朱致英
摘要研究了帶電的有質(zhì)量標(biāo)量場(chǎng)微擾下ReissnerNordstrm antide Sitter黑洞的穩(wěn)定性問(wèn)題.在烏龜坐標(biāo)下推導(dǎo)出了標(biāo)量場(chǎng)所滿(mǎn)足的徑向運(yùn)動(dòng)方程,并給出有效勢(shì).采用有限差分法將標(biāo)量場(chǎng)所滿(mǎn)足的波方程進(jìn)行離散化.通過(guò)數(shù)值計(jì)算研究了擾動(dòng)場(chǎng)隨時(shí)間的演化.研究結(jié)果表明,隨著時(shí)間的演化,帶電的標(biāo)量場(chǎng)在晚期會(huì)出現(xiàn)暴漲.這就意味著在帶電的標(biāo)量場(chǎng)擾動(dòng)下,ReissnerNordstrm antide Sitter黑洞會(huì)出現(xiàn)不穩(wěn)定.隨著標(biāo)量場(chǎng)電荷的增加,擾動(dòng)場(chǎng)在晚期出現(xiàn)暴漲的速度將加快.隨著標(biāo)量場(chǎng)質(zhì)量的增加,擾動(dòng)場(chǎng)暴漲的速度將減慢.
關(guān)鍵詞不穩(wěn)定性;標(biāo)量場(chǎng)擾動(dòng);ReissnerNordstrm antide Sitter黑洞;有限差分法
中圖分類(lèi)號(hào)O412.1文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)05005305
在宇宙中,真實(shí)的黑洞不是孤立存在的,而是不斷地與周?chē)奈镔|(zhì)之間有著相互作用.因此,在黑洞物理和天體物理領(lǐng)域,對(duì)黑洞外部擾動(dòng)場(chǎng)的研究一直都是人們所關(guān)注的課題.人們可以通過(guò)分析黑洞外部的擾動(dòng)場(chǎng)來(lái)判斷黑洞的穩(wěn)定性.給黑洞一個(gè)微小的擾動(dòng),如果擾動(dòng)場(chǎng)在演化的晚期是衰減的,那么這樣的黑洞就是穩(wěn)定的,是可能真存在的.相反,如果擾動(dòng)場(chǎng)在演化的晚期出現(xiàn)暴漲,那么黑洞就是不穩(wěn)定的.這樣的黑洞會(huì)消失,或者轉(zhuǎn)變?yōu)槠渌奈矬w.
無(wú)論是在四維漸進(jìn)平直的時(shí)空背景下,還是在四維的漸進(jìn)de Sitter背景下,人們已經(jīng)研究了各種黑洞,比如Schwarzschild黑洞、ReissnerNordstrm黑洞、Kerr黑洞等,在電中性的標(biāo)量場(chǎng)擾動(dòng)、電磁場(chǎng)擾動(dòng)和引力擾動(dòng)下的穩(wěn)定性問(wèn)題,并且發(fā)現(xiàn)在這些情況下,黑洞都是穩(wěn)定的.近些年來(lái),隨著人們對(duì)AdS/CFT對(duì)應(yīng)性研究的展開(kāi)和深入,在AdS黑洞微擾穩(wěn)定性方面也取得了許多的成果.人們發(fā)現(xiàn)四維的AdS黑洞在各種電中性的標(biāo)量場(chǎng)擾動(dòng)、電磁場(chǎng)擾動(dòng)和引力場(chǎng)擾動(dòng)下都是穩(wěn)定的.因此,幾乎所有的四維黑洞在電中性的擾動(dòng)下都是穩(wěn)定的.關(guān)于這方面的工作,可以參考相關(guān)綜述文獻(xiàn)[12].
4結(jié)束語(yǔ)
本文考慮帶電的有質(zhì)量標(biāo)量場(chǎng)擾動(dòng)與ReissnerNordstrm antide Sitter黑洞相互作用,在ReissnerNordstrm antide Sitter度規(guī)下,推導(dǎo)出了帶電標(biāo)量場(chǎng)所滿(mǎn)足的運(yùn)動(dòng)方程,并且給出了有效勢(shì)的表達(dá)式.通過(guò)分析有效勢(shì)的形狀,初步得到了系統(tǒng)可能出現(xiàn)不穩(wěn)定的參數(shù)空間.采用有限差分法,在數(shù)值上給出了標(biāo)量場(chǎng)擾動(dòng)隨時(shí)間的演化.發(fā)現(xiàn)帶電的標(biāo)量場(chǎng)擾動(dòng)在晚期會(huì)出現(xiàn)暴漲.這就意味著在帶電的標(biāo)量場(chǎng)擾動(dòng)下,ReissnerNordstrm antide Sitter黑洞會(huì)出現(xiàn)不穩(wěn)定.通過(guò)改變標(biāo)量場(chǎng)的參數(shù),發(fā)現(xiàn)擾動(dòng)場(chǎng)的電荷越大,它在晚期暴漲的速度也越大;擾動(dòng)場(chǎng)的質(zhì)量越大,它在晚期暴漲的速度就越慢.
參考文獻(xiàn):
[1]KONOPLYA R A, ZHIDENKO A. Quasinormal modes of black holes: From astrophysics to string theory [J]. Rev Mod Phys, 2011,83(3):793836.
[2]WANG B. Perturbations around black holes [J]. Braz J Phys, 2005,35(4b):10291037.
[3]GREGORY R, LAFLAMME R. Black strings and pBranes are unstable [J]. Phys Rev Lett, 1993,70(19):28372840.
[4]GREGORY R, LAFLAMME R. The instability of charged black strings and pBranes [J]. Nucl Phys B, 1994,428(12):399434.
[5]KONOPLYA R A, ZHIDENKO A. In stability of Ddimensional black holes in GaussBonnet theory [J]. Phys Rev D, 2008,77(10):104004.
[6]BEROIZ M, DOTTI G, GLEISER R J. Gravitational instability of static spherically symmetric EinsteinGaussBonnet black holes in five and six dimensions [J]. Phys Rev D, 2007,76(2):024012.
[7]KONOPLYA R A, ZHIDENKO A. Instability of higher dimensional charged black holes in the deSitter world [J]. Phys Rev Lett, 2009,103(16):161101.
[8]CARDOSO V, LEMOS M, MARQUES M. On the instability of ReissnerNordstrom black holes in de Sitter backgrounds [J]. Phys Rev D, 2009,80(12):127502.
[9]WANG B, LIN C Y, MOLINA C. Quasinormal behavior of massless scalar field perturbation in ReissnerNordstrm antide Sitter spacetimes [J]. Phys Rev D, 2004,70(6):064025.
[10]CHING E S C, LEUNG P T, SUEN W M, et al. QuasiNormal mode expansion for linearized waves in gravitational systems [J]. Phys Rev Lett, 1995,74(23):45884591.
[11]BRONNIKOV K A, KONOPLYA R A, ZHIDENKO A. Instabilities of wormholes and regular black holes supported by a phantom scalar field [J]. Phys Rev D, 2012,86(2):024028.
[12]ABDALLA E, PELLICER C E, OLIVERIRA, et al. Phase transitions and regions of stability in ReissnerNordstrm holographic superconductors [J]. Phys Rev D, 2010,82(12):124033.
(編輯陳笑梅)
摘要研究了帶電的有質(zhì)量標(biāo)量場(chǎng)微擾下ReissnerNordstrm antide Sitter黑洞的穩(wěn)定性問(wèn)題.在烏龜坐標(biāo)下推導(dǎo)出了標(biāo)量場(chǎng)所滿(mǎn)足的徑向運(yùn)動(dòng)方程,并給出有效勢(shì).采用有限差分法將標(biāo)量場(chǎng)所滿(mǎn)足的波方程進(jìn)行離散化.通過(guò)數(shù)值計(jì)算研究了擾動(dòng)場(chǎng)隨時(shí)間的演化.研究結(jié)果表明,隨著時(shí)間的演化,帶電的標(biāo)量場(chǎng)在晚期會(huì)出現(xiàn)暴漲.這就意味著在帶電的標(biāo)量場(chǎng)擾動(dòng)下,ReissnerNordstrm antide Sitter黑洞會(huì)出現(xiàn)不穩(wěn)定.隨著標(biāo)量場(chǎng)電荷的增加,擾動(dòng)場(chǎng)在晚期出現(xiàn)暴漲的速度將加快.隨著標(biāo)量場(chǎng)質(zhì)量的增加,擾動(dòng)場(chǎng)暴漲的速度將減慢.
關(guān)鍵詞不穩(wěn)定性;標(biāo)量場(chǎng)擾動(dòng);ReissnerNordstrm antide Sitter黑洞;有限差分法
中圖分類(lèi)號(hào)O412.1文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)05005305
在宇宙中,真實(shí)的黑洞不是孤立存在的,而是不斷地與周?chē)奈镔|(zhì)之間有著相互作用.因此,在黑洞物理和天體物理領(lǐng)域,對(duì)黑洞外部擾動(dòng)場(chǎng)的研究一直都是人們所關(guān)注的課題.人們可以通過(guò)分析黑洞外部的擾動(dòng)場(chǎng)來(lái)判斷黑洞的穩(wěn)定性.給黑洞一個(gè)微小的擾動(dòng),如果擾動(dòng)場(chǎng)在演化的晚期是衰減的,那么這樣的黑洞就是穩(wěn)定的,是可能真存在的.相反,如果擾動(dòng)場(chǎng)在演化的晚期出現(xiàn)暴漲,那么黑洞就是不穩(wěn)定的.這樣的黑洞會(huì)消失,或者轉(zhuǎn)變?yōu)槠渌奈矬w.
無(wú)論是在四維漸進(jìn)平直的時(shí)空背景下,還是在四維的漸進(jìn)de Sitter背景下,人們已經(jīng)研究了各種黑洞,比如Schwarzschild黑洞、ReissnerNordstrm黑洞、Kerr黑洞等,在電中性的標(biāo)量場(chǎng)擾動(dòng)、電磁場(chǎng)擾動(dòng)和引力擾動(dòng)下的穩(wěn)定性問(wèn)題,并且發(fā)現(xiàn)在這些情況下,黑洞都是穩(wěn)定的.近些年來(lái),隨著人們對(duì)AdS/CFT對(duì)應(yīng)性研究的展開(kāi)和深入,在AdS黑洞微擾穩(wěn)定性方面也取得了許多的成果.人們發(fā)現(xiàn)四維的AdS黑洞在各種電中性的標(biāo)量場(chǎng)擾動(dòng)、電磁場(chǎng)擾動(dòng)和引力場(chǎng)擾動(dòng)下都是穩(wěn)定的.因此,幾乎所有的四維黑洞在電中性的擾動(dòng)下都是穩(wěn)定的.關(guān)于這方面的工作,可以參考相關(guān)綜述文獻(xiàn)[12].
4結(jié)束語(yǔ)
本文考慮帶電的有質(zhì)量標(biāo)量場(chǎng)擾動(dòng)與ReissnerNordstrm antide Sitter黑洞相互作用,在ReissnerNordstrm antide Sitter度規(guī)下,推導(dǎo)出了帶電標(biāo)量場(chǎng)所滿(mǎn)足的運(yùn)動(dòng)方程,并且給出了有效勢(shì)的表達(dá)式.通過(guò)分析有效勢(shì)的形狀,初步得到了系統(tǒng)可能出現(xiàn)不穩(wěn)定的參數(shù)空間.采用有限差分法,在數(shù)值上給出了標(biāo)量場(chǎng)擾動(dòng)隨時(shí)間的演化.發(fā)現(xiàn)帶電的標(biāo)量場(chǎng)擾動(dòng)在晚期會(huì)出現(xiàn)暴漲.這就意味著在帶電的標(biāo)量場(chǎng)擾動(dòng)下,ReissnerNordstrm antide Sitter黑洞會(huì)出現(xiàn)不穩(wěn)定.通過(guò)改變標(biāo)量場(chǎng)的參數(shù),發(fā)現(xiàn)擾動(dòng)場(chǎng)的電荷越大,它在晚期暴漲的速度也越大;擾動(dòng)場(chǎng)的質(zhì)量越大,它在晚期暴漲的速度就越慢.
參考文獻(xiàn):
[1]KONOPLYA R A, ZHIDENKO A. Quasinormal modes of black holes: From astrophysics to string theory [J]. Rev Mod Phys, 2011,83(3):793836.
[2]WANG B. Perturbations around black holes [J]. Braz J Phys, 2005,35(4b):10291037.
[3]GREGORY R, LAFLAMME R. Black strings and pBranes are unstable [J]. Phys Rev Lett, 1993,70(19):28372840.
[4]GREGORY R, LAFLAMME R. The instability of charged black strings and pBranes [J]. Nucl Phys B, 1994,428(12):399434.
[5]KONOPLYA R A, ZHIDENKO A. In stability of Ddimensional black holes in GaussBonnet theory [J]. Phys Rev D, 2008,77(10):104004.
[6]BEROIZ M, DOTTI G, GLEISER R J. Gravitational instability of static spherically symmetric EinsteinGaussBonnet black holes in five and six dimensions [J]. Phys Rev D, 2007,76(2):024012.
[7]KONOPLYA R A, ZHIDENKO A. Instability of higher dimensional charged black holes in the deSitter world [J]. Phys Rev Lett, 2009,103(16):161101.
[8]CARDOSO V, LEMOS M, MARQUES M. On the instability of ReissnerNordstrom black holes in de Sitter backgrounds [J]. Phys Rev D, 2009,80(12):127502.
[9]WANG B, LIN C Y, MOLINA C. Quasinormal behavior of massless scalar field perturbation in ReissnerNordstrm antide Sitter spacetimes [J]. Phys Rev D, 2004,70(6):064025.
[10]CHING E S C, LEUNG P T, SUEN W M, et al. QuasiNormal mode expansion for linearized waves in gravitational systems [J]. Phys Rev Lett, 1995,74(23):45884591.
[11]BRONNIKOV K A, KONOPLYA R A, ZHIDENKO A. Instabilities of wormholes and regular black holes supported by a phantom scalar field [J]. Phys Rev D, 2012,86(2):024028.
[12]ABDALLA E, PELLICER C E, OLIVERIRA, et al. Phase transitions and regions of stability in ReissnerNordstrm holographic superconductors [J]. Phys Rev D, 2010,82(12):124033.
(編輯陳笑梅)
摘要研究了帶電的有質(zhì)量標(biāo)量場(chǎng)微擾下ReissnerNordstrm antide Sitter黑洞的穩(wěn)定性問(wèn)題.在烏龜坐標(biāo)下推導(dǎo)出了標(biāo)量場(chǎng)所滿(mǎn)足的徑向運(yùn)動(dòng)方程,并給出有效勢(shì).采用有限差分法將標(biāo)量場(chǎng)所滿(mǎn)足的波方程進(jìn)行離散化.通過(guò)數(shù)值計(jì)算研究了擾動(dòng)場(chǎng)隨時(shí)間的演化.研究結(jié)果表明,隨著時(shí)間的演化,帶電的標(biāo)量場(chǎng)在晚期會(huì)出現(xiàn)暴漲.這就意味著在帶電的標(biāo)量場(chǎng)擾動(dòng)下,ReissnerNordstrm antide Sitter黑洞會(huì)出現(xiàn)不穩(wěn)定.隨著標(biāo)量場(chǎng)電荷的增加,擾動(dòng)場(chǎng)在晚期出現(xiàn)暴漲的速度將加快.隨著標(biāo)量場(chǎng)質(zhì)量的增加,擾動(dòng)場(chǎng)暴漲的速度將減慢.
關(guān)鍵詞不穩(wěn)定性;標(biāo)量場(chǎng)擾動(dòng);ReissnerNordstrm antide Sitter黑洞;有限差分法
中圖分類(lèi)號(hào)O412.1文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)05005305
在宇宙中,真實(shí)的黑洞不是孤立存在的,而是不斷地與周?chē)奈镔|(zhì)之間有著相互作用.因此,在黑洞物理和天體物理領(lǐng)域,對(duì)黑洞外部擾動(dòng)場(chǎng)的研究一直都是人們所關(guān)注的課題.人們可以通過(guò)分析黑洞外部的擾動(dòng)場(chǎng)來(lái)判斷黑洞的穩(wěn)定性.給黑洞一個(gè)微小的擾動(dòng),如果擾動(dòng)場(chǎng)在演化的晚期是衰減的,那么這樣的黑洞就是穩(wěn)定的,是可能真存在的.相反,如果擾動(dòng)場(chǎng)在演化的晚期出現(xiàn)暴漲,那么黑洞就是不穩(wěn)定的.這樣的黑洞會(huì)消失,或者轉(zhuǎn)變?yōu)槠渌奈矬w.
無(wú)論是在四維漸進(jìn)平直的時(shí)空背景下,還是在四維的漸進(jìn)de Sitter背景下,人們已經(jīng)研究了各種黑洞,比如Schwarzschild黑洞、ReissnerNordstrm黑洞、Kerr黑洞等,在電中性的標(biāo)量場(chǎng)擾動(dòng)、電磁場(chǎng)擾動(dòng)和引力擾動(dòng)下的穩(wěn)定性問(wèn)題,并且發(fā)現(xiàn)在這些情況下,黑洞都是穩(wěn)定的.近些年來(lái),隨著人們對(duì)AdS/CFT對(duì)應(yīng)性研究的展開(kāi)和深入,在AdS黑洞微擾穩(wěn)定性方面也取得了許多的成果.人們發(fā)現(xiàn)四維的AdS黑洞在各種電中性的標(biāo)量場(chǎng)擾動(dòng)、電磁場(chǎng)擾動(dòng)和引力場(chǎng)擾動(dòng)下都是穩(wěn)定的.因此,幾乎所有的四維黑洞在電中性的擾動(dòng)下都是穩(wěn)定的.關(guān)于這方面的工作,可以參考相關(guān)綜述文獻(xiàn)[12].
4結(jié)束語(yǔ)
本文考慮帶電的有質(zhì)量標(biāo)量場(chǎng)擾動(dòng)與ReissnerNordstrm antide Sitter黑洞相互作用,在ReissnerNordstrm antide Sitter度規(guī)下,推導(dǎo)出了帶電標(biāo)量場(chǎng)所滿(mǎn)足的運(yùn)動(dòng)方程,并且給出了有效勢(shì)的表達(dá)式.通過(guò)分析有效勢(shì)的形狀,初步得到了系統(tǒng)可能出現(xiàn)不穩(wěn)定的參數(shù)空間.采用有限差分法,在數(shù)值上給出了標(biāo)量場(chǎng)擾動(dòng)隨時(shí)間的演化.發(fā)現(xiàn)帶電的標(biāo)量場(chǎng)擾動(dòng)在晚期會(huì)出現(xiàn)暴漲.這就意味著在帶電的標(biāo)量場(chǎng)擾動(dòng)下,ReissnerNordstrm antide Sitter黑洞會(huì)出現(xiàn)不穩(wěn)定.通過(guò)改變標(biāo)量場(chǎng)的參數(shù),發(fā)現(xiàn)擾動(dòng)場(chǎng)的電荷越大,它在晚期暴漲的速度也越大;擾動(dòng)場(chǎng)的質(zhì)量越大,它在晚期暴漲的速度就越慢.
參考文獻(xiàn):
[1]KONOPLYA R A, ZHIDENKO A. Quasinormal modes of black holes: From astrophysics to string theory [J]. Rev Mod Phys, 2011,83(3):793836.
[2]WANG B. Perturbations around black holes [J]. Braz J Phys, 2005,35(4b):10291037.
[3]GREGORY R, LAFLAMME R. Black strings and pBranes are unstable [J]. Phys Rev Lett, 1993,70(19):28372840.
[4]GREGORY R, LAFLAMME R. The instability of charged black strings and pBranes [J]. Nucl Phys B, 1994,428(12):399434.
[5]KONOPLYA R A, ZHIDENKO A. In stability of Ddimensional black holes in GaussBonnet theory [J]. Phys Rev D, 2008,77(10):104004.
[6]BEROIZ M, DOTTI G, GLEISER R J. Gravitational instability of static spherically symmetric EinsteinGaussBonnet black holes in five and six dimensions [J]. Phys Rev D, 2007,76(2):024012.
[7]KONOPLYA R A, ZHIDENKO A. Instability of higher dimensional charged black holes in the deSitter world [J]. Phys Rev Lett, 2009,103(16):161101.
[8]CARDOSO V, LEMOS M, MARQUES M. On the instability of ReissnerNordstrom black holes in de Sitter backgrounds [J]. Phys Rev D, 2009,80(12):127502.
[9]WANG B, LIN C Y, MOLINA C. Quasinormal behavior of massless scalar field perturbation in ReissnerNordstrm antide Sitter spacetimes [J]. Phys Rev D, 2004,70(6):064025.
[10]CHING E S C, LEUNG P T, SUEN W M, et al. QuasiNormal mode expansion for linearized waves in gravitational systems [J]. Phys Rev Lett, 1995,74(23):45884591.
[11]BRONNIKOV K A, KONOPLYA R A, ZHIDENKO A. Instabilities of wormholes and regular black holes supported by a phantom scalar field [J]. Phys Rev D, 2012,86(2):024028.
[12]ABDALLA E, PELLICER C E, OLIVERIRA, et al. Phase transitions and regions of stability in ReissnerNordstrm holographic superconductors [J]. Phys Rev D, 2010,82(12):124033.
(編輯陳笑梅)