• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rank regression: an alternative regression approach for data with outliers

    2014-12-08 07:38:34TianCHENWanTANGYingLUXinTU
    上海精神醫(yī)學 2014年5期
    關鍵詞:性健康正態(tài)分布線性

    Tian CHEN, Wan TANG, Ying LU, Xin TU*

    ?Biostatistics in psychiatry (23)?

    Rank regression: an alternative regression approach for data with outliers

    Tian CHEN1, Wan TANG1, Ying LU2, Xin TU1*

    normal distribution, non-normal distribution, linear regression, semi-parametric regression models, rank regression, sexual health

    1. Introduction

    Regression is widely used in mental health research and related services research to model relationships involving health and service utilization outcomes and clinical and socio-demographic factors. Regression models measure changes in the dependent variable in response to changes in a set of independent variables of interest. Linear regression focuses on continuous dependent variables, while other regression models such as logistic and log-linear regression consider noncontinuous dependent variables such as binary and count outcomes. The dependent variable is often called the response, while the independent variables are frequently referred to as the explanatory variables,predictors, or covariates.

    Linear regression is arguably the most popular regression model in practice, because of the ubiquity of continuous outcomes and because it is relatively easy to understand the modeled relationship and interpret the model estimates. Fitting such models is convenient because all major software packages (R,SAS, SPSS and STATA) provide both the model estimates and the diagnostics of the model fit. However, the wide popularity and routine use of the linear regression also creates some problems. Many researchers apply the model without first checking assumptions about the normal distribution of the data underlying the validity of model estimates. The classic normal-based linear regression imposes strong constraints on data, and its estimates are also quite sensitive to departures from assumed mathematical models. Without careful checking of the model assumptions, estimates generated by linear regression models may be difficult to interpret and conclusions drawn from such estimates may be misleading.

    2. Different approaches to deal with non-normal study data in regression analyses

    Classic linear regression assumes a normally distributed response,yi, and models the mean of this response variable as a function of a set of independent variables,xi= (xi1 , xi2 ...., xip)Tas follows∶

    whereβ= (β1, β2, ..., βp)Tis the vector of parameters,nis the sample size,εidenotes the error term,N(μ,σ2)denotes a normal distribution with meanμand varianceσ2, andεi~N(0,σ2) means thatεifollows a normal distribution with mean 0 and varianceσ2. The wellshaped bell curve of the normal distribution is often at odds with the distribution of data arising in real studies,because of its symmetric shape and extremely thin tails(exponential decay). Over the years, various methods have been developed to improve the limitations of the classic linear model. All the different methods can be grouped into 3 major categories.

    One approach is to use mathematical distributions that more closely resemble the data distribution in the study.[1]For example, by positing a t-distribution for the errorεi, the resulting linear model can accommodate data distributions with thicker tails. This is possible because the t-distribution has an additional degree of freedom parameter to control the thickness of the tail.However, like the normal distribution, the t-distribution is also symmetric. To model skewed data distributions,a popular approach is to use the chi-square distribution.Although this parametric alternative broadens the scope of data distributions that can be accommodated, it is still quite limited because mathematical distributions always have more regular shapes than those arising in practice.

    A second popular alternative is to use semiparametric or distribution-free models.[2]Under this approach, no mathematical model is assumed for the data distribution (the non-parametric part) and the relationship betweenyiandxiis represented by the mean ofyiafter adjustment forxi(parametric component). The latter parametric component is implied by the specification of the classic linear regression in (1)and is given by∶

    whereE(yi|xi) denotes mathematical expectation. For those unfamiliar with mathematical expectation, the above expression simply means that the population-level average of the responseyiis a linear function ofxi. This linear relationship is also implicit in the normal-based linear regression in (1). Thus, the semi-parametric linear model in (2) only requires a linear relationship between the response and the set of explanatory variables,thereby offering valid inference for a wide class of data distributions.

    Although significantly improving the utility of linear regression, the semi-parametric model still has limited applications. A major problem is that like the classic model it continues to model the mean of the response.Like the sample mean of a variable, model estimates from this approach can be quite biased when there are extremely large or small values, or outliers, in the response.

    Various approaches have been developed to address this important issue of outliers. A common approach in psychosocial research is to trim outliers using ad-hoc rules. For example, limiting the values of all observations to 3 times the interquartile range when estimating the mean of an outcome (i.e., a ‘trimmed’mean).[3]However, these ad-hoc methods induce artifacts because of their dependence on the specific rules used, and the use of different rules can result in different outcomes.

    Another approach to limiting the influence of outliers is to employ rank tests. The Mann-Whitney-Wilcoxon rank sum test is widely used to compare two groups in such situations. Within the setting of regression analysis, rank regression is a popular approach for dealing with outliers.[4,5]Like the Mann-Whitney-Wilcoxon rank sum test, rank regression does not use the observed responsesyidirectly, but,rather, uses information about the ranking of these observations, thereby yielding estimates that are much less sensitive to outliers.

    3. Simulation studies to compare different approaches

    The data were simulated from a study with one binary variable and one continuous covariate. To show differences across the different methods, we selected a large sample size (n=500) to reduce the effect of sampling variability on model estimates. We performed simulation of data and fitted the different models to the data generated using the R software. All simulations were performed with a Monte Carlo sample size M=1000 and a type I errorα=0.05.

    We simulatedyifrom the following linear model∶

    We then simulated 50 (or 10% of the sample size) values from a uniformU(500, 1000000), ordered them as∶

    and added the valuesu(1)from the uniform to the 50 largest values ofyi, i.e.,

    to form a set of outlying observations, i.e.,

    To assess the robustness of the different methods,we replacedy(451)<y(452)< ...< y(500)in the original sample with the valuesz(451)<z(452)< ...< z(500), and fit the models to the resulting observations∶

    Table 1 shows the estimates ofβ1andβ2, the corresponding standard errors, and type I error rates from fitting the three methods to data simulated from the normal-distributed errorN(0, 1/2) based on 1000 Monte Carlo simulations both with and without included outliers. (The interceptβ0is estimated by the rank regression and so this estimate is missing in the table.) In the table, values in the column titled‘mean’ are the averaged estimates of each parameter over 1000 Monte Caro replications; the ‘asymptotic standard error’ is the model-based standard error; the‘empirical standard error’ is the standard errors of the 1000 estimates of each parameter; and the ‘type I error’is the percent of times the null hypothesis - that the estimated parameter is equal to the true parameter -is rejected. For example, the empirical type I error rates forβ1in the data set without outliers is the percent oftimes of rejecting the nullH0∶β1=1.

    If a model performs well, (a) the averaged value of estimates of each parameter (in the ‘mean’ column)should be close to the true value of the respective parameter; (b) the magnitude of the asymptotic standard error should be close to that of the empirical standard error; and (c) the empirical type I error rate should be close to the nominal value 0.05. As shown in Table 1, in the absence of outliers, all three methods performed well, with the averaged estimates all nearly identical to the true value 1, the asymptotic standard errors all close to their empirical counterparts, and the type I error rate all close to the nominal levelα=0.05.Further, all three methods yielded near identical standard errors, indicating that there is practically no loss of power by using the two robust alternatives instead of the classic linear model for the simulated normal data.

    However, results are very different in the presence of outliers. As shown in the Table 1, both the classic and semi-parametric models yielded extremely large estimates that are un-interpretable, impossibly large standard errors, and type I errors close to 1. In contrast,the rank regression model for bothβ1andβ2generated estimates close to the true value 1, reasonable asymptotic and empirical standard errors that were equal to each other, and type I errors that, though elevated, were close to the nominal 0.05 level.

    Table 2 shows the results of a similar simulation when the data were simulated from t-distributed error, ,instead of from normal-distributed error. In the absence of outliers the mean estimate and type 1 error of the two parameters were acceptable for all three models;however, the empirical standard error was much larger than the asymptotic standard error for the classical and semi-parametric models while these two types of standard error were similar in magnitude in the rank regression model. In the presence of outliers, as was the case in the normal-error simulation, the estimates generated by the classic and semi-parametric models were un-interpretable while those generated by the rank regression model were acceptable. Thus, for data with t-distribution error the rank regression model preforms better than the classic linear and the semiparametric models both in the absence and in the presence of outliers.

    4. A real-life example

    To illustrate the three approaches to dealing with outliers, we use results from a recent randomizedcontrolled study[6]to evaluate the efficacy of a sexual risk-reduction intervention program targeting teenage girls in low-income urban settings who are at elevated risk for HIV, sexually transmitted infections, and unintended pregnancies. The study recruited sexuallyactive urban adolescent girls aged 15 to 19 and randomized them to a sexual risk reduction intervention or to a structurally-equivalent health promotion control group. Assessments and behavioral data were collected at baseline, 3, 6 and 12 months post-baseline.The primary interest of the study was to compare the frequency of unprotected vaginal sex between the two treatment conditions. A difficult problem with the study data was the extremely large values reported by some subjects for their sexual activities. For example, five subjects reported over 100 episodes of unprotected vaginal sex over the past 3 months at the 6 month follow-up. If linear regression is applied directly to this outcome, estimates will be severely biased and become un-interpretable. Alternative models need to be considered when analyzing the data.

    Table 1. Estimates (mean), asymptotic and empirical standard errors, and empirical type I error rates from fitting the classic linear, semi-parametric, and rank regression models to data simulated from normal-distributed errors

    The linear regression for the different methods is specified as follows∶

    whereyiis the number of episodes of unprotected vaginal sex,xi1is the binary indicator for the treatment condition (1 for the intervention and 0 for the control group), andεiis the model error. The model errorεifollows the normal distribution for the classic linear regression, while the distribution is unspecified for the semi-parametric and rank regression methods.

    To highlight the differences in the models we removed zero observations (i.e., individuals who reported no episodes of unprotected sex in the prior three months) and fit all three models (classic linear,semi-parametric, and rank regression) to the remaining data. In addition, we also recomputed the estimates for the classic linear model and the semi-parametric model after trimming the observed responses to decrease the influence of outliers. We trimmed the observed responses of number of episodes of unprotected vaginal sex in the prior three months at 3 times the interquartile range; the 25%, 50% and 75% quartiles were 2, 4, and 10 episodes, respectively, so the interquartile range was 8 (10 - 2) and any observations below -20 (4 - 3*8)or above +28 (4 + 3*8) were considered outliers. There were no observations below -20 so no lower-level trimming was necessary, but all observations above 28 were trimmed to 28.

    Table 3 shows the resulting estimates ofβ1for the treatment condition in the linear model (3) and the corresponding asymptotic standard errors and p-values using the different models. As was the case in the simulation study with outliers, the huge values for the estimates and standard errors using the classic linear and semi-parametric models clearly show that the estimates are profoundly affected by the outliers and,thus, are un-interpretable. In comparison, the classic and semi-parametric methods yielded more reasonable estimates when applied to the trimmed observations.However, results using the trimmed data were still quite different from those generated from the rank regression model; the estimates from the two models that used trimmed data were more than 50% higher than that using the rank regression method and the standard errors were more than double that from the rank regression analysis. Results from the simulation study suggest that rank regression is quite robust against outliers and, unlike models that use trimmed data,are not vulnerable to change when different trimming criteria are employed.

    Table 2. Estimates (mean), asymptotic and empirical standard errors, and empirical type I error rates from fitting the classic linear, semi-parametric, and rank regression models to data simulated from t-distributed errors

    Table 3. Estimates, standard errors, and p-values from fitting the classic linear, semi-parametric,rank regression, classic linear with trimmed outliers, and semi-parametric with trimmed outliers models to the risk-reduction intervention study

    5. Sotfware for alternative linear regression models

    Most major software such as R and SAS has the capability of fitting the semi-parametric linear regression model. In R, there are several packages available for fitting the generalized estimating equations (GEE).Although GEE is an extension of the semi-parametric method for longitudinal data, we may still use these packages for fitting the semi-parametric model to crosssectional data by introducing an ‘ID’ variable that has unique values for each of the observations. For example,if the GEE package is installed, then one may apply the following codes to fit the semi-parametric linear regression model∶

    where y is the outcome and x is the covariate matrix.

    Similarly, SAS also offers ‘Procedures’ for fitting the GEE which can be utilized to provide estimates for semiparametric linear regression models. For example, by adding an ID variable to the SAS data set, we may apply the Procedure GENMOD to fit the semi-parametric model∶

    At the time of writing, SAS does not have the capability to fit the rank regression. For our simulated and real study examples, packages in R were used to fit this robust alternative model. To perform this regression model, first download the R functions from the website∶http∶//www.stat.wmich.edu/mckean/HMC/Rcode/AppendixB/ww.r. Then, we use the following command in R to obtain estimates from fitting the rank regression∶

    where y is the outcome and x is the covariate matrix.

    Note that while SAS is a commercial software package, R is free to download, install, and run. In addition, software for newer statistical methods are generally first available in R. However, unlike SAS, R has no designated technical support so users generally rely on peer-support, web postings, and books for resolving issues concerning applications of specific packages and general data management problems.

    6. Discussion

    Classic linear regression has a number of weaknesses,limiting its applications to real study data. We discussed two robust alternatives, the semi-parametric model and the rank regression model. Although the former yields more valid estimates than the classic linear model, it breaks down when there are extremely large (or small)observations in the response (i.e., the dependent variable). In the presence of such outliers, the rank regression model provides much more robust estimates.Unlike ad-hoc methods such as trimming outliers based on 3 x interquartile range, rank regression generates the same estimates regardless of the actual values of the response as long as the rankings of the observations remain the same. This formal approach not only removes any subjective element in the estimates, but it also makes it easier to compare results of different analyses based on the same study data and to compare results between different studies. Further, the rank regression model is also capable of addressing outliers in the independent variables, although this tutorial only discussed outliers in the response variable.

    Currently, rank regression is only available in some selected software packages such as R - we included sample R codes for fitting this robust regression model in this report to facilitate its use by readers. As this approach becomes more popular, it is likely that other major software giants such as SAS will have similar offerings.

    Unlike the classic and semi-parametric linear regression models, rank regression is only available for fitting cross-sectional data. This is, in part, due to the complexity of computing estimates and asymptotic standard errors. However, as longitudinal studies become the norm rather than the exception in modern clinical research, it will become increasingly important to develop software that can extend this robust model to longitudinal research data and, thus, help investigators more effectively deal with imperfections in real study data.

    Conflict of interest

    The authors report no conflict of interest related to this manuscript.

    Funding

    The preparation of this manuscript was supported in part by DA027521 and GM108337 from the National Institutes of Health.

    1. Kowalski J, Tu XM, Day RS, Mendoza-Blanco JR. On the rate of convergence of the ECME algorithm for multiple regression models with t-distributed errors.Biometrika. 1997; 84∶269-281. doi∶ http∶//dx.doi.org/10.1093/biomet/84.2.269

    2. Tang W, He H,Tu XM.Applied Categorical and Count Data Analysis. Boca Raton, Florida, USA∶ Chapman & Hall/CRC Press. 2012

    3. Schroder EB, Liao DP, Chambless LE, Prineas RJ, Evans GW,Heiss G. Hypertension, blood pressure, and heart rate variability∶ the Atherosclerosis Risk in Communities (ARIC)study.Hypertension.2003; 42(6)∶ 1106-1111. doi∶ http∶//dx.doi.org/10.1161/01.HYP.0000100444.71069.73

    4. Jaeckel LA. Estimating regression coefficients by minimizing the dispersion of the residuals.Ann Math Statist. 1972;43(5)∶ 1449-1458

    5. Jureckova J. Nonparametric estimate of regression coefficients.Ann Math Statist.1971; 42(4)∶ 1328-1338

    6. Morrison-Beedy D, Jones S, Xia Y, Tu XM, Crean H, Carey M. Reducing sexual risk behavior in adolescent girls∶results from a randomized controlled trial.J Adolesc Health.2013; 52∶ 314-321. doi∶ http∶//dx.doi.org/10.1016/j.jadohealth.2012.07.005

    ∶ 2014-10-08; accepted∶ 2014-10-10)

    Ms. Tian Chen is a fifth-year PhD student in the Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester. Her PhD thesis focuses on semiparametric and rank-based statistical models, and variable selection methods for regression models for both cross-sectional and longitudinal data. She has applied these statistical methods in the analysis of mental health and related research.

    等級回歸:離群數(shù)據的另一種回歸方法

    Tian CHEN, Wan TANG, Ying LU, Xin TU

    正態(tài)分布,非正態(tài)分布,線性回歸,半參數(shù)回歸模型,等級回歸,性健康

    Summary:Linear regression models are widely used in mental health and related health services research.However, the classic linear regression analysis assumes that the data are normally distributed, an assumption that is not met by the data obtained in many studies. One method of dealing with this problem is to use semi-parametric models, which do not require that the data be normally distributed. But semi-parametric models are quite sensitive to outlying observations, so the generated estimates are unreliable when study data includes outliers. In this situation, some researchers trim the extreme values prior to conducting the analysis, but the ad-hoc rules used for data trimming are based on subjective criteria so different methods of adjustment can yield different results. Rank regression provides a more objective approach to dealing with non-normal data that includes outliers. This paper uses simulated and real data to illustrate this useful regression approach for dealing with outliers and compares it to the results generated using classical regression models and semi-parametric regression models.

    [Shanghai Arch Psychiatry. 2014; 26(5)∶ 310-316. doi∶ http∶//dx.doi.org/10.11919/j.issn.1002-0829.214148]

    1Department of Biostatistics and Computational Biology, University of Rochester, NY, USA

    2Department of Biostatistics, Stanford University, Stanford, CA, USA

    *correspondence∶ xin_tu@urmc.rochester.edu

    A full-text Chinese translation of this article will be available at www.shanghaiarchivesofpsychiatry.org on November 25, 2014.

    概述: 線性回歸模型被廣泛應用于精神衛(wèi)生和衛(wèi)生服務相關研究。然而,經典線性回歸分析是假設該數(shù)據為正態(tài)分布的,但是很多研究所獲得的數(shù)據并不符合這種假設。解決該問題的方法之一是采用不要求數(shù)據為正態(tài)分布的半參數(shù)模型。但是,半參數(shù)模型對離散數(shù)據相當敏感,因此在處理包含離散值的數(shù)據時產生的估計值是不可靠的。在這種情況下,一些研究者在刪減這些極端值后再進行分析,但是,刪減數(shù)據的事先法則(ad-hoc rules)是基于主觀標準的,所以不同的調整方法就會產生不同的結果。等級回歸為處理包括離散值的非正態(tài)分布數(shù)據提供了更為客觀的方法。本文采用虛擬和實際數(shù)據來闡述這個非常有用的處理離散值的回歸方法,并與采用經典回歸模型和半參數(shù)回歸模型所得出的結果進行比較。

    本文全文中文版從2014年11月25日起在www.shanghaiarchivesofpsychaitry.org可供免費閱覽下載

    猜你喜歡
    性健康正態(tài)分布線性
    我國高職學生性健康知信行量表的構建及應用
    護理研究(2023年20期)2023-10-27 08:16:26
    漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
    性健康教育,教師怎么做?
    新班主任(2022年4期)2022-04-27 06:20:49
    利用主題活動淺析小班幼兒進行性健康教育的意義和研究策略
    速讀·中旬(2021年12期)2021-10-14 08:05:57
    線性回歸方程的求解與應用
    關注性健康教育 促進兒童青少年健康
    教育家(2018年41期)2018-11-20 11:49:56
    二階線性微分方程的解法
    基于對數(shù)正態(tài)分布的出行時長可靠性計算
    正態(tài)分布及其應用
    正態(tài)分布題型剖析
    久久久精品94久久精品| 国产高清不卡午夜福利| 久久热精品热| 又粗又硬又长又爽又黄的视频 | 久久久国产成人精品二区| 免费一级毛片在线播放高清视频| 日韩欧美 国产精品| 美女黄网站色视频| 午夜福利视频1000在线观看| 国产在视频线在精品| 亚洲在久久综合| 国产亚洲5aaaaa淫片| АⅤ资源中文在线天堂| 国产人妻一区二区三区在| 观看免费一级毛片| 天堂中文最新版在线下载 | 婷婷色av中文字幕| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 91久久精品国产一区二区三区| 好男人在线观看高清免费视频| 又爽又黄a免费视频| 大香蕉久久网| 人人妻人人澡欧美一区二区| 超碰av人人做人人爽久久| 非洲黑人性xxxx精品又粗又长| av专区在线播放| 日本黄大片高清| 久久久久久久久久黄片| 麻豆国产av国片精品| 久久久久久久亚洲中文字幕| 欧美精品一区二区大全| 综合色av麻豆| 免费在线观看成人毛片| 国产免费男女视频| www日本黄色视频网| 国产精品爽爽va在线观看网站| 国产真实乱freesex| 成人综合一区亚洲| 人妻夜夜爽99麻豆av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 伦精品一区二区三区| 欧美又色又爽又黄视频| 校园人妻丝袜中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 全区人妻精品视频| 黑人高潮一二区| 亚洲精品国产av成人精品| 99久久成人亚洲精品观看| 久久久久久久久久久免费av| 日韩欧美一区二区三区在线观看| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 国产高清不卡午夜福利| АⅤ资源中文在线天堂| 桃色一区二区三区在线观看| 黄色一级大片看看| 热99在线观看视频| 最后的刺客免费高清国语| 国产在视频线在精品| 99视频精品全部免费 在线| 色综合亚洲欧美另类图片| 美女内射精品一级片tv| 亚洲在线观看片| 欧美日韩综合久久久久久| 精品国产三级普通话版| 成人无遮挡网站| 精品久久久久久久久久久久久| 国语自产精品视频在线第100页| 3wmmmm亚洲av在线观看| 美女cb高潮喷水在线观看| 国产又黄又爽又无遮挡在线| 久久精品91蜜桃| 久久久久久久久久黄片| 久久人人爽人人片av| 人人妻人人看人人澡| 2022亚洲国产成人精品| 嫩草影院新地址| 青春草国产在线视频 | 一边亲一边摸免费视频| 最近2019中文字幕mv第一页| 特级一级黄色大片| 少妇丰满av| 天天躁日日操中文字幕| 99久久成人亚洲精品观看| 中文亚洲av片在线观看爽| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 成人午夜精彩视频在线观看| 亚洲一区二区三区色噜噜| 日韩欧美三级三区| 精品无人区乱码1区二区| 18+在线观看网站| 自拍偷自拍亚洲精品老妇| 中国国产av一级| 成人鲁丝片一二三区免费| 国产成人freesex在线| 18禁黄网站禁片免费观看直播| 99国产精品一区二区蜜桃av| 欧美高清性xxxxhd video| 精品不卡国产一区二区三区| 国产精品三级大全| 亚洲精品456在线播放app| 黄色配什么色好看| 又粗又爽又猛毛片免费看| 99九九线精品视频在线观看视频| 婷婷色av中文字幕| 女同久久另类99精品国产91| 九色成人免费人妻av| 三级毛片av免费| 日韩在线高清观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频| 夜夜看夜夜爽夜夜摸| 国产国拍精品亚洲av在线观看| 国产成人aa在线观看| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 在线免费十八禁| 18+在线观看网站| 日本色播在线视频| 在线观看午夜福利视频| 亚洲在线自拍视频| 免费av不卡在线播放| 亚洲一级一片aⅴ在线观看| 亚洲欧美中文字幕日韩二区| 久久亚洲国产成人精品v| 欧美日韩精品成人综合77777| 亚洲高清免费不卡视频| 国产在线男女| 在线观看一区二区三区| 好男人在线观看高清免费视频| 小蜜桃在线观看免费完整版高清| 国产精品无大码| 亚洲aⅴ乱码一区二区在线播放| 日本在线视频免费播放| av在线蜜桃| 欧美性猛交黑人性爽| 麻豆精品久久久久久蜜桃| 欧美+日韩+精品| avwww免费| 亚洲欧美清纯卡通| 日韩成人伦理影院| 美女国产视频在线观看| 久久人人爽人人片av| 一个人看视频在线观看www免费| 久久亚洲精品不卡| 人妻少妇偷人精品九色| 日韩,欧美,国产一区二区三区 | 欧美在线一区亚洲| 日本一本二区三区精品| 亚洲成人精品中文字幕电影| 高清毛片免费观看视频网站| 免费一级毛片在线播放高清视频| 国产精品av视频在线免费观看| 99久国产av精品国产电影| 精品久久久久久久人妻蜜臀av| 久久人人精品亚洲av| 天天躁日日操中文字幕| 啦啦啦韩国在线观看视频| 亚洲精品亚洲一区二区| av卡一久久| 国产精品麻豆人妻色哟哟久久 | 亚洲第一区二区三区不卡| 91久久精品国产一区二区三区| 人妻久久中文字幕网| 中文亚洲av片在线观看爽| 色综合站精品国产| 亚洲第一电影网av| 99久久久亚洲精品蜜臀av| av在线天堂中文字幕| 女的被弄到高潮叫床怎么办| 国产免费一级a男人的天堂| 青春草亚洲视频在线观看| 精品日产1卡2卡| 熟女电影av网| 亚洲av一区综合| 国产乱人偷精品视频| 你懂的网址亚洲精品在线观看 | 日韩av在线大香蕉| 亚洲欧美日韩高清在线视频| 91aial.com中文字幕在线观看| 午夜老司机福利剧场| 麻豆一二三区av精品| 欧美日韩精品成人综合77777| 午夜福利在线观看吧| 国产精品野战在线观看| 中文欧美无线码| videossex国产| 国产激情偷乱视频一区二区| 高清日韩中文字幕在线| 在线免费观看不下载黄p国产| 久久鲁丝午夜福利片| 久久中文看片网| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜 | 12—13女人毛片做爰片一| 国产黄色小视频在线观看| 国产又黄又爽又无遮挡在线| 国产三级在线视频| 一级毛片我不卡| 我要搜黄色片| 高清毛片免费看| 大型黄色视频在线免费观看| 美女cb高潮喷水在线观看| 亚洲性久久影院| 美女国产视频在线观看| 色视频www国产| 99视频精品全部免费 在线| 狂野欧美激情性xxxx在线观看| 蜜桃久久精品国产亚洲av| 男的添女的下面高潮视频| 99九九线精品视频在线观看视频| 精品国内亚洲2022精品成人| av天堂中文字幕网| 高清日韩中文字幕在线| 成人亚洲精品av一区二区| av.在线天堂| 黄色视频,在线免费观看| 日韩欧美国产在线观看| 黄片无遮挡物在线观看| 国产精华一区二区三区| 国产午夜精品论理片| 久久久久久伊人网av| 99热全是精品| 寂寞人妻少妇视频99o| 两个人视频免费观看高清| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 少妇熟女欧美另类| 亚洲欧美精品自产自拍| 亚洲五月天丁香| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 99久久成人亚洲精品观看| 2022亚洲国产成人精品| 简卡轻食公司| av.在线天堂| 国产高清有码在线观看视频| 免费人成在线观看视频色| 亚洲欧洲国产日韩| 欧美3d第一页| 亚洲精品自拍成人| 高清毛片免费观看视频网站| 亚洲经典国产精华液单| 一个人免费在线观看电影| 又黄又爽又刺激的免费视频.| 国产 一区精品| av女优亚洲男人天堂| 国产白丝娇喘喷水9色精品| 亚洲精品国产成人久久av| 国产又黄又爽又无遮挡在线| 最新中文字幕久久久久| 欧美3d第一页| 久久99精品国语久久久| 国产黄色视频一区二区在线观看 | 99国产极品粉嫩在线观看| 一本久久中文字幕| 夫妻性生交免费视频一级片| 少妇裸体淫交视频免费看高清| 99精品在免费线老司机午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人毛片60女人毛片免费| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| АⅤ资源中文在线天堂| 亚洲在线观看片| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 又粗又爽又猛毛片免费看| 男插女下体视频免费在线播放| 免费看光身美女| 成人特级av手机在线观看| 观看免费一级毛片| 久久久久久久久大av| 中出人妻视频一区二区| 欧美日本亚洲视频在线播放| 久久精品国产亚洲网站| 寂寞人妻少妇视频99o| 亚洲精品影视一区二区三区av| 亚洲国产日韩欧美精品在线观看| a级毛片免费高清观看在线播放| 国产亚洲av片在线观看秒播厂 | 一个人看的www免费观看视频| 中文字幕熟女人妻在线| 午夜免费男女啪啪视频观看| 亚洲欧洲日产国产| 成人欧美大片| 亚洲熟妇中文字幕五十中出| 亚洲人成网站高清观看| 亚洲欧美成人综合另类久久久 | 亚洲,欧美,日韩| 少妇的逼好多水| 国产大屁股一区二区在线视频| av国产免费在线观看| 国产中年淑女户外野战色| 寂寞人妻少妇视频99o| 久久午夜福利片| 天天一区二区日本电影三级| 久久久久久大精品| 少妇的逼水好多| 精品午夜福利在线看| 久久精品国产亚洲av天美| 国产一区二区三区av在线 | 国产不卡一卡二| 青春草国产在线视频 | 成人特级av手机在线观看| 成人美女网站在线观看视频| av又黄又爽大尺度在线免费看 | 亚洲欧美日韩高清在线视频| 亚洲自偷自拍三级| 亚洲av成人精品一区久久| 亚洲美女视频黄频| 内地一区二区视频在线| 国内揄拍国产精品人妻在线| 亚洲av电影不卡..在线观看| 亚洲成人中文字幕在线播放| 国产精品久久久久久久久免| 亚洲精品成人久久久久久| 色视频www国产| 91午夜精品亚洲一区二区三区| 好男人在线观看高清免费视频| 在线天堂最新版资源| 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 偷拍熟女少妇极品色| 18+在线观看网站| 久久久久久国产a免费观看| 久久久精品大字幕| 国产精品一区二区三区四区久久| 亚洲人成网站高清观看| 亚洲18禁久久av| 精品人妻一区二区三区麻豆| 久久中文看片网| 高清在线视频一区二区三区 | 国产成人福利小说| 啦啦啦观看免费观看视频高清| 黑人高潮一二区| 中文在线观看免费www的网站| 最新中文字幕久久久久| 特大巨黑吊av在线直播| 午夜福利在线在线| 简卡轻食公司| 亚洲精品亚洲一区二区| 麻豆乱淫一区二区| 久久人人精品亚洲av| 青春草国产在线视频 | 亚洲国产色片| 精品人妻偷拍中文字幕| 午夜激情欧美在线| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 日韩人妻高清精品专区| 中文字幕精品亚洲无线码一区| 日韩人妻高清精品专区| 麻豆乱淫一区二区| 国产一区二区三区av在线 | 色吧在线观看| 亚洲人成网站高清观看| 少妇的逼好多水| 99精品在免费线老司机午夜| 久久久久久大精品| 欧美高清成人免费视频www| 男女边吃奶边做爰视频| 18+在线观看网站| a级毛片a级免费在线| 99久久精品一区二区三区| 国产av不卡久久| 国产成人a区在线观看| 亚洲精品色激情综合| 亚洲av成人精品一区久久| 黑人高潮一二区| 成人美女网站在线观看视频| 精品久久国产蜜桃| 国产精品不卡视频一区二区| 天美传媒精品一区二区| 色综合色国产| 一边摸一边抽搐一进一小说| 永久网站在线| 人妻少妇偷人精品九色| 2022亚洲国产成人精品| 亚洲精品456在线播放app| 97人妻精品一区二区三区麻豆| 男人狂女人下面高潮的视频| 精品国产三级普通话版| 最近最新中文字幕大全电影3| 97超视频在线观看视频| 免费观看精品视频网站| 亚洲精品国产成人久久av| 亚洲精华国产精华液的使用体验 | 小说图片视频综合网站| 久久午夜亚洲精品久久| 男女啪啪激烈高潮av片| 亚洲人与动物交配视频| 国产午夜精品久久久久久一区二区三区| 美女高潮的动态| 日本色播在线视频| 直男gayav资源| av免费在线看不卡| 日韩欧美国产在线观看| 久久人人爽人人爽人人片va| 在线国产一区二区在线| 国产黄片视频在线免费观看| 岛国毛片在线播放| 在线观看午夜福利视频| 亚洲成人久久性| 成人性生交大片免费视频hd| 2022亚洲国产成人精品| 国产精品蜜桃在线观看 | 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 又爽又黄a免费视频| 97超视频在线观看视频| 成人午夜精彩视频在线观看| 在线观看美女被高潮喷水网站| 伊人久久精品亚洲午夜| 六月丁香七月| 国内精品美女久久久久久| 亚洲国产色片| 国产三级在线视频| 成年av动漫网址| av免费在线看不卡| 日韩一区二区视频免费看| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩东京热| 色播亚洲综合网| 人体艺术视频欧美日本| 成人性生交大片免费视频hd| 欧美又色又爽又黄视频| 午夜精品国产一区二区电影 | 欧美极品一区二区三区四区| 99久久中文字幕三级久久日本| 国产日韩欧美在线精品| 欧美性猛交黑人性爽| 国产成人一区二区在线| 丝袜美腿在线中文| 天堂中文最新版在线下载 | 亚洲一区二区三区色噜噜| 国产成人aa在线观看| 2021天堂中文幕一二区在线观| 国产单亲对白刺激| 久久久久久伊人网av| 国内精品久久久久精免费| 淫秽高清视频在线观看| 99久久九九国产精品国产免费| 最后的刺客免费高清国语| 3wmmmm亚洲av在线观看| 一级av片app| avwww免费| 最近最新中文字幕大全电影3| 有码 亚洲区| 日日摸夜夜添夜夜添av毛片| 卡戴珊不雅视频在线播放| 国产亚洲精品久久久久久毛片| 精品一区二区三区视频在线| 久久99蜜桃精品久久| 中文字幕制服av| 99久久精品热视频| 国产色婷婷99| 偷拍熟女少妇极品色| 国产白丝娇喘喷水9色精品| 免费观看的影片在线观看| ponron亚洲| 桃色一区二区三区在线观看| 草草在线视频免费看| 亚洲在线观看片| 嫩草影院精品99| 看免费成人av毛片| 久久九九热精品免费| 神马国产精品三级电影在线观看| 精品久久久久久成人av| 国产高清视频在线观看网站| av在线亚洲专区| 免费搜索国产男女视频| 99久久久亚洲精品蜜臀av| 啦啦啦啦在线视频资源| 91麻豆精品激情在线观看国产| 久久这里有精品视频免费| 欧美日韩乱码在线| 高清午夜精品一区二区三区 | 亚洲欧美成人综合另类久久久 | 日韩人妻高清精品专区| 中文字幕制服av| 国产精品人妻久久久影院| 亚洲成av人片在线播放无| 久久韩国三级中文字幕| 三级国产精品欧美在线观看| 夜夜夜夜夜久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 内射极品少妇av片p| 国产精品久久视频播放| 大型黄色视频在线免费观看| 亚洲人成网站在线播| 亚洲av成人av| 国产av一区在线观看免费| 国产精品一区二区三区四区久久| 亚洲,欧美,日韩| 日韩高清综合在线| 此物有八面人人有两片| 欧洲精品卡2卡3卡4卡5卡区| 成年女人永久免费观看视频| 九草在线视频观看| 99在线视频只有这里精品首页| 国产一区二区三区av在线 | 青春草亚洲视频在线观看| 婷婷精品国产亚洲av| 午夜爱爱视频在线播放| 亚洲成人精品中文字幕电影| av在线老鸭窝| 一级毛片久久久久久久久女| 你懂的网址亚洲精品在线观看 | 亚洲在久久综合| 亚洲欧美清纯卡通| 国产三级在线视频| 久久人妻av系列| 狂野欧美激情性xxxx在线观看| 一个人看的www免费观看视频| 在线免费十八禁| www日本黄色视频网| 亚洲欧美日韩高清在线视频| 日本爱情动作片www.在线观看| 午夜福利在线观看免费完整高清在 | 日韩,欧美,国产一区二区三区 | 成人欧美大片| 亚洲国产精品成人综合色| 两个人的视频大全免费| 中出人妻视频一区二区| 久久精品影院6| 成人高潮视频无遮挡免费网站| 日韩亚洲欧美综合| 五月伊人婷婷丁香| 精品国内亚洲2022精品成人| 99国产精品一区二区蜜桃av| 午夜福利高清视频| 九九爱精品视频在线观看| 国产精品三级大全| h日本视频在线播放| 国产美女午夜福利| 久久99热这里只有精品18| 国产激情偷乱视频一区二区| 亚洲精品影视一区二区三区av| 日韩精品青青久久久久久| 99久久人妻综合| 久久久久久大精品| 九九在线视频观看精品| 成年免费大片在线观看| 久久久久久久久久黄片| 精品少妇黑人巨大在线播放 | 日韩一区二区视频免费看| 少妇猛男粗大的猛烈进出视频 | 国产久久久一区二区三区| 久久久久久国产a免费观看| 婷婷精品国产亚洲av| 一级黄片播放器| 国产精品一及| 国产免费男女视频| 精品一区二区三区视频在线| 最新中文字幕久久久久| 亚洲人成网站在线观看播放| 日韩欧美精品免费久久| 中文欧美无线码| 黄色欧美视频在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲图色成人| 噜噜噜噜噜久久久久久91| 在线a可以看的网站| 麻豆av噜噜一区二区三区| 爱豆传媒免费全集在线观看| 国产成人一区二区在线| 老司机影院成人| 日韩精品有码人妻一区| 国产精品人妻久久久久久| 插阴视频在线观看视频| 日本色播在线视频| 美女被艹到高潮喷水动态| 99久久无色码亚洲精品果冻| 亚洲精品久久久久久婷婷小说 | 成人午夜精彩视频在线观看| 亚洲精品久久国产高清桃花| 深夜a级毛片| 可以在线观看毛片的网站| 成人午夜高清在线视频| 久久热精品热| 亚洲天堂国产精品一区在线| 日本av手机在线免费观看| 国产爱豆传媒在线观看| 直男gayav资源| 超碰av人人做人人爽久久| 悠悠久久av| 直男gayav资源| 国产精品女同一区二区软件| 两个人的视频大全免费| 国产精品永久免费网站| 久久综合国产亚洲精品| 悠悠久久av| 高清在线视频一区二区三区 | 亚洲四区av| 黄片wwwwww| kizo精华| 亚洲欧美日韩高清专用| 国产高清激情床上av| 国产午夜精品论理片| 国产人妻一区二区三区在| 日日撸夜夜添| 成人高潮视频无遮挡免费网站| 在线免费观看不下载黄p国产| 久久久久久久久久黄片| 国产精品.久久久| 日本撒尿小便嘘嘘汇集6| 久久精品影院6| 欧美日韩综合久久久久久| 国产精品蜜桃在线观看 | 精品国内亚洲2022精品成人| 中国美女看黄片|