梁皚瑩,梁碧珊,張得龍,焦冰倩,劉 鳴
(華南師范大學(xué)心理學(xué)院,廣東廣州510631)
創(chuàng)造力(creativity)通常是指?jìng)€(gè)體能夠產(chǎn)生同時(shí)具有新穎獨(dú)創(chuàng)性和實(shí)用性的觀點(diǎn)或產(chǎn)品的能力(Sternberg&Lubart,1999)。這種能力是人類區(qū)別于其他動(dòng)物的重要特征,其在人類信息加工中發(fā)揮著重要作用(Boden,1998)。腦成像技術(shù)可以實(shí)時(shí)地在活體大腦上直接測(cè)量其在處理復(fù)雜信息時(shí)的神經(jīng)活動(dòng),這為創(chuàng)造力神經(jīng)機(jī)制的研究提供了新的途徑。從發(fā)散性思維(Martindale&Hines,1975;Carlsson et al.,2000;Fink et al.,2009;Chavez-Eakle et al.,2007;Howard-Jones et al.,2005;Reverberi et al.,2005;Shamay-Tsoory et al.,2010)、藝術(shù)創(chuàng)造力(Solso,2001;Bhattacharya&Petsche,2005;Kowatari et al.,2009;Limb &Braun,2008)、頓悟(Aziz-Zadeh et al.,2009;Luo et al.,2003;Goel& Vartanian,2005)等不同的角度,研究者對(duì)被試在不同創(chuàng)造性任務(wù)刺激狀態(tài)下腦區(qū)活動(dòng)的變化進(jìn)行分析,探討了創(chuàng)造力與各個(gè)腦區(qū)功能之間的關(guān)系。由于任務(wù)設(shè)計(jì)、控制變量和基線設(shè)定的不同,創(chuàng)造力研究的結(jié)果比較分散,甚至出現(xiàn)相互矛盾(Dietrich&Kanso,2010)。時(shí)至今日,創(chuàng)造力的神經(jīng)機(jī)制仍然是科學(xué)研究面臨的重要課題。在心理學(xué)研究領(lǐng)域,有關(guān)創(chuàng)造力的影響因素、個(gè)體差異、心理機(jī)制等問(wèn)題始終是心理學(xué)研究的焦點(diǎn)問(wèn)題。
近年來(lái),靜息態(tài)功能磁功能成像技術(shù)(rs-fMRI)被廣泛應(yīng)用于腦功能研究中。人在靜息狀態(tài)下,僅占人體體重2%的大腦卻消耗了全身20%的耗氧量,其中自發(fā)神經(jīng)活動(dòng)(spontaneous neuronal acivity)消耗了腦內(nèi)大部分能量(Raichle,2006)。這暗示了大腦在靜息態(tài)下進(jìn)行有意義的功能活動(dòng)。1995年,Biswal等人(1995)首次借助 rs-fMRI發(fā)現(xiàn)大腦運(yùn)動(dòng)皮層在低頻波段存在明顯的血氧水平依賴(BOLD)信號(hào)低頻振蕩(low frequency fluctuations,LFFs,0.01-0.08Hz),而且這一波動(dòng)信號(hào)在左右半球的運(yùn)動(dòng)皮層保持高度的時(shí)間同步性。隨后的研究也證實(shí)了自發(fā)神經(jīng)活動(dòng)同樣存在于其他系統(tǒng)中,如聽(tīng)覺(jué)系統(tǒng)(Cordes et al.,2001)、視覺(jué)系統(tǒng)(Cordes et al.,2000)、語(yǔ)言系統(tǒng)(Hampson et al.,2002)等。這一系列發(fā)現(xiàn)表明大腦在靜息狀態(tài)下有規(guī)律的自發(fā)波動(dòng)與大腦的功能存在直接關(guān)聯(lián),能夠很好地體現(xiàn)大腦的生理—功能狀態(tài)。2007年,Zang等人(2007)提出低頻(0.01-0.08Hz)波動(dòng)振幅(ALFF)指標(biāo),通過(guò)計(jì)算每個(gè)體素的低頻振幅值的大小,可以具體地反映局部腦區(qū)自發(fā)神經(jīng)活動(dòng)的強(qiáng)弱。比率低頻振幅算法(fALFF)是對(duì)ALFF方法的改進(jìn),是某個(gè)特定頻段內(nèi)的信號(hào)振幅強(qiáng)度對(duì)可探測(cè)到的全頻段范圍內(nèi)信號(hào)幅值和的相對(duì)強(qiáng)度,對(duì)探測(cè)大腦自發(fā)活動(dòng)具有更好的敏感性和特異性。fALFF從能量的角度反映大腦局部腦區(qū)靜息態(tài)下的激活水平(Zou et al.,2008)。而且,有研究進(jìn)一步指出大腦的內(nèi)在活動(dòng)模式與不同的頻帶存在關(guān)聯(lián)(Zuo et al.,2010)。大腦神經(jīng)元所產(chǎn)生的不同振蕩頻帶是由不同的神經(jīng)機(jī)制產(chǎn)生,具有不同的生理意義 (Buzsáki & Draguhn,2004;Engel et al.,2001;Penttonen & Buzsáki,2003)。目前,ALFF/fALFF指標(biāo)已被廣泛應(yīng)用在臨床各類疾病的病理分析中(林海龍等,2013;黃清玲等,2011;孫軍等,2011;Zhang et al.,2013;Han et al.,2011)。
在創(chuàng)造力研究領(lǐng)域,Takeuchi等人(2012)應(yīng)用rs-fMRI探討創(chuàng)造力與默認(rèn)網(wǎng)絡(luò)(DMN)功能連接的關(guān)聯(lián),發(fā)現(xiàn)創(chuàng)造力水平與DMN內(nèi)部的腹內(nèi)側(cè)前額葉(mPFC)和后扣帶回(PCC)的功能連接強(qiáng)度顯著正相關(guān)。他們提出高創(chuàng)造力個(gè)體靜息狀態(tài)下DMN內(nèi)部的功能連接越強(qiáng),越能有效地進(jìn)行信息的整合和問(wèn)題的解決。此后,邱江等人在研究中發(fā)現(xiàn)創(chuàng)造力的水平與mPFC和顳中回(MTG)的功能連接強(qiáng)度成顯著正相關(guān),而且兩個(gè)腦區(qū)之間的功能連接的強(qiáng)度可以通過(guò)創(chuàng)造性任務(wù)的訓(xùn)練得到提高(Wei et al.,2013)。這些研究表明了大腦DMN自發(fā)性神經(jīng)活動(dòng)與創(chuàng)造力行為表現(xiàn)之間存在關(guān)聯(lián),DMN的自發(fā)神經(jīng)活動(dòng)對(duì)創(chuàng)造力具有一定的預(yù)測(cè)性。靜息態(tài)功能連接是從功能子系統(tǒng)的層次研究多個(gè)靜息態(tài)功能磁共振時(shí)間序列信號(hào)之間的相互關(guān)系,不能反映每個(gè)腦區(qū)具體的活動(dòng)狀態(tài),即腦區(qū)自發(fā)性激活時(shí)信號(hào)改變的信息。為了探討創(chuàng)造力與個(gè)體靜息態(tài)下DMN自發(fā)神經(jīng)活動(dòng)的關(guān)系,我們采用fALFF這一指標(biāo),比較不同創(chuàng)造力水平的個(gè)體在低頻波段(0.01-0.08Hz)下的神經(jīng)振蕩振幅的差異,以及在不同的低頻頻帶slow-5(0.01-0.027Hz)和slow-4(0.027-0.073Hz)下神經(jīng)低頻振蕩振幅的變化,借以進(jìn)一步探討與創(chuàng)造力相關(guān)的大腦神經(jīng)活動(dòng)機(jī)制。
招募華南師范大學(xué)一、二年級(jí)在校理科本科生180名(平均年齡18.88 ±1.05,85 男)分別進(jìn)行創(chuàng)造力和智力測(cè)評(píng)。根據(jù)創(chuàng)造力測(cè)評(píng)(具體材料說(shuō)明見(jiàn)下)中創(chuàng)造力的總成績(jī)排序,篩選出最高分的22名被試組成高創(chuàng)造力組(11男),占測(cè)評(píng)總?cè)藬?shù)約12%;最低分的22名被試組成低創(chuàng)造力組(11男),占測(cè)評(píng)總?cè)藬?shù)的12%。高、低創(chuàng)造力組的被試參與靜息態(tài)功能磁共振成像掃描。所有被試身心健康,均為右利手,視力或矯正視力正常,并在參與實(shí)驗(yàn)前簽署了知情同意書(shū)和實(shí)驗(yàn)完成后獲得一定的報(bào)酬。
實(shí)驗(yàn)選用托倫斯創(chuàng)造性思維測(cè)驗(yàn)的圖形問(wèn)卷(Torrance Test of Creative Thinking-figural,TTCT)對(duì)被試的創(chuàng)造性能力進(jìn)行調(diào)查。TTCT是一套被廣泛采用的創(chuàng)造力量表,主要測(cè)評(píng)發(fā)散性思維。發(fā)散性思維被認(rèn)為是創(chuàng)造力的關(guān)鍵組成(Guilford,1967),在創(chuàng)造能力的測(cè)量上具有相當(dāng)?shù)男Ф?Kim,2008)。TTCT的圖形問(wèn)卷由3部分組成,第1部分是在一個(gè)蛋形線條圖的基礎(chǔ)上設(shè)想一幅圖畫(huà)或一個(gè)故事;第2部分是在10幅未完成的圖畫(huà)上畫(huà)出有趣的東西;第3部分是在30對(duì)平行直線上添加線條畫(huà)出不同的物件。3部分都要求被試盡可能發(fā)揮想象力,畫(huà)出與眾不同的答案。TTCT最終得出創(chuàng)造力的總分。
實(shí)驗(yàn)選用瑞文標(biāo)準(zhǔn)推理測(cè)驗(yàn)(Raven’s Standard Progressive Matrices,SPM)作為智力水平的測(cè)量材料。瑞文標(biāo)準(zhǔn)推理測(cè)量適用于一般智力的測(cè)量,具有良好的信效度(Raven,1993)。實(shí)驗(yàn)采用由張厚粲教授修訂的中國(guó)版本,其分半信度達(dá)到0.95,間隔15天和30天的再測(cè)信度分別為0.82和0.79(張厚粲、王曉平,1989)。
1.數(shù)據(jù)記錄
對(duì)兩組44名被試進(jìn)行8分鐘的靜息態(tài)掃描,要求被試平臥,保持清醒,閉目平靜呼吸,在掃描過(guò)程中不進(jìn)行任何系統(tǒng)性思維運(yùn)動(dòng)。使用泡沫頭墊固定頭部并最大限度減少頭部及其他部位的主動(dòng)和被動(dòng)運(yùn)動(dòng)。被試戴上專用的抗噪音耳塞,以減少掃描儀噪音對(duì)實(shí)驗(yàn)的影響。
實(shí)驗(yàn)采用3.0 T全身磁共振成像儀(Siemens Magnetom Trio Tim)及其配套頭部線圈采集靜息態(tài)功能成像。全腦功能像由T2*加權(quán)單次激發(fā)梯度回波的EPI序列獲得,功能成像相關(guān)參數(shù)如下:脈沖重復(fù)時(shí)間(repetition time,TR)為2 000 ms,回波時(shí)間(echo time,TE)為30 ms。翻轉(zhuǎn)角(flip angle)為90°,掃描視野(field of view,F(xiàn)OV)為 224×224 ms,平面內(nèi)矩陣(acquisition matrix)為 64 ×64,層厚為 3.5 mm,體素大小(voxel size)為3.5 ×3.5 ×3.5 mm。全腦在軸位由32層組成,每個(gè)被試采集240個(gè)時(shí)間點(diǎn)圖像。
2.數(shù)據(jù)處理
在Matlab R2011b平臺(tái)上使用SPM8和DPARSF軟件包進(jìn)行運(yùn)算。首先進(jìn)行數(shù)據(jù)預(yù)處理,由于開(kāi)始磁場(chǎng)信號(hào)的不穩(wěn)定性,前10個(gè)時(shí)間點(diǎn)的數(shù)據(jù)不作分析,剩余230個(gè)時(shí)間點(diǎn)具體處理過(guò)程包括:DICOM格式轉(zhuǎn)換,進(jìn)行時(shí)間點(diǎn)對(duì)齊和頭動(dòng)校正,功能圖像標(biāo)準(zhǔn)化(采用SPM8自帶標(biāo)準(zhǔn)模版進(jìn)行標(biāo)準(zhǔn)化)重采樣(分辨率為3×3×3 mm3),對(duì)圖像進(jìn)行各向同性高斯平滑(FVHM=4 mm)以及去除線性漂移。
采用軟件REST進(jìn)行fALFF分析,方法概括如下:首先將每個(gè)體素的時(shí)間序列利用快速傅里葉變換(FFT)轉(zhuǎn)換到頻域,得到其功率譜;然后計(jì)算功率譜的平方根,將平方根所得值平均在一定的頻域范圍。功率譜平方根經(jīng)平均后得到該體素的ALFF值。fALFF值即是某一給定的頻段的ALFF與整個(gè)可測(cè)得頻段的 ALFF的比值。除了低頻頻段(0.01-0.08Hz)外,全頻帶(0-0.25Hz)可分成五個(gè)不同的頻帶:slow-6(0-0.01 Hz)、slow-5(0.01-0.027 Hz)、slow-4(0.027-0.073 Hz)、slow-3(0.073-0.198 Hz)、slow-2(0.198-0.25 Hz)(Buzsáki& Draguhn,2004),其中 slow-6、slow-3、slow-2三個(gè)頻帶信號(hào)主要反應(yīng)的是低頻漂移信號(hào)、高頻噪聲以及白質(zhì)信號(hào)等生理信號(hào)噪聲(Zuo et al.,2010)。因此本研究只計(jì)算全腦每個(gè)體素在低頻頻段、slow-4和slow-5三個(gè)頻帶的fALFF,并將所得值進(jìn)行正態(tài)化轉(zhuǎn)換,得到zfALFF,以降低因個(gè)體差異造成的影響。
3.統(tǒng)計(jì)分析
量表分析:兩組人年齡、智力及創(chuàng)造力得分差異由獨(dú)立雙樣本t檢驗(yàn)進(jìn)行評(píng)估。若p<0.05,則認(rèn)為兩組之間有顯著性差異。
低頻振蕩振幅組間分析:將高創(chuàng)造力組與低創(chuàng)造力組利用上述方法得到的zfALFF利用RESTV1.8軟件系統(tǒng)進(jìn)行基于體素的獨(dú)立樣本t檢驗(yàn)。結(jié)果統(tǒng)計(jì)圖經(jīng)過(guò)AlphaSim校正,閾值水平為p<0.05即通過(guò) p<0.01結(jié)合 18個(gè)體素(486 m3)達(dá)到。
不同低頻頻帶間分析:為了進(jìn)一步分析自發(fā)神經(jīng)低頻振幅對(duì)于不同頻段的依賴性,將高創(chuàng)造力組的zfALFF利用RESTV1.8軟件系統(tǒng)進(jìn)行基于體素的配對(duì)樣本t檢驗(yàn)。結(jié)果統(tǒng)計(jì)圖經(jīng)過(guò)AlphaSim校正,閾值水平為p<0.05即通過(guò)p<0.001結(jié)合6個(gè)體素(162 m3)達(dá)到。
高創(chuàng)造力組與低創(chuàng)造力組在TTCT成績(jī)上具有顯著差異,年齡及智力得分均無(wú)顯著差異(見(jiàn)表1)。
獨(dú)立樣本t檢驗(yàn)結(jié)果如表2所示,高創(chuàng)造力組比低創(chuàng)造力組的低頻段fALFF增強(qiáng)的區(qū)域有右腦島、左運(yùn)動(dòng)輔助區(qū);高創(chuàng)造力組比低創(chuàng)造力組的低頻段fALFF減弱的區(qū)域有右楔前葉、左后扣帶回(見(jiàn)圖1A)。
在 slow-5(0.01-0.027Hz)頻段,高創(chuàng)造力組比低創(chuàng)造力組的fALFF增強(qiáng)的區(qū)域有雙側(cè)顳上回、右腦島及右額中回;高創(chuàng)造力組比低創(chuàng)造力組的fALFF減弱的區(qū)域有雙側(cè)顳下回、右枕中回、左額中回、左額上回(見(jiàn)圖1B)。
在 slow-4(0.027-0.073 Hz)頻段,高創(chuàng)造力組比低創(chuàng)造力組的fALFF增強(qiáng)的區(qū)域有雙側(cè)的額中回和右額下回;高創(chuàng)造力組比低創(chuàng)造力組的fALFF減弱的區(qū)域有右楔前葉、左顳中回、右中央后回(見(jiàn)圖1C)。
表1 高創(chuàng)造力組和低創(chuàng)造力組的智力及創(chuàng)造力成績(jī)獨(dú)立樣本t 檢驗(yàn)結(jié)果
表2 高創(chuàng)造力組和低創(chuàng)造力組的fALFF值獨(dú)立樣本t檢驗(yàn)結(jié)果
配對(duì)樣本t檢驗(yàn)結(jié)果如表3所示,高創(chuàng)造力組額中回和顳中回的fALFF在slow-5明顯高于slow-4;尾狀核的 fALFF在 slow-4明顯高于slow-5(見(jiàn)圖2)。
大量研究已經(jīng)證實(shí),創(chuàng)造力的腦機(jī)制涉及廣泛分布的腦區(qū),這些腦區(qū)在不同的創(chuàng)造力任務(wù)中發(fā)揮不同的作用(Heilman et al.,2003;Moore et al.,2009;Razumnikova,2000;Razumnikova,2007)。這表明創(chuàng)造力是一個(gè)綜合的心理活動(dòng)過(guò)程,其對(duì)應(yīng)的腦機(jī)制也較為復(fù)雜。本研究從靜息態(tài)角度,對(duì)不同創(chuàng)造力個(gè)體的自發(fā)腦神經(jīng)活動(dòng)進(jìn)行了探討。據(jù)我們所知,這是第一個(gè)對(duì)創(chuàng)造力與靜息態(tài)下大腦局部區(qū)域低頻振幅關(guān)聯(lián)性的研究。我們發(fā)現(xiàn)高、低創(chuàng)造力個(gè)體的靜息態(tài)自發(fā)神經(jīng)活動(dòng)存在明顯差異,而且fALFF體現(xiàn)出明顯的頻帶特異性。
首先,在低頻波段(0.01-0.08Hz),我們發(fā)現(xiàn)高創(chuàng)造力個(gè)體右腦島和左運(yùn)動(dòng)輔助區(qū)的自發(fā)神經(jīng)激活水平比低創(chuàng)造力個(gè)體顯著增高,左后扣帶回和右楔前葉的自發(fā)神經(jīng)激活水平則顯著降低。基于腦島和運(yùn)動(dòng)輔助區(qū)屬于突顯網(wǎng)絡(luò)(SN)的節(jié)點(diǎn)(Dosenbach et al.,2007;Seeley et al.,2007),后扣帶回和楔前葉是 DMN的節(jié)點(diǎn)(Raichle et al.,2001)。本研究結(jié)果表明了在靜息狀態(tài)下,高創(chuàng)造力個(gè)體較之低創(chuàng)造力個(gè)體的DMN腦區(qū)的激活較弱,SN腦區(qū)的激活較強(qiáng)。
DMN是最受關(guān)注的大尺度腦網(wǎng)絡(luò)之一,它的活動(dòng)在執(zhí)行有外界刺激的認(rèn)知任務(wù)時(shí)會(huì)被抑制(去激活),而在進(jìn)行自我映射和自我相關(guān)的加工過(guò)程中表現(xiàn)出增強(qiáng)(Greicius et al.,2009;Sheline et al.,2009)。Takeuchi等人(2011a)在創(chuàng)造力與DMN的關(guān)聯(lián)性研究中發(fā)現(xiàn),高創(chuàng)造力被試在執(zhí)行與工作記憶相關(guān)的2-back任務(wù)時(shí),DMN的重要節(jié)點(diǎn)楔前葉出現(xiàn)任務(wù)誘發(fā)的去激活(task-induced deactivation,TID)減弱,而且減弱程度與創(chuàng)造力水平呈顯著正相關(guān)。Raichle等人(2001)提出DMN中的后扣帶回和相鄰的楔前葉組成一個(gè)緊張性活躍的區(qū)域,不斷地采集外部以及內(nèi)部的信息;在以任務(wù)為導(dǎo)向的信息處理過(guò)程中,這個(gè)區(qū)域通常會(huì)出現(xiàn)去激活。而且,后扣帶回和楔前葉是語(yǔ)義系統(tǒng)的關(guān)鍵組成(Binder et al.,2009),對(duì)語(yǔ)義信息的整合處理發(fā)揮作用(Buckner et al.,2008;Jung-Beeman,2005)。在靜息態(tài)下,楔前葉參與和自我相關(guān)的心理表征和情景記憶檢索等認(rèn)知活動(dòng)(Cavanna&Trimble,2006)。據(jù)此,Takeuchi等認(rèn)為創(chuàng)造力與DMN的TID減弱相關(guān)可能提示了高創(chuàng)造力個(gè)體對(duì)于與任務(wù)無(wú)關(guān)信息的抑制控制不足,從靜息態(tài)下內(nèi)在的語(yǔ)義處理過(guò)程到任務(wù)執(zhí)行下認(rèn)知過(guò)程的注意再分配效率不高(McKiernan et al.,2003)。本研究中高創(chuàng)造力個(gè)體靜息態(tài)下DMN區(qū)域振幅的降低,可能表明在靜息態(tài)下同樣存在認(rèn)知資源分配效率較低的現(xiàn)象(Takeuchi et al.,2011a)。高創(chuàng)造力個(gè)體具有低潛在抑制(low latent inhibition)的特質(zhì),他們對(duì)外面環(huán)境的刺激更敏感,他們的大腦無(wú)法屏蔽曾經(jīng)出現(xiàn)過(guò)的同樣刺激,即使對(duì)沒(méi)有直接作用的事物也會(huì)進(jìn)行深度分解思考(Carson et al.,2003)。
圖1
表3 高創(chuàng)造力組fALFF在slow-4和slow-5的配對(duì)樣本t檢驗(yàn)結(jié)果
圖2
高創(chuàng)造力個(gè)體在靜息態(tài)下DMN的局部區(qū)域激活減弱也有可能幫助高創(chuàng)造力個(gè)體實(shí)現(xiàn)兩個(gè)不同網(wǎng)絡(luò)中的概念的結(jié)合。關(guān)于創(chuàng)造力的概念,已有研究認(rèn)為創(chuàng)造力是把分離的、幾乎沒(méi)有關(guān)聯(lián)的元素進(jìn)行整合 (James,1890;Spearman,1931;Guilford,1967)。而且,通過(guò)不同大腦網(wǎng)絡(luò)間的信息聯(lián)接,高創(chuàng)造力個(gè)體善于運(yùn)用某個(gè)范疇的知識(shí)去組織形成一個(gè)新的范疇(Heilman et al.,2003)。DMN在自我意識(shí)有關(guān)的內(nèi)部心理任務(wù)中激活,例如情感、情景記憶等(Buckner et al.,2008;Foster,Dastjerdi &Parvizi,2012;Andrews-Hanna et al.,2010)。它與在基于外部注意的認(rèn)知任務(wù)中激活的任務(wù)正相關(guān)網(wǎng)絡(luò)(task-positive network,TPN)相互拮抗(anticorrelation),即一個(gè)網(wǎng)絡(luò)激活,另一個(gè)網(wǎng)絡(luò)則去激活(Damoiseaus et al.,2006;Fox et al.,2005)。靜息態(tài)下,當(dāng)DMN的活動(dòng)減弱,TPN的激活相應(yīng)增強(qiáng)(Fox et al.,2005)。當(dāng)一個(gè)網(wǎng)絡(luò)對(duì)另一個(gè)網(wǎng)絡(luò)抑制減弱,有可能使一些在去激活網(wǎng)絡(luò)的“無(wú)關(guān)”信息進(jìn)入意識(shí),與激活網(wǎng)絡(luò)的遠(yuǎn)距離信息結(jié)合,形成具有新穎性的想法(Takeuchi et al.,2011a)。
SN對(duì)DMN和中央執(zhí)行網(wǎng)絡(luò)(central executive network,CEN)實(shí)施動(dòng)態(tài)管理(Palaniyappan&Liddle,2012)。它對(duì)不同形式的信息輸入進(jìn)行識(shí)別與整合,這些輸入包括了體外的感知覺(jué)信息處理,以及大量的體內(nèi)感受性信息的自主處理,例如痛苦情緒、饑餓、情感、獎(jiǎng)賞等(Seeley et al.,2007)。它的關(guān)鍵節(jié)點(diǎn)右腦島根據(jù)任務(wù)范式和刺激模式,對(duì)DMN和CEN兩個(gè)網(wǎng)絡(luò)發(fā)出激活或抑制的控制信號(hào),使兩個(gè)網(wǎng)絡(luò)之間實(shí)現(xiàn)動(dòng)態(tài)切換(dynamic switching)(Sridharan et al.,2008;Menon & Uddin,2010)。高創(chuàng)造力個(gè)體SN區(qū)域振幅的升高可能提示了高創(chuàng)造力個(gè)體可以感知和描繪一些隱藏于一般人的信息,更大量地接收內(nèi)外部的刺激,一旦顯著刺激被探查到,SN的前腦島就會(huì)發(fā)出合適的瞬時(shí)控制信號(hào)給負(fù)責(zé)注意、工作記憶和高級(jí)認(rèn)知過(guò)程的腦區(qū),同時(shí)也抑制DMN的活動(dòng)(Menon&Uddin,2010)。
本研究的另一個(gè)發(fā)現(xiàn),進(jìn)一步揭示了fALFF在反映與創(chuàng)造力有關(guān)的大腦自發(fā)波動(dòng)中具有明顯的頻帶特異性。我們發(fā)現(xiàn)高創(chuàng)造力個(gè)體自發(fā)神經(jīng)活動(dòng)性在slow-5和slow-4這兩個(gè)不同的頻帶下存在顯著差異。額中回和顳中回區(qū)域的fALFF在slow-5顯著高于slow-4。額中回和顳中回屬于DMN的節(jié)點(diǎn),區(qū)域間存在結(jié)構(gòu)上和功能上的神經(jīng)連接(Greicius et al.,2003;Raichle et al.,2001)。已有研究指出,不同頻段相比之下,較低頻頻段的神經(jīng)振蕩振幅有利于神經(jīng)網(wǎng)絡(luò)的功能整合(Buzsáki&Draguhn,2004)。與此相一致,本研究結(jié)果表明了DMN的區(qū)域自發(fā)神經(jīng)活動(dòng)性在較低的頻段更強(qiáng)。本研究也發(fā)現(xiàn)高創(chuàng)造力個(gè)體的基底核(尾狀核)在slow-4自發(fā)神經(jīng)激活更強(qiáng),這個(gè)結(jié)果與Zuo等人(2010)比較slow-4和slow-5的全腦fALFF的研究結(jié)果一致。本研究結(jié)果支撐大腦神經(jīng)元在不同頻段的低頻振蕩與不同的神經(jīng)機(jī)制和生理功能存在聯(lián)系的說(shuō)法(Buzsáki& Draguhn,2004;Penttonen&Buzsaki,2003),并提示slow-5頻段對(duì)于發(fā)現(xiàn)與創(chuàng)造力相關(guān)的DMN自發(fā)性神經(jīng)低頻振幅更敏感。
本研究通過(guò)靜息態(tài)下fALFF比較了不同創(chuàng)造力個(gè)體的大腦自發(fā)波動(dòng)特征,我們發(fā)現(xiàn)DMN區(qū)域神經(jīng)活動(dòng)減弱、SN區(qū)域神經(jīng)活動(dòng)增強(qiáng)是高創(chuàng)造力個(gè)體腦神經(jīng)活動(dòng)的一個(gè)重要特征,這一特征可能與創(chuàng)造力的腦機(jī)制具有密切關(guān)系。對(duì)這一神經(jīng)活動(dòng)特征的進(jìn)一步揭示有助于提升我們對(duì)創(chuàng)造力腦機(jī)制的認(rèn)識(shí)。同時(shí),本研究也表明fALFF在大腦創(chuàng)造力有關(guān)的神經(jīng)活動(dòng)特征研究中具有較高的敏感性,可以有效地反應(yīng)創(chuàng)造力有關(guān)的神經(jīng)活動(dòng)。
[1]黃清玲,唐勇,王沛弟,等.創(chuàng)傷后應(yīng)激障礙患者杏仁核為主的邊緣系統(tǒng)靜息態(tài)腦功能磁共振研究.中國(guó)神經(jīng)精神疾病雜志,2011,37(12):705—709.
[2]林海龍,薛蘊(yùn)菁,康正武,等.靜息態(tài)fMRI在無(wú)癡呆型血管性認(rèn)知障礙基線腦活動(dòng)變化中的初步研究.臨床放射學(xué)雜志,2013,32(8):1070—1074.
[3]劉虎,范國(guó)光,徐克,等.低頻振幅fMRI評(píng)價(jià)精神分裂癥患者靜息狀態(tài)下腦功能活動(dòng).中國(guó)醫(yī)學(xué)影像技術(shù),2010(9):1659—1662.
[4]齊印寶,傅先明,王昌新,等.海洛因依賴者低頻振幅算法功能性磁共振研究.中華行為醫(yī)學(xué)與腦科學(xué)雜志,2011,20(2):119—121.
[5]孫軍,劉含秋,孫華平,等.首發(fā)抑郁癥患者治療前后的靜息態(tài)fMRI研究.中國(guó)醫(yī)學(xué)計(jì)算機(jī)成像雜志,2011(3):212—216.
[6]張厚粲,王曉平.瑞文標(biāo)準(zhǔn)推理測(cè)驗(yàn)在我國(guó)的修訂.心理學(xué)報(bào),1989(2):113—121.
[7]J.R.Andrews-Hanna.The Brain's Default Network and Its Adaptive Role in Internal Mentation.Neuroscientist,2012,18(3):251—270.
[8]L.Aziz-Zadeh,J.T.Kaplan,M.Lacoboni.Aha!:The Neural Correlates of Verbal Insight Solutions.Human Brain Mapping,2009,30:908—916.
[9]J.R.Binder,R.H.Desai,W.W.Graves,et al.Where Is the Semantic System?A Critical Review and Meta-analysis of 120 Functional Neuroimaging Studies.Cereb.Cortex,2009,19(12):2767—2796.
[10]S.Berthoz,E.Artigues,P.-F.VandeMoortele,et al.Effect of Impaired Recognition and Expression of Emotions on Frontocingulate Cortices:An fMRI Study of Men with Alexithymia.Am J Psychiatry,2002,159(6):961—967.
[11]J.Bhattacharya,H.Petsche.Drawing on Mind’s Canvas:Differences in Cortical Integration Patterns between Artists and Non-artists.Human Brain Mapping,2005,26:1—14.
[12]B.B.Biswal,F(xiàn).Z.Yetkin,V.M.Haughton,et al.Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echoplanar MRI.Magn Reson Med,1995,34(4):537—541.
[13]M.A.Boden.Creativity and Artificial Intelligence.Artificial Intelligence,1998,103:347—356.
[14]R.L.Buckner,A.Z.Snyder,B.J.Shannon,et al.Molecular,Structural and Functional Characterization of Alzheimer’s Disease:Evidence for a Relationship between Default Activity, Amyloid and Memory. J Neurosci,2005,25(34):7709—7717.
[15]G.Buzsáki,A.Draguhn.Neuronal Oscillations in Cortical Networks.Science,2004,304(5679):1926.
[16]S.J.Broyd,C.Demanuele,S.Debener,et al.Defaultmode Brain Dysfunction in Mental Disorders:A Systematic Review.Neuroscience& Biobehavioral Reviews,2009,33(3):279—296.
[17]I.Carlsson,P.E.Wendt,J.Risberg.On the Neurobiology of Creativity:Differences in Frontal Activity between High and Low CreativeSubjects. Neuropsychologia,2000,38:873—885.
[18]S.H.Carson,J.B.Peterson,D.M.Higgins.Decreased Latent Inhibition Is Associated with Increased Creative A-chievement in High-functioning Individuals.J Pers Soc Psychol,2003,85(3):499—506.
[19]A.E.Cavanna,M.R.Trimble.The Precuneus:A Review of Its Functional Anatomy and Behavioural Correlates.Brain,2006,129:564—583.
[20]R.Chavez-Eakle,A.Graf-Guerrero,J.Garcia-Reyna,et al.Cerebral Blood Flow Associated with Creative Performance:A Comparative Study.NeuroImage,2007,38:519—528.
[21]E.G.Chrysikou,S.L.Thompson-Schill.Dissociable Brain States Linked to Common and Creative Object Use.Human Brain Mapping,2011,33:665—675.
[22]D.Cordes,V.M.Haughton,K.Arfanakis,et al.Mapping Functionally Related Regions of Brain with Functional Connectivity MR Imaging.AJNR Am J Neuroradiol,2000,21(9):1636—1644.
[23]D.Cordes,V.M.Haughton,K.Arfanakis,et al.Frequencies Contributing to Functional Connectivity in the Cerebral Cortex in“Resting-state”Data.AJNR Am J Neuroradiol,2001,22(7):1326—1333.
[24]J.S.Damoiseaux,S.A.Rombouts,F(xiàn).Barkhof,et al.Consistent Resting-state Networks Across Healthy Subjects.Proc Natl Acad Sci U S A,2006,103(37):13848—13853.
[25]A.Dietrich.The Cognitive Neuroscience of Creativity.Psychonomic Bulletin & Review,2004,11:1011—1026.
[26]A.Dietrich,R.Kanso.A Review of EEG,ERP,and Neuroimaging Studies of Creativity and Insight.Psychological Bulletin,2010,136(5):822—848.
[27]N U.Dosenbach,D A.Fair,F(xiàn) M.Miezin,et al.Distinct Brain Networks for Adaptive and Stable Task Control in Humans.Proc Natl Acad Sci U S A,2007,104(26):11073—11078.
[28]S.Durston,B J.Casey.What Have We Learned about Cognitive Development from Neuroimaging?Neuropsychologia,2006,44:2149—2157.
[29]A.Fink,R.H.Grabner,M.Benedek,et al.The Creative Brain:Investigation of Brain Activity during Creative Problem Solving by means of EEG and fMRI.Human Brain Mapping,2009,30:734—748.
[30]A.Fink,R H.Grabner,D.Gebauer,et al.Enhancing Creativity by Means of Cognitive Stimulation:Evidence from an fMRI Study.Neuroimage,2010,52:1687—1695.
[31]A.Fink,K.Koschutnig,M.Benedek,et al.Stimulating Creativity Via the Exposure to Other People’s Ideas.Human Brain Mapping,2012,33:2603—2610.
[32]E.Fisher,A.Mohanty,J.D.Herrington,et al.Neuropsychological Evidence for Dimension Schizotypy:Implications for Creativity and Psychopathology.J Res Pers,2004,38:24—31.
[33]A.W.Flaherty.Frontotemporal and Dopaminergic Control of Idea Generation and Creative Drive.J Comp Neurol,2005,493(1):147—153.
[34]B.Folley,S.Park.Verbal Creativity and Schizotypal Personality in Relation to Prefrontal Hemispheric Laterality:A Behavioral and Nearinfrared Optical Imaging Study.Schizophrenia Research,2005,80:271—282.
[35]B.L.Foster,M.Dastjerdi,J.Parvizi.Neural Populations in Human Posteromedial Cortex Display Opposing Responses During Memory and Numerical Processing.Proceedings of the National Academy of Sciences of the United States of America,2012,109(38):15514—15519.
[36]M.D.Fox,A.Z.Snyder,J.L.Vincent,et al.The Human Brain Is Intrinsically Organized into Dynamic,Anticorrelated Functional Networks.Proceedings of the National Academy of Sciences of the United States of America,2005,102(27):9673—9678.
[37]M.D.Fox,M.E.Raichle.Spontaneous Fluctuations in Brain Activity Observed with Functional Magnetic Resonance Imaging.Nature Rev Neurosci,2007,8:700—711.
[38]C.Gibson,B.S.Folley,S.Park.Enhanced Divergent Thinking and Creativity in Musicians:A Behavioral and Near-infrared Spectroscopy Study.Brain and Cognition,2009,69:162—169.
[39]V.Goel,O.Vartanian.Dissociating the Roles of Right Ventral Lateral and Dorsal Lateral Prefrontal Cortex in Generation and Maintenance of Hypotheses in Set-shift Problems.Cerebral Cortex,2005,15:1170—1177.
[40]M.D.Greicius,B.Krasnow,A.L.Reiss,et al.Functional Connectivity in the Resting Brain:A Network Analysis of the Default Mode Hyothesis.Proc Natl Acad Sci U S A,2003,100(1):253—258.
[41]M.D.Greicius,K.Supekar,V.Menon,et al.Restingstate Functional Connectivity Reflects Structural Connectivity in the Default Mode Network.Cereb Cortex,2009,19(1):72—78.
[42]J.P.Guilford.The Nature of Human Intelligence.New York,NY:McGraw-Hill,1967.
[43]R.E.Gur,M.E.Calkins,R.C.Gur,et al.The Consortium on the Genetics of Schizophrenia:Neurocognitive Endophenotypes.Schizophrenia Bulletin,2007,33:49—68.
[44]M.Hampson,B.S.Peterson,P.Skudlarski,et al.Detection of Functional Connectivity Using Temporal Correlations in MR Images.Human Brain Mapping,2002,15(4):247—262.
[45]K.M.Heilman,S.E.Nadeau,D.O.Beversdorf.Creative Innovation:PossibleBrain Mechanisms. Neurocase,2003,9:369—379.
[46]I.Falkai,P.Falkai,O.Gruber.A Systematic fMRI Investigation of the Brain Systems Subserving Different Working Memory Compon Ents in Schizophrenia.Eur J Neurosci,2009,30:693—702.
[47]P.A.Howard-Jones,S-J.Blakemore,E.A.Samuel,et al.Semantic Divergence and Creative Story Generation:An fMRI Investigation.Brain Res Cogn Brain Res,2005,25:240—250.
[48]W.James.The Principles of Psychology.Holt,New York,1890.
[49]R.E.Jung,J.M.Segall,H.J.Bockholt,et al.Neuroanatomy of Creativity.Human Brain Mapping,2010,31:398—409.
[50]M.Jung-Beeman.Bilateral Brain Processes for Comprehending Natural Language.Trends in Cognitive Sciences,2005,9(11):512—518.
[51]J.Kasof.Creativity and Breadth of Attention.Creativity Res J,1997,10:303—315.
[52]K.H.Kim.Can We Trust Creativity Tests?A Review of the Torrance Tests of Creative Thinking(TTCT).Creativity Research Journal,2006,18(1):3—14.
[53]V.Kiviniemi,J.Jauhiainen,O.Tervonen,et al.Slow Vasomotor Fluctuation in fMRI of Anesthetized Child Brain.Magn Reson Med,2000,44(3):373—378.
[54]Y.Kowatari,S.H.Lee,H.Yamamura,et al.Neural Networks Involved in Artistic Creativity.Human Brain Mapping,2009,30:1678—1690.
[55]R.Lubow.Construct Validity of the Animal Latent Inhibition Model of Selective Attention Deficits in Schizophrenia.Schizophr Bull,2005,31:139—153.
[56]Q.Luo,C,Perry,D,Peng,et al.The Neural Substrate of Analogical Reasoning:An fMRI Study.Cogn Brain Res,2003,17:527—534.
[57]C.Martindale,D.Hines.Creativity and Cortical Activation during Creative,Intellectual and EEG Feedback Tasks.Biological Psychology,1975,3(2):71—80.
[58]K.A.McKiernan,J.N.Kaufman,J.Kucera-Thompson,et al.A Parametric Manipulation of Factors Affecting Task-induced Deactivation in Functional Neuroimaging.J Cogn Neurosci,2003,15:394—408.
[59]V.Menon,L.Q.Uddin.Saliency,Switching,Attention and Control:A Network Model of Insula Function.Brain Struct Funct,2010,214(5—6):655—667.
[60]B.Miller,K.Boone,J.L.Cummings,et al.Functional Correlates of Musical and Visual Ability in Frontotemporal Dementia.The British Journal of Psychiatry,2000,176(5):458—463.
[61]E.Necka.Creativity and Attention.Pol Psychol Bull,1999,30:85—98.
[62]M.Neuper,C.F.Ebner,A.C.Neubauer.The Creative Brain:Investigation of Brain Activity During Creative Problem Solving by Means of EEG and fMRI.Hum Brain Mapp,2009,30:734—748.
[63]L.Palaniyappan,P.E.Liddle.Does the Salience Network Play a Cardinal Role in Psychosis?An Emerging Hypothesis of Insular Dysfunction.J Psychiatry Neurosci,2012,37(1):17—27.
[64]M.Penttonen,Buzsáki,Gy?rgy.Natural Logarithmic Relationship between Brain Oscillators.Thalamus Relat Syst,2003,2:145—152.
[65]F.E.Polli,J.J.S.Barton,K.N.Thakkar,et al.Reduced Error-related Activation in Two Anterior Cingulate Circuits is Related to Impaired Performance in Schizophrenia.Brain,2008,131:971—986.
[66]M.E.Raichle,A.M.MacLeod,A.Z.Snyder,et al.A Default Mode of Brain Function.Proc Natl Acad Sci U S A,2001,98(2):676—682.
[67]J.Raven.Manual for Raven’s Progressive Matrices and Vocabulary Scales.Oxford:Oxford Psychologists Press,1993.
[68]C.Reverberi,A.Toraldo,S.D’Agostini,et al.Better without(lateral)Frontal Cortex?Insight Problems Solved by Frontal Patients.Brain,2005,128(12):2882—2890.
[69]W.W.Seeley,V.Menon,A.F.Schatzberg,et al.Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control.J Neurosci,2007,27(9):2349—2356
[70]W.W.Seeley,B.R.Matthews,R.K.Crawford,et al.Unravelling Bolero:Progressive Aphasia,Transmodal Creativity and the Right Posterior Neocortex. Brain,2008,131:39—49.
[71]S.G.Shamay-Tsoory,N.Adler,J.Aharon-Peretz,et al.The Origins of Originality:The Neural Bases of Creative Thinking and Originality.Neuropsychologia,2011,49:178—185.
[72]Y.I.Sheline,D.M.Barch,J.L.Price,et al.The Default Mode Network and Self-referential Processes in Depression.Proc Natl Acad Sci U S A,2009,106(6):1942—1947.
[73]R.Solso.Brain Activities in a Skilled Versus a Novice Artist:An fMRI Study.Leonardo,2001,34:31—34.
[74]C.D.Spearman.Creative Mind.Macmillan,London,1931.
[75]D.Sridharan,D.Levitin,V.Menon.A Critical Role for the Right Fronto-insular Cortex in Switching between Central-executive and Default-mode Networks.PNAS,2008,105(34):12569—12574.
[76]R.J.Sternberg,T.I.Lubart.The Concept of Creativity:Prospects and Paradigms∥ R.J.Sternberg(Ed.),Handbook of Creativity.New York:Cambridge University Press,1999:3—15.
[77]H.Takeuchi,et al.The Association between Resting Functional Connectivity and Creativity.Cerebral Cortex,2012,22(12):2921—2929.
[78]H.Takeuchi,Y.Taki,Y.Sassa,et al.Regional Gray Matter Volume of Dopaminergic System Associate with Creativity:Evidence from Voxel-based Morphometry.NeuroImage,2010a,51(2):578—585.
[79]H.Takeuchi,et al.White Matter Structures Associated with Creativity:Evidence from Diffusion Tensor Imaging.NeuroImage,2010,51(1):11—18.
[80]H.Takeuchi,Y.Taki,H.Hashizume,et al.Failing to Deactivate:The Association between Brain Activity during a Working Memory Task and Creativity.NeuroImage,2011a,55(2):681—687.
[81]H.Takeuchi,Y.Taki,Y.Sassa,et al.Working Memory Training Using Mental Calculation Impacts Regional Gray Matter of the Frontal and Parietal Regions.PLoS ONE,2011b,6(8):e23175.
[82]R.Toro,P.T.Fox,T.Paus.Functional Coactivation Map of the Human Brain.Cereb Cortex,2008,18(11):2553—2559.
[83]D.Wei,J.Yang,W.Li,et al.Increased Resting Functional Connectivity of the Medial Frontal Cortex in Creativity by Means of Cognitive Simulation.Cortex,2013,51:92—102.
[84]T.P.White,V.Joseph,E.O’Regan,et al.Alphagamma Interactions Are Disturbed in Schizophrenia:A Fusion of Electroence Phalography and Functional Magnetic Resonance Imaging. Clin Neurophysiol,2010,121:1427—1437.
[85]S.F.Witelson,D.L.Kigar,T.Harvey.The Exceptional Brain of Albert Einstein.The Lancet,1999,353(19):2149—2153.
[86]Y.F.Zang,Y,He,C.Z,Zhu,et al.Altered Baseline Brain Activity in Children with ADHD Revealed by Resting State Functional MRI.Brain Dev,2007(29):83—91.
[87]D.Zhang,B.Liu,J.Chen,et al.Determination of Vascular Dementia Brain in District Frequency Bands with Whole Brain FunctionalConnectivityPatterns.PLos ONE,2013,8(1):e54512.
[88]Q.H.Zou,C.Z.Zhu,Y.Yang,et al.An Improved Approach to Detection of Amplitude of Low-Frequency Fluctuation(ALFF)for Resting-State fMRI:Fractional ALFF.J Neurosci Methods,2008,172(1):137—141.
[89]X.N.Zuo,A.D.Martino,C.Kelly,et al.The Oscillating Brain:Complex and Reliable.NeuroImage,2010,49(2):1432—1445.