 久久精品夜色国产| 麻豆久久精品国产亚洲av| 国产成人影院久久av| h日本视频在线播放| 91在线精品国自产拍蜜月| 中文资源天堂在线| 露出奶头的视频| 99热精品在线国产| 国产男人的电影天堂91| 男女那种视频在线观看| 色吧在线观看| 一本精品99久久精品77| 久久99热这里只有精品18| 亚洲精品456在线播放app| 成人综合一区亚洲| 欧美bdsm另类| 亚洲欧美精品综合久久99| 两个人的视频大全免费| 久久午夜亚洲精品久久| 在线天堂最新版资源| 六月丁香七月| 黄色日韩在线| 亚洲五月天丁香| 看免费成人av毛片| 岛国在线免费视频观看| 国产探花极品一区二区| 观看美女的网站| 日韩欧美在线乱码| 女生性感内裤真人,穿戴方法视频| 丝袜喷水一区| 久久久久久久久久黄片| 久久久a久久爽久久v久久| 国产伦精品一区二区三区视频9| 午夜福利成人在线免费观看| 一a级毛片在线观看| 91精品国产九色| 日韩欧美精品v在线| 少妇熟女欧美另类| 波多野结衣高清无吗| 可以在线观看的亚洲视频| 不卡一级毛片| 麻豆成人午夜福利视频| 老熟妇仑乱视频hdxx| 亚洲四区av| 亚洲电影在线观看av| 国模一区二区三区四区视频| 女同久久另类99精品国产91| 高清毛片免费观看视频网站| 九九在线视频观看精品| 日韩高清综合在线| 99视频精品全部免费 在线| 毛片一级片免费看久久久久| av福利片在线观看| 99riav亚洲国产免费| 免费av不卡在线播放| 久久韩国三级中文字幕| 三级经典国产精品| 成人无遮挡网站| 日本成人三级电影网站| 男人的好看免费观看在线视频| 国产视频一区二区在线看| 午夜老司机福利剧场| 一级黄色大片毛片| 日本一二三区视频观看| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久| 免费在线观看影片大全网站| 人妻少妇偷人精品九色| 国产乱人视频| 国产中年淑女户外野战色| 男女啪啪激烈高潮av片| 97超级碰碰碰精品色视频在线观看| 亚洲精品亚洲一区二区| a级毛色黄片| 久久人人精品亚洲av| 男人狂女人下面高潮的视频| 色噜噜av男人的天堂激情| 亚洲久久久久久中文字幕| 国产精品av视频在线免费观看| 别揉我奶头 嗯啊视频| 99久久精品热视频| 国产在线精品亚洲第一网站| 波多野结衣高清作品| 国产aⅴ精品一区二区三区波| 香蕉av资源在线| 国产色爽女视频免费观看| 国产高清视频在线观看网站| 国产探花在线观看一区二区| 亚洲无线在线观看| 欧美激情国产日韩精品一区| 国产高清有码在线观看视频| 波野结衣二区三区在线| 美女cb高潮喷水在线观看| 日本黄色视频三级网站网址| 午夜爱爱视频在线播放| 午夜福利在线在线| 99久国产av精品| 一区福利在线观看| 国产乱人偷精品视频| 香蕉av资源在线| 精品一区二区三区av网在线观看| 亚洲内射少妇av| 久久久久久久久中文| 久久久精品欧美日韩精品| 亚洲,欧美,日韩| 亚洲av第一区精品v没综合| 少妇熟女aⅴ在线视频| 成人午夜高清在线视频| 插逼视频在线观看| 人妻少妇偷人精品九色| 亚洲美女黄片视频| 午夜精品国产一区二区电影 | 中文字幕熟女人妻在线| 伦精品一区二区三区| 亚洲七黄色美女视频| 三级经典国产精品| 日本欧美国产在线视频| 久久久午夜欧美精品| 欧美丝袜亚洲另类| 国产不卡一卡二| 精品久久久久久久久久久久久| 国产精品免费一区二区三区在线| a级一级毛片免费在线观看| 成人漫画全彩无遮挡| 看免费成人av毛片| 春色校园在线视频观看| 欧美+亚洲+日韩+国产| 欧美3d第一页| 99久久精品热视频| 99热精品在线国产| 我要搜黄色片| 日本成人三级电影网站| 人妻少妇偷人精品九色| 深夜a级毛片| 久久精品国产亚洲av天美| 99热只有精品国产| 真人做人爱边吃奶动态| 综合色丁香网| 国产精品亚洲一级av第二区| 在线免费十八禁| av天堂在线播放| 老司机午夜福利在线观看视频| 搡女人真爽免费视频火全软件 | 男女做爰动态图高潮gif福利片| 国产色爽女视频免费观看| 成年女人永久免费观看视频| 搞女人的毛片| 18禁裸乳无遮挡免费网站照片| 三级国产精品欧美在线观看| 韩国av在线不卡| 少妇被粗大猛烈的视频| 十八禁国产超污无遮挡网站| 噜噜噜噜噜久久久久久91| 少妇熟女aⅴ在线视频| 最后的刺客免费高清国语| 国产女主播在线喷水免费视频网站 | 国产极品精品免费视频能看的| 国产美女午夜福利| 少妇被粗大猛烈的视频| 久久久精品大字幕| 免费看美女性在线毛片视频| 亚洲成人av在线免费| 插阴视频在线观看视频| 日韩精品青青久久久久久| 女的被弄到高潮叫床怎么办| 亚洲av免费在线观看| 18+在线观看网站| 日日干狠狠操夜夜爽| 你懂的网址亚洲精品在线观看 | 99久久精品国产国产毛片| 97碰自拍视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品粉嫩美女一区| 看免费成人av毛片| 老司机影院成人| 日本与韩国留学比较| 精品99又大又爽又粗少妇毛片| 日韩三级伦理在线观看| 欧美日韩国产亚洲二区| 99riav亚洲国产免费| 欧美+亚洲+日韩+国产| 老司机福利观看| 国产精品免费一区二区三区在线| 欧美高清成人免费视频www| 免费人成视频x8x8入口观看| 日韩欧美 国产精品| 男人狂女人下面高潮的视频| 久久久久久久久久黄片| 国产精品亚洲美女久久久| 国产精品久久视频播放| 嫩草影视91久久| 亚洲人成网站在线播| 亚洲av成人av| 成人永久免费在线观看视频| 男人的好看免费观看在线视频| 欧美又色又爽又黄视频| 久久精品国产鲁丝片午夜精品| 精品久久国产蜜桃| 人妻制服诱惑在线中文字幕| 美女cb高潮喷水在线观看| 国产av在哪里看| 久久久久精品国产欧美久久久| 欧美一区二区国产精品久久精品| 看十八女毛片水多多多| 一进一出抽搐动态| 一a级毛片在线观看| 啦啦啦观看免费观看视频高清| 免费看美女性在线毛片视频| 成人特级黄色片久久久久久久| 美女 人体艺术 gogo| 搡女人真爽免费视频火全软件 | 黑人高潮一二区| 欧美日本视频| 亚洲精品国产av成人精品 | av黄色大香蕉| 我要看日韩黄色一级片| 中文亚洲av片在线观看爽| 色在线成人网| 精品久久久久久久久久免费视频| 欧美日韩乱码在线| 日本黄大片高清| 又爽又黄无遮挡网站| 日韩制服骚丝袜av| 亚洲欧美成人精品一区二区| 18禁裸乳无遮挡免费网站照片| 日本五十路高清| 中文在线观看免费www的网站| 久久久精品欧美日韩精品| 亚洲成人av在线免费| 韩国av在线不卡| 国产精品一及| 欧美+日韩+精品| 久久九九热精品免费| 少妇人妻一区二区三区视频| 国产色爽女视频免费观看| 亚洲av一区综合| 免费观看在线日韩| 免费看日本二区| 久久中文看片网| 欧美日韩国产亚洲二区| 午夜精品在线福利| 国产不卡一卡二| 天堂av国产一区二区熟女人妻| 欧美zozozo另类| 日韩av不卡免费在线播放| 久久久久久久久久久丰满| 国产精品爽爽va在线观看网站| 在线观看免费视频日本深夜| 最新在线观看一区二区三区| 国产精品人妻久久久影院| 亚洲欧美日韩东京热| 国产精品一区www在线观看| 男人舔女人下体高潮全视频| 亚洲人成网站在线观看播放| 久久天躁狠狠躁夜夜2o2o| 国产精品综合久久久久久久免费| 99热这里只有精品一区| 欧美一区二区国产精品久久精品| 国产高清不卡午夜福利| 免费在线观看成人毛片| 久久精品国产清高在天天线| 搞女人的毛片| 人妻少妇偷人精品九色| www.色视频.com| 欧美日韩国产亚洲二区| 欧美色视频一区免费| 黄片wwwwww| 麻豆一二三区av精品| 18禁在线无遮挡免费观看视频 | 中文在线观看免费www的网站| 超碰av人人做人人爽久久| 我的老师免费观看完整版| 欧美高清性xxxxhd video| a级毛片免费高清观看在线播放| 99视频精品全部免费 在线| 久久精品国产99精品国产亚洲性色| 亚洲国产欧洲综合997久久,| 白带黄色成豆腐渣| a级毛色黄片| 免费高清视频大片| 亚洲av五月六月丁香网| 久久精品国产亚洲网站| 国产精品一区二区三区四区久久| 免费无遮挡裸体视频| 麻豆精品久久久久久蜜桃| 国产精品一区二区三区四区久久| h日本视频在线播放| 久久99热6这里只有精品| 深夜精品福利| 三级经典国产精品| 美女高潮的动态| 精品久久久久久久久av| .国产精品久久| 女人被狂操c到高潮| 女生性感内裤真人,穿戴方法视频| 国产老妇女一区| 国产精品伦人一区二区| 有码 亚洲区| 高清午夜精品一区二区三区 | 网址你懂的国产日韩在线| 桃色一区二区三区在线观看| 变态另类丝袜制服| av福利片在线观看| 老司机午夜福利在线观看视频| 亚洲精品国产成人久久av| 亚洲欧美精品自产自拍|