曹娟 白淑瑋
[摘要] 目的 通過對人視網(wǎng)膜母細胞瘤(RB)腫瘤干細胞(CSCs)多藥耐藥性的研究,探討microRNA對腫瘤干細胞多藥耐藥性的影響。 方法 通過流式細胞儀分選Y79細胞中的ABCG2(+)與ABCG2(-)細胞,作為ABCG2(+)組與ABCG2(-)組;采用MTT比色實驗比較ABCG2(+)組與ABCG2(-)組對抗腫瘤藥物長春新堿、依托泊苷和卡鉑的敏感性,得到候選microRNA。從標本庫中選擇RB組織切片,行LNA-原位雜交,并根據(jù)耐藥性分為高耐藥性組與低耐藥性組,通過Real time PCR觀察候選microRNA在兩組中表達差異。 結(jié)果 ①分選陽性率:ABCG2(+)分選后(91.7%)顯著高于分選前(5.7%),差異有統(tǒng)計學(xué)意義(P < 0.05)。②兩組耐藥性比較:從各個濃度水平上比較,ABCG2(+)細胞的耐藥性明顯高于ABCG2(-)細胞,差異有統(tǒng)計學(xué)意義(P < 0.05)。③分選細胞的凋亡率和細胞內(nèi)藥物蓄積比較:ABCG2(+)組的凋亡率明顯低于ABCG2(-)組,差異有統(tǒng)計學(xué)意義(P < 0.05);ABCG2(+)組的藥物蓄積明顯低于ABCG2(-)組,差異有統(tǒng)計學(xué)意義(P < 0.05)。④候選microRNA在不同耐藥性RB切片中的表達:高耐藥組的microRNA表達率(39.3%)明顯高于低耐藥組的microRNA表達率低(5.2%),差異有統(tǒng)計學(xué)意義(P < 0.05)。 結(jié)論 ABCG2(+)是Y79細胞系中的耐藥細胞群,microRNA與腫瘤干細胞的侵襲性和耐藥性密切相關(guān),調(diào)控microRNA可以抑制腫瘤干細胞的耐藥性,提高其對化療的敏感性。
[關(guān)鍵詞] microRNA;視網(wǎng)膜母細胞;腫瘤干細胞;多藥耐藥;ABCG2(+)/ABCG2(-)
[中圖分類號] R739.7 [文獻標識碼] A [文章編號] 1673-7210(2014)09(c)-0004-06
Influence of microRNA on multi-drug resistance of cancer stem cell in human retinoblastoma
CAO Juan BAI Shuwei
Department of Ophthalmology, the Fourth Hospital of Xi'an City, Shaanxi Province, Xi'an 710004, China
[Abstract] Objective To discuss the influence of MicroRNA on multi-drug resistance of cancer stem cell through human retinoblastoma (RB) cancer stem cells (CSCs) multi-drug resistance research. Methods ABCG2 (+) and ABCG2 (-) cells from Y79 cells were sorted by flow cytometry, as the ABCG2 (+)group and the ABCG2 (-) group; the sensitivity of ABCG2 (+) and the ABCG2 (-) cells for vincristine, etoposide and carboplatin were compared by MTT colorimetric experiment, and then candidate microRNA was gotten. RB tissue biopsies were chosen from specimens library, then were given LNA-situ hybridization, and divided into high resistance group and low resistance group according to the resistance, microRNA expression differences in the two groups were observed by real-time PCR. Results ①Separating positive rate of ABCG2 (+) after separation (91.7%) was significantly higher than that before the separation (5.7%), the difference was statistically significant (P < 0.05). ②Resistance comparison, ABCG2 resistance of ABCG2 (+) cells was obviously higher than that of ABCG2 (-) cells on various levels, the difference was statistically significant (P < 0.05). ③The sorting cell apoptosis rate and intracellular drug accumulation comparison, apoptosis rate of ABCG2 (+)group was obviously lower than the ABCG2 (-) group, the difference was statistically significant (P < 0.05); the drug accumulation of ABCG2 (+) group was significantly lower than the ABCG2 (-) group, the difference was statistically significant (P < 0.05). ④the expression of candidate microRNA in different resistance RB section, microRNA expression rate of high resistance group (39.3%) was significantly higher than low resistance group (5.2%), the difference was statistically significant (P < 0.05). Conclusion The ABCG2 (+) is the drug-resistant cell line of Y79 cells, microRNA is closely related to the tumor stem cell invasive and resistance, the microRNA regulating can inhibit the drug resistance of cancer stem cells, improve its sensitivity to chemotherapy.
[Key words] microRNA; Retinal mother cells; Cancer stem cells; Multi-drug resistant; ABCG2 (+)/ABCG2 (-)
視網(wǎng)膜母細胞瘤(retinoblastoma,RB)是兒童最常見的原發(fā)性眼內(nèi)惡性腫瘤。調(diào)查顯示5歲以下兒童RB發(fā)病率高達11.8/100萬,占同齡兒童惡性腫瘤的6.1%[1]。在我國臺灣,RB的5年生存率為81%,其中雙眼RB 5年生存率僅64.3%[2]。流行病學(xué)研究中發(fā)現(xiàn),我國RB診斷滯后,化學(xué)減容治療效果不佳,很多患者最終不得不接受眼球摘除術(shù)來控制腫瘤的發(fā)展,這主要是由于部分RB表達多種耐藥相關(guān)蛋白如P-糖蛋白(P-glycoprotein,P-gp),多藥耐藥相關(guān)蛋白(multi-drug related protein, MRP)、肺耐藥蛋白(lung resistance associated protein,LRP)等,因而對化療不敏感[3]。惡性腫瘤對化療的多藥耐藥性是大多數(shù)惡性腫瘤化療效果不佳最主要的原因?,F(xiàn)在越來越多的證據(jù)表明,microRNA不但廣泛參與各種腫瘤的發(fā)生發(fā)展與復(fù)發(fā)轉(zhuǎn)移,而且與腫瘤耐藥性的產(chǎn)生有關(guān)。這些研究都指出:microRNA與腫瘤干細胞的侵襲性和耐藥性密切相關(guān),調(diào)控microRNA可以抑制腫瘤干細胞的耐藥性,提高其對化療的敏感性[4-6]。為探究MicroRNA調(diào)控人RB腫瘤干細胞多藥耐藥性的機制,本研究組做了相關(guān)研究,現(xiàn)報道如下:
1 材料與方法
1.1 材料與試劑
Y79細胞(由西安交通大學(xué)醫(yī)學(xué)院眼科實驗室提供),含10%胎牛血清1640培養(yǎng)基、無血清化學(xué)限定培養(yǎng)基、10%FBS:1640培養(yǎng)基、抗-ABCG2抗體、IgG2a抗體、山羊抗鼠FITC二抗、MTT試劑盒、Signosis northern blot試劑盒、熒光素酶測試試劑Ⅱ。
實驗用抗腫瘤藥物為長春新堿、依托泊苷和卡鉑。長春新堿濃度梯度為0.1、1.0、10 μg/mL,依托泊苷濃度梯度為0、50、100 μmol/L,卡鉑濃度梯度為0、50、150 μmol/L。長春新堿、依托泊苷和卡鉑的血漿峰濃度(PPC)分別為5.0、2.0、1.0 μg/mL。
1.2 實驗方法
1.2.1 Y79細胞的分選及培養(yǎng)(流式細胞術(shù))
用含10%胎牛血清1640培養(yǎng)基培養(yǎng),擴增Y79細胞至8×107個,打碎后重懸至濃度1×107個/mL,無菌條件下與抗-ABCG2抗體于4℃孵育20 min,采用IgG2a抗體作為同型對照。PBS洗滌細胞,加入5 μL山羊抗鼠FITC二抗,4℃,20 min,3~5次洗滌后上流式細胞儀進行分選。分選后實驗組ABCG2(+)細胞用無血清化學(xué)限定培養(yǎng)基培養(yǎng),對照組ABCG2(-)細胞用10%FBS:1640培養(yǎng)基培養(yǎng),2~3 d換液1次,定期傳代。流式細胞法,檢測分選后的ABCG2細胞表達率。
1.2.2 化療藥物敏感度實驗(real-time PCR檢測、MTT比色、引物序列及免疫熒光)
首先委托ABI公設(shè)計合成具有莖環(huán)(stem loop)結(jié)構(gòu)的反轉(zhuǎn)錄引物和用miRNA熒光標記的特異分子探針。用Trizol抽提總RNA,將抽提的RNA進行反轉(zhuǎn)錄的cDNAz作為real-time PCR檢測的模板,加入引物及探針(表1),調(diào)整好總體積后加入96孔板,設(shè)3個重復(fù)板。將分選出的ABCG2(+)與ABCG2(-)細胞稀釋至1×105個/mL,接種于96孔板中,每孔105個細胞。加入不同濃度的長春新堿、依托泊苷和卡鉑,每種藥物分三個濃度梯度(長春新堿濃度梯度為0.1、1.0、10 μg/mL,依托泊苷濃度梯度為0、50、100 μmol/L,卡鉑濃度梯度為0、50、150 μmol/L)。每種藥物分設(shè)7個復(fù)孔,設(shè)置對照組和空白組(以營養(yǎng)液代替試劑),培養(yǎng)2 d。向每孔分別加入20 μL MTT,繼續(xù)培養(yǎng)12 h,將各個孔中的營養(yǎng)液全部吸出,溶解,振蕩30 min,選擇490 nm 波長,在酶聯(lián)免疫檢測儀上測定各孔光吸收值(OD值)。
表1 引物序列、長度及用途
1.2.3 檢測細胞凋亡及細胞內(nèi)藥物蓄積實驗(流式細胞術(shù))
1.2.3.1 細胞凋亡實驗 將分選的ABCG2(+)與ABCG2(-)細胞稀釋至1×105個/mL,放入培養(yǎng)箱中進行48 h的培養(yǎng),然后實驗組加入卡鉑(濃度為1.0 μmol/L);對照組則不加卡鉑。培養(yǎng)24 h后,收集待測細胞,并用3000 r/min離心6 min,棄上清液,乙醇固定18 h后離心,PBS洗滌細胞,加入5 μL山羊抗鼠FITC二抗,4℃,20 min,3~5次洗滌后上流式細胞儀檢測細胞凋亡率。
1.2.3.2 細胞內(nèi)藥物蓄積實驗 將分選的ABCG2(+)與ABCG2(-)細胞稀釋至1×105個/mL,放入培養(yǎng)箱中進行培養(yǎng)24 h,然后加濃度為為1.0 μmol/L的卡鉑試劑,接著在培養(yǎng)的第4小時和第24小時后,轉(zhuǎn)移至新鮮培養(yǎng)基中繼續(xù)培養(yǎng)2 h,收集待用細胞于3000 r/min離心機,離心5 min,棄上清液,乙醇固定24 h,PBS洗滌細胞3次,4℃,20 min,3~5次洗滌后上流式細胞儀,在448 nm的激光、679 nm的激光下,測定兩組細胞加藥后4、24 h內(nèi)殘留的卡鉑試劑所釋放的熒光強度。
1.2.4 觀察候選microRNA在不同耐藥性RB切片中的表達(行病理切片、LNA-原位雜交及realtimePCR實驗)
病理科切片,行LRP、MRP1,P-gp免疫組化染色,收集高表達三種蛋白的RB標本6例作為高耐藥組,均低表達的RB標本6例作為低耐藥組;行LNA-原位雜交觀察候選microRNA在高耐藥組和低耐藥組的定位并半定量檢測;蠟塊組織提取RNA,通過realtimePCR觀察候選microRNA在兩組中表達差異。
1.3 統(tǒng)計學(xué)方法
采用統(tǒng)計學(xué)軟件SPSS 19.0 進行分析,正態(tài)分布計量資料以均數(shù)±標準差(x±s)表示,兩組間計量資料采用t檢驗;計數(shù)資料以率表示,采用χ2檢驗。以P < 0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 分選陽性率
流式細胞儀分選Y79細胞中ABCG2(+)及ABCG2(-),分選后ABCG2(+)為91.7%,顯著高于分選前(5.7%),差異有統(tǒng)計學(xué)意義(P < 0.05)。見圖1。
分選前
分選后
圖1 流式細胞儀檢測ABCG2在Y79細胞分選前后的表達率
2.2 分選細胞對藥物敏感性
MTT法檢測ABCG2(+)及ABCG2(-)細胞對長春新堿、依托泊苷和卡鉑的耐藥性。長春新堿、依托泊苷和卡鉑PPC達到0.1 μg/mL時,可殺滅和抑制ABCG2(-)細胞;長春新堿、依托泊苷和卡鉑PPC達到1.0 μg/mL時,ABCG2(+)表現(xiàn)出顯著抗藥,說明ABCG2(+)細胞在PPC 1.0 μg/mL長春新堿、依托泊苷和卡鉑的作用下,依然不受其抑制生長;長春新堿、依托泊苷和卡鉑PPC達到10.0 μg/mL水平以上,對ABCG2(+)細胞才出現(xiàn)抑制作用。對比各個濃度的長春新堿、依托泊苷和卡鉑對ABCG2細胞的作用顯示,ABCG2(+)細胞有顯著高于ABCG2(-)細胞的耐藥性,差異有統(tǒng)計學(xué)意義(P < 0.05)。在3種化療藥物中,卡鉑抑制細胞生長的作用最為顯著,尤其對ABCG2(-)細胞的抑制最為明顯。見圖2。
卡鉑
依托泊苷
長春新堿
與ABCG2(-)組比較,*P < 0.05
圖2 ABCG2(+)/ABCG2(-)細胞對藥物敏感性
2.3 流式細胞儀檢測分選細胞的凋亡率和細胞內(nèi)藥物蓄積(經(jīng)PPC 1.0 μg/mL卡鉑處理)
應(yīng)用流式細胞儀,對ABCG2(+)和ABCG2(-)細胞在0、24、48 h凋亡率的檢測結(jié)果顯示:ABCG2(-)細胞的凋亡率顯著大于ABCG2(+)細胞,且凋亡率與用藥時間有關(guān)。ABCG2(-)出現(xiàn)“亞G1峰”,且隨時間發(fā)展而累積,說明有越來越多的細胞凋亡和壞死;ABCG2(+)未出現(xiàn)“亞G1峰”,說明ABCG2(+)細胞未出現(xiàn)明顯凋亡和壞死。ABCG2(+)明顯低于ABCG2(-),差異有統(tǒng)計學(xué)意義(P < 0.05)。見圖3。
應(yīng)用流式細胞儀,對ABCG2(+)及ABCG2(-)細胞4、24 h時卡鉑熒光強度進行監(jiān)測(反映卡鉑在細胞內(nèi)蓄積水平)。峰值及熒光強度表現(xiàn)為:ABCG2(-)細胞峰值右移、平均熒光強度為9.78和15.35,表明細胞內(nèi)卡鉑蓄積量增加;ABCG2(+)細胞峰值左移、平均熒光強度為4.39和2.17,表明細胞內(nèi)卡鉑蓄積量減少。ABCG2(+)的藥物蓄積明顯低于ABCG2(-),差異有統(tǒng)計學(xué)意義(P < 0.05)。見圖4。
2.4 候選microRNA在不同耐藥性RB切片中的表達
通過對RB病理切片中的高耐藥組的與低耐藥組的rt-PCR觀察,發(fā)現(xiàn)高耐藥組的microRNA表達率(39.3%)明顯高于低耐藥組的microRNA表達率低(5.2%),差異有統(tǒng)計學(xué)意義(P < 0.05)。見表2。
3 討論
視網(wǎng)膜母細胞瘤(RB)是兒童最常見的原發(fā)性眼內(nèi)惡性腫瘤。臨床多表現(xiàn)為瞳孔區(qū)反射黃白色光,患兒視力減退,甚至造成斜視。腫瘤組織可通過視網(wǎng)膜進入玻璃體,甚至經(jīng)淋巴結(jié)及血液循環(huán)轉(zhuǎn)移至全身,導(dǎo)致患兒死亡。由于RB的化學(xué)減容治療效果不佳,多數(shù)患者只能通過眼球摘除術(shù)控制腫瘤細胞的增生,造成患兒終身眼疾,嚴重影響了患者的身心健康。有關(guān)研究顯示,RB化療效果不佳主要是由于其表達多種耐藥相關(guān)的蛋白,包括P-糖蛋白P-gpMRP、LRP等[7]。為提高化療對RB的治療效果,學(xué)者開始研究視網(wǎng)膜母細胞多藥耐藥性的機制。研究發(fā)現(xiàn),惡性腫瘤對化療的耐藥性根據(jù)耐藥譜可分為原藥耐藥和多藥耐藥(multi-drug resistance,MDR),其中MDR是由一種藥物誘發(fā),但同時又對其他多種結(jié)構(gòu)和作用機制迥異的抗癌藥物產(chǎn)生交叉耐藥,是大多數(shù)惡性腫瘤化療效果不佳最主要的原因[8-9]。腫瘤干細胞(CSCs),具有自我更新和多向分化能力。腫瘤干細胞耐藥這一特征,被認為是腫瘤復(fù)發(fā)、轉(zhuǎn)移、多藥耐藥的根源[10]。MicroRNA即小RNA,通過結(jié)合靶標mRNA抑制蛋白表達,從而構(gòu)成了一種新的蛋白表達調(diào)控機制。由于microRNA與腫瘤干細胞的侵襲性和耐藥性密切相關(guān),因此調(diào)控microRNA可以抑制腫瘤干細胞的耐藥性,提高其對化療的敏感性。為探究MicroRNA調(diào)控人視網(wǎng)膜母細胞瘤腫瘤干細胞多藥耐藥性的機制,本研究組通過ABCG2分選RB細胞系Y79中的腫瘤干細胞,結(jié)合臨床組織標本篩選RB耐藥相關(guān)microRNA并進一步研究其功能,探索RB腫瘤干細胞調(diào)控多藥耐藥性的分子機制。
本研究結(jié)果顯示:①分選陽性率:分選前陽性率僅為5.7%,說明ABCG2(+)細胞只是Y79細胞中的含量極少的亞群,通過流式細胞儀分選后陽性率提升至91.7%,有效提高了ABCG2(+)純度,為下一步實驗提供了高純度細胞。②分選細胞對長春新堿、依托泊苷和卡鉑的藥物敏感性:長春新堿、依托泊苷和卡鉑PPC達到0.1 μg/mL時,可殺滅和抑制ABCG2(-)細胞;長春新堿、依托泊苷和卡鉑PPC達到1.0 μg/mL時,ABCG2(+)表現(xiàn)出顯著抗藥,說明ABCG2(+)細胞在PPC 1.0 μg/mL長春新堿、依托泊苷和卡鉑的作用下,依然不受其抑制;長春新堿、依托泊苷和卡鉑 PPC達到10.0 μg/mL水平以上,對ABCG2(+)細胞才出現(xiàn)抑制作用。對比各個濃度的長春新堿、依托泊苷和卡鉑對ABCG2細胞的作用顯示,ABCG2(+)細胞有顯著高于ABCG2(-)細胞的耐藥性,差異有統(tǒng)計學(xué)意義(P<0.05)。說明ABCG2(+)細胞對多種化療藥物均有耐藥性,即對化療藥物具有多藥耐藥性。有關(guān)研究指出ABCG2可促進細胞排出化學(xué)藥,是當今最常用的耐藥標記蛋白之一[11]。有學(xué)者利用ABCG2為標志物從RB細胞系和Y79細胞系中分選出了腫瘤干細胞(CSCs),并且發(fā)現(xiàn)這種CSCs的自我更新和體內(nèi)腫瘤形成能力受Wnt/β-catenin通路調(diào)節(jié),且對組織的耐藥性有一定影響[12-14]。③流式細胞儀檢測分選細胞的凋亡率和細胞內(nèi)藥物蓄積(經(jīng)PPC 1.0 μg/mL卡鉑處理)應(yīng)用流式細胞儀,對ABCG2(+)和ABCG2(-)細胞在0、24、48 h凋亡率的檢測:ABCG2(-)細胞的凋亡率顯著大于ABCG2(+)細胞,且凋亡率與用藥時間有關(guān)。ABCG2(-)組出現(xiàn)“亞G1峰”,且隨時間發(fā)展而累積,說明有越來越多的細胞凋亡和壞死;ABCG2(+)組未出現(xiàn)“亞G1峰”,說明ABCG2(+)細胞未出現(xiàn)明顯凋亡和壞死。兩組凋亡率比較,ABCG2(+)組明顯低于ABCG2(-)組,差異有統(tǒng)計學(xué)意義(P < 0.05);應(yīng)用流式細胞儀,對ABCG2(+)及ABCG2(-)細胞4、24 h時卡鉑熒光強度進行監(jiān)測(反映卡鉑在細胞內(nèi)蓄積水平)。峰值及熒光強度表現(xiàn)為:ABCG2(-)細胞峰值右移、平均熒光強度為9.78和15.35,表明細胞內(nèi)卡鉑蓄積量增加;ABCG2(+)細胞峰值左移、平均熒光強度為4.39和2.17,表明細胞內(nèi)卡鉑蓄積量減少。ABCG2(+)組的藥物蓄積明顯低于ABCG2(-)組,差異有統(tǒng)計學(xué)意義(P < 0.05)。進一步說明ABCG2(+)細胞的抗藥性強勁且對化療藥物的蓄積量極低,這一特性提高了ABCG2(+)細胞對藥物的耐藥性。④候選microRNA在不同耐藥性RB切片中的表達:通過對RB病理切片中的高耐藥組與低耐藥組的rt-PCR觀察,發(fā)現(xiàn)高耐藥組的microRNA表達率(39.3%)明顯高于低耐藥組的microRNA表達率低(5.2%),差異有統(tǒng)計學(xué)意義(P < 0.05)。有學(xué)者指出在視網(wǎng)膜前體細胞中RB基因,P53基因,microRNA-17~92同時表達下降時可以抑制RB的形成,從而抑制耐藥性[15]。由此可以看出microRNA在調(diào)節(jié)腫瘤干細胞多藥耐藥性中起到了重要作用。
綜上所述,microRNA是調(diào)控人視網(wǎng)膜母細胞瘤腫瘤干細胞多藥耐藥性的重要因素,可通過調(diào)控microRNA來抑制腫瘤干細胞的耐藥性,提高對化療的敏感性,有利于視網(wǎng)膜母細胞瘤患者的治愈。
[參考文獻]
[1] Kivel■ T. The epidemiological challenge of the most frequent eye cancer:retinoblastoma,an issue of birth and death [J]. British Journal of Ophthalmology,2012,93(9): 1129-1131.
[2] Chang CY,Chiou TJ,Hwang B,et al. Retinoblastoma in Taiwan:survival rate and prognostic factors [J]. Japanese Journal of Ophthalmology,2013,50(3):242-249.
[3] Bai S,Ren R,Li B,et al. Delay in the diagnosis of retinoblastoma in China [J]. Acta Ophthalmologica,2011,89(1):e72-e74.
[4] Li B,Gao R,Zhang H, et al. Studies on multidrug resistance associated protein in retinoblastoma [J]. Zhonghua Yan Ke Za Zhi,2011,45(4):314-317.
[5] Gündüz K,Günalp I,Yalcndag N,et al. Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation [J]. Ophthalmology,2014,111(10):1917-1924.
[6] 鐘秀風(fēng),李永平,葛堅,等.人視網(wǎng)膜母細胞瘤腫瘤干細胞的分離培養(yǎng)[J].中國病理生理雜志,2012,22(6):1177-1181.
[7] Yuan J,Chen L,Chen X,et al. Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma [J]. Journal of International Medical Research,2012,40(6):2090-2097.
[8] Meng F,Glaser SS,F(xiàn)rancis H, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells [J]. Journal of Cellular and Molecular Medicine,2012,16(1):160-173.
[9] Jeon HM,Sohn YW,Oh SY,et al. ID4 Imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2 [J]. Cancer Research,2011,71(9):3410-3421.
[10] 鄧永文,方加勝,李茗初,等.膠質(zhì)瘤中腫瘤干細胞的分離,培養(yǎng)及鑒定[J].中國現(xiàn)代醫(yī)學(xué)雜志,2005,15(16):2449-2452.
[11] Zhu Y,Yu F,Jiao Y,et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5 [J]. Clinical Cancer Research,2011, 17(22):7105-7115.
[12] Xiang Y,Ma N,Wang D,et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly:a novel epigenetic therapy independent of decitabine [J]. Oncogene, 2014,33(3):378-386.
[13] Mitra M,Kandalam M,Harilal A,et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy [J]. Mol Vis,2012,18:290-308.
[14] Bhatnagar N,Li X,Padi SK,et al. Down regulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells [J]. Cell Death & Disease,2010,1(12):e105.
[15] Misawa A,Katayama R,Koike S,et al. AP-1-Dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells [J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics,2010,19(1):23-33.
(收稿日期:2014-06-16 本文編輯:蘇 暢)
綜上所述,microRNA是調(diào)控人視網(wǎng)膜母細胞瘤腫瘤干細胞多藥耐藥性的重要因素,可通過調(diào)控microRNA來抑制腫瘤干細胞的耐藥性,提高對化療的敏感性,有利于視網(wǎng)膜母細胞瘤患者的治愈。
[參考文獻]
[1] Kivel■ T. The epidemiological challenge of the most frequent eye cancer:retinoblastoma,an issue of birth and death [J]. British Journal of Ophthalmology,2012,93(9): 1129-1131.
[2] Chang CY,Chiou TJ,Hwang B,et al. Retinoblastoma in Taiwan:survival rate and prognostic factors [J]. Japanese Journal of Ophthalmology,2013,50(3):242-249.
[3] Bai S,Ren R,Li B,et al. Delay in the diagnosis of retinoblastoma in China [J]. Acta Ophthalmologica,2011,89(1):e72-e74.
[4] Li B,Gao R,Zhang H, et al. Studies on multidrug resistance associated protein in retinoblastoma [J]. Zhonghua Yan Ke Za Zhi,2011,45(4):314-317.
[5] Gündüz K,Günalp I,Yalcndag N,et al. Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation [J]. Ophthalmology,2014,111(10):1917-1924.
[6] 鐘秀風(fēng),李永平,葛堅,等.人視網(wǎng)膜母細胞瘤腫瘤干細胞的分離培養(yǎng)[J].中國病理生理雜志,2012,22(6):1177-1181.
[7] Yuan J,Chen L,Chen X,et al. Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma [J]. Journal of International Medical Research,2012,40(6):2090-2097.
[8] Meng F,Glaser SS,F(xiàn)rancis H, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells [J]. Journal of Cellular and Molecular Medicine,2012,16(1):160-173.
[9] Jeon HM,Sohn YW,Oh SY,et al. ID4 Imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2 [J]. Cancer Research,2011,71(9):3410-3421.
[10] 鄧永文,方加勝,李茗初,等.膠質(zhì)瘤中腫瘤干細胞的分離,培養(yǎng)及鑒定[J].中國現(xiàn)代醫(yī)學(xué)雜志,2005,15(16):2449-2452.
[11] Zhu Y,Yu F,Jiao Y,et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5 [J]. Clinical Cancer Research,2011, 17(22):7105-7115.
[12] Xiang Y,Ma N,Wang D,et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly:a novel epigenetic therapy independent of decitabine [J]. Oncogene, 2014,33(3):378-386.
[13] Mitra M,Kandalam M,Harilal A,et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy [J]. Mol Vis,2012,18:290-308.
[14] Bhatnagar N,Li X,Padi SK,et al. Down regulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells [J]. Cell Death & Disease,2010,1(12):e105.
[15] Misawa A,Katayama R,Koike S,et al. AP-1-Dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells [J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics,2010,19(1):23-33.
(收稿日期:2014-06-16 本文編輯:蘇 暢)
綜上所述,microRNA是調(diào)控人視網(wǎng)膜母細胞瘤腫瘤干細胞多藥耐藥性的重要因素,可通過調(diào)控microRNA來抑制腫瘤干細胞的耐藥性,提高對化療的敏感性,有利于視網(wǎng)膜母細胞瘤患者的治愈。
[參考文獻]
[1] Kivel■ T. The epidemiological challenge of the most frequent eye cancer:retinoblastoma,an issue of birth and death [J]. British Journal of Ophthalmology,2012,93(9): 1129-1131.
[2] Chang CY,Chiou TJ,Hwang B,et al. Retinoblastoma in Taiwan:survival rate and prognostic factors [J]. Japanese Journal of Ophthalmology,2013,50(3):242-249.
[3] Bai S,Ren R,Li B,et al. Delay in the diagnosis of retinoblastoma in China [J]. Acta Ophthalmologica,2011,89(1):e72-e74.
[4] Li B,Gao R,Zhang H, et al. Studies on multidrug resistance associated protein in retinoblastoma [J]. Zhonghua Yan Ke Za Zhi,2011,45(4):314-317.
[5] Gündüz K,Günalp I,Yalcndag N,et al. Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation [J]. Ophthalmology,2014,111(10):1917-1924.
[6] 鐘秀風(fēng),李永平,葛堅,等.人視網(wǎng)膜母細胞瘤腫瘤干細胞的分離培養(yǎng)[J].中國病理生理雜志,2012,22(6):1177-1181.
[7] Yuan J,Chen L,Chen X,et al. Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma [J]. Journal of International Medical Research,2012,40(6):2090-2097.
[8] Meng F,Glaser SS,F(xiàn)rancis H, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells [J]. Journal of Cellular and Molecular Medicine,2012,16(1):160-173.
[9] Jeon HM,Sohn YW,Oh SY,et al. ID4 Imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2 [J]. Cancer Research,2011,71(9):3410-3421.
[10] 鄧永文,方加勝,李茗初,等.膠質(zhì)瘤中腫瘤干細胞的分離,培養(yǎng)及鑒定[J].中國現(xiàn)代醫(yī)學(xué)雜志,2005,15(16):2449-2452.
[11] Zhu Y,Yu F,Jiao Y,et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5 [J]. Clinical Cancer Research,2011, 17(22):7105-7115.
[12] Xiang Y,Ma N,Wang D,et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly:a novel epigenetic therapy independent of decitabine [J]. Oncogene, 2014,33(3):378-386.
[13] Mitra M,Kandalam M,Harilal A,et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy [J]. Mol Vis,2012,18:290-308.
[14] Bhatnagar N,Li X,Padi SK,et al. Down regulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells [J]. Cell Death & Disease,2010,1(12):e105.
[15] Misawa A,Katayama R,Koike S,et al. AP-1-Dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells [J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics,2010,19(1):23-33.
(收稿日期:2014-06-16 本文編輯:蘇 暢)