• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    間甲基苯甲醚分子旋轉(zhuǎn)異構(gòu)體的質(zhì)量分辨閾值電離光譜

    2014-10-18 05:28:12曾圣淵曾文碧
    物理化學(xué)學(xué)報(bào) 2014年8期
    關(guān)鍵詞:新疆師范大學(xué)研究所原子

    秦 晨 曾圣淵 張 冰 曾文碧,*

    (1臺(tái)灣中央研究院原子與分子科學(xué)研究所,生物分子質(zhì)譜與光譜學(xué)實(shí)驗(yàn)室,臺(tái)北10617;2中國(guó)科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430071;3新疆師范大學(xué)物理與電子工程學(xué)院,新型發(fā)光材料與納米微結(jié)構(gòu)實(shí)驗(yàn)室,烏魯木齊 830054)

    1 Introduction

    Scientists have found that rotational isomers(rotamers)involve in some biological phenomena and processes.1,2Oikawa et al.3reported that some meta substituted anisoles and phenols have rotamers coexisting in chemical samples.Theoretical calculations predict that m-methylanisole has two stable structures,as shown in Fig.1.Both the methyl and methoxyl groups can donate electrons to the aromatic ring through the σ bond.In addition,the CH3group can interact with the π electrons of the ring through hyperconjugation and the OCH3group can share its lone-pair electrons in the oxygen atom with the ring.4These substituent-ring interactions will alter the electron density nearby the aromatic ring,leading to some changes in the molecular geometry and vibrations in the electronic state.m-Methylanisole is an important intermediate in organic synthesis and is mainly used as intermediate in the synthesis of dyestuffs and pharmaceuticals.This molecule has been studied by various spectroscopic methods.5-9Breen et al.5performed the excitation and dispersed laser-induced fluorescence(LIF)and resonance enhanced multiphoton ionization time-of-flight(REMPI TOF)mass spectroscopy experiments.They reported the origins of the S1←S0electronic transition of two rotamers and the energy barriers to the CH3torsion of m-methylanisole in the ground S0and electronically excited S1states.Ichimura,Suzuki,and their coworkers6,7recorded the excitation and dispersed LIF and hole-burning spectra.They also performed ab initio calculations to confirm the existence of the cis and trans rotamers of m-methylanisole.In addition to the investigations of the methyl torsion,they found three vibronic bands resulting from in-plane ring deformation vibrations in the S1state.Alvarez-Valtierra et al.8applied rotationally resolved fluorescence excitation spectroscopy and reported the rotational constants in the S0and S1states and the precise S1←S0electronic transition energies of the cis and trans rotamers of m-methylanisole.Concerning the ionic properties,Fujii et al.9applied pulsed field ionization zero kinetic(PFI-ZEKE)photoelectron spectroscopy to investigate the CH3torsion of o-,m-,and p-methylanisole in the D0state.To the best of our knowledge,the experimental data related to ring vibrations of the selected rotamers of m-methylanisole cation are still not available in the literature.Because many ring vibrations are active in most of benzene derivatives,their spectroscopic information is useful for molecular identification.

    Fig.1 Molecular structures of(a)cis-m-methylanisole and(b)trans-m-methylanisole

    In the present study,we apply the one-color and two-color resonant two-photon ionization(1C-and 2C-R2PI)and massanalyzed threshold ionization(MATI)techniques to investigate the molecular properties of m-methylanisole in the S1and cationic ground D0states.The MATI spectra of the selected rotamers were recorded by ionizing through a few intermediate vibronic states in the S1state to obtain more information about the active cation vibrations.Comparison of the experimental data of m-methylanisole with those of anisole,10toluene,11and their derivatives12-21allows one to learn the substitution effects of the methyl and methoxyl groups on the transition energy and molecular vibration.We have also performed the ab initio and density function theory(DFT)calculations to provide possible interpretation of our experimental findings.Because the present experiments involve twophoton excitation and ionization steps,these spectroscopic data are useful to gain knowledge about photochemical and photophysical processes with UV light sources.

    2 Experimental and computational methods

    2.1 Experimental method

    The experiments reported here were performed by using a laserbased TOF mass spectrometer,described in our previous publication.22Only a brief description is stated here.m-Methylanisole(99%purity)was purchased from Sigma-Aldrich Corporation and used without further purification.The sample was heated to about 50°C to acquire sufficient vapor pressure.The vapors were seeded into 0.2-0.3 MPa of helium and expanded into the vacuum through a pulsed valve with a 0.15 mm diameter orifice.The generated molecular beam was collimated by a skimmer located 15 mm downstream from the nozzle orifice.During the experiments,the gas expansion,laser-molecular beam interaction,and ion detection regions were maintained at pressures of about 1×10-3,1×10-5,and 1×10-6Pa,respectively.

    The photoionization efficiency(PIE)and MATI experiments are accomplished by applying two independent tunable UV lasers controlled by a delay/pulse generator(Stanford Research Systems DG535).The excitation source is a Nd:YAG pumped dye laser(Quanta-Ray PRO-190-10/Lambda-Physik,Scanmate UV with BBO-I crystal;Coumarin-540 dye).The generated visible radiation is frequency-doubled to produce UV radiation.The ionization UV laser(Lambda-Physik,Scanmate UV with BBO-III crystal;LDS-698 and DCM dyes)is pumped by a frequencydoubled Nd-YAG laser(Quanta-Ray LAB-150).A laser wavelength meter(Coherent,WaveMaster)was used to calibrate the wavelength of laser.Due to the systematic instrument errors,to obtain the true wavelength,the displayed wavelength of the excitation and ionization lasers needs to be added by 0.20 and 0.34 nm,respectively.The resulting values are nearly identical with those of the high resolution electronic spectroscopic experiments.8,23These two counter-propagating laser beams were focused and intersected perpendicularly with the molecular beam at 50 mm downstream from the nozzle orifice.

    The PIE experiment is done by scanning the ionization(probe)laser while fixing the excitation(pump)laser at a particular intermediate(e.g.S100)level of the selected molecular species.It detects non-energy-selected prompt ions and gives a PIE curve,yielding ionization energy(Ip)with an uncertainty of 10-20 cm-1.In contrast,the MATI experiment detects threshold ions formed during the pulsed field ionization(PFI)process and gives a sharp peak at the ionization limit.When the sum of two photon energies is very close to the ionization threshold,both the prompt ions and the high n Rydberg neutrals are produced simultaneously in the“field-free”laser-molecular beam interaction zone(region I of our TOF lens system).These two species move with same velocity as the molecular beam of about 1500 m·s-1,depending on the carrier gas and stagnation pressure in the pulsed nozzle.22A pulsed electric field of-1.0 V·cm-1(duration=10 μs)(-2.5 V at TOF plate U1;0 V at plate U2;distance of plate U1 and U2 is 2.5 cm)is switched on about 20 ns after the occurrence of the laser pulses to guide the prompt ions towards the opposite direction of the ion detector.Because the Rydberg neutrals are not affected by the electric field,they keep moving to enter the field ionization region.After a time delay of more than 8.0 μs,the Rydberg neutrals reach the field-ionization zone(region II of our TOF lens system).It follows that a pulsed field of 200 V·cm-1(duration=10 μs)(+2250 V at TOF plate U2;+2050 V at plate U3;0 V at plate U4;distance between any two of these three plates is 1 cm)is applied in region II to field-ionize the high n Rydberg neutrals and to accelerate the newly formed threshold ions toward the dualstacked microchannel plate(MCP)ion detector.As stated above,the first pulsed electric field of-1.0 V·cm-1is referred as the spoiling field which rejects the prompt ions and causes the measured value to be lower than the true adiabatic Ipdue to the Stark effect.24,25The energy lowering(in cm-1)due to the electrical field effect may be estimated by 4.0F1/2when a pulsed field F(in V·cm-1)is applied.Under our experimental conditions,F is-1 V·cm-1.This means that the measured value is lowered than the true Ipby 4 cm-1.26

    The signal from the MCP ion detector is accumulated and analyzed by a multichannel scaler(MCS,Stanford Research Systems,SR430).Each TOF mass spectrum at a particular laser wavelength is accumulated for 300 laser shots to avoid spurious signals due to shot-to-shot laser fluctuation and shown on the screen of the MCS.The MCS and a transient digitizer which monitors laser pulses are interfaced to a personal computer(PC).All TOF mass spectra are saved in the PC at a 0.020 nm(equivalent to 1.2 cm-1)interval over the entire scanning range of laser wavelength.Composite optical spectra of intensity versus wavelength are then constructed from the individual mass spectra.As the ion signal is proportional to the photon intensities of the excitation and ionization lasers in a two-color two-photon process,the obtained optical spectra are normalized to the laser power.

    2.2 Computational method

    We performed the ab initio and DFT calculations by using Gaussian 09 program package27to predict the optimized structures,total energies,vibrational frequencies,and other molecular properties of m-methylanisole in the S0,S1,and D0states.In the DFT calculations,both the Becke three-parameter functional with the Lee-Yang-Parr functional(B3LYP)and the PW91 functional(B3PW91)calculations with the 6-311++G(d,p)basis set can predict the electronic excitation and ionization energies with an uncertainty of no more than 5%.However,the latter gives a slightly better prediction on the vibrational frequencies in the S1and D0states.The configuration interaction singles(CIS),the timedependent(TD)B3PW91 calculations with the 6-311++G(d,p)basis set were applied to predict the vibrational frequencies of the S1state.When scaling factors of 0.93 and 0.98 were applied to correct the combined errors stemming from basis set incompleteness,the negligence of electron correlation and vibrational anharmonicity,the calculated vibrational frequencies match well with the measured values from the vibronic spectroscopic experiments.The vibrational frequencies of the D0state were calculated at the unrestricted Hartree-Fock(HF)and B3PW91 levels with the 6-311++G(d,p)basis set.When scaling factors of 0.92 and 0.98 for cis-m-methylanisole and 0.90 and 0.96 for trans-mmethylanisole were applied,the calculated values became very close to the measured frequencies.The adiabatic Ipwas deduced from the difference in the zero-point energy(ZPE)levels of the cation in the D0state and the corresponding neutral species in the S0state.

    3 Results

    3.1 1C-R2PI spectrum of m-methylanisole

    Fig.2 shows the 1C-R2PI spectrum of m-methylanisole over an energy range of 1600 cm-1,recorded by using the 1C-R2PI technique.The respective band origins of the S1←S0electronic excitation(E1)of the cis and trans rotamers appear at(36049±2)and(36117±2)cm-1,which are in excellent agreement with those reported previously.5-8In the present experimental conditions,the full width at half maximum(FWHM)of these bands is 5-7 cm-1.Therefore,the origin bands may contain the methyl internal rotational levels 0a1and 1e.

    Fig.2 1C-R2PI spectrum of m-methylanisole near the S1←S0electronic transition

    The observed vibronic bands along with the excitation photon energy,relative intensity,energy shift from the band origin,cal-culated vibrational frequency,and possible assignment are listed in Table 1.We use“τ”to designate the CH3torsion throughout this paper.The spectral assignment has been achieved by comparing the present data with those in the literature5-9,28and the predicted values from the CIS and TD-B3PW91 calculations with the 6-311++G(d,p)basis set.The numbering system of the normal vibrations follows that used by Varsanyi and Szoke29for benzene derivatives and is based on Wilson′s notations.30According to Varsanyi,28m-methylanisole is classified as an m-Di-“l(fā)ight”substituted benzene.These normal vibrations can be viewed by following the GaussView procedure of the Gaussian 09 program.27Previous studies5-9are mainly on the spectral bands related to the CH3torsion.Here,we focus on those resulting from the in-plane ring and substituent-sensitive vibrations.

    m-Methylanisole has 51 normal vibrations including 30 benzene-like,9 methyl,and 12 methoxyl modes.Only those active vibrations in the S1state with large Franck-Condon overlaps can be observed in the 1C-R2PI spectrum.Because the vibration frequency of each mode of multiply substituted benzene is related to substituent-ring and substituent-substituent interactions,each molecule has a unique set of spectral features.Therefore,a wellresolved spectrum can be used for molecular identification,although the spectral assignment is not trivial.The bands at 36193 and 36266 cm-1in Fig.2 corresponding to shifts by 144 and 149 cm-1on the high energy side of the band origins of the two respective rotamers result from the CH3torsion τ(2e)of cis-mmethylanisole and τ(3a1)of trans-m-methylanisole.This finding is consistent with that reported in the literature.6,9The assignment for the observed vibronic transitions related to the ring vibrations of the rotamers of m-methylanisole has been achieved by comparing the present experimental data with those of the corresponding rotamers m-fluoroanisole12and m-chloroanisole31as well as the calculated results.The vibronic transitions related to vibrations 6b1,11,7b1,121,and 131are found to have frequencies of 519,681,827,952,and 1178 cm-1for cis-m-methylanisole and 529,688,838,961,and 1215 cm-1for trans-m-methylanisole.Modes 6b,1,and 12 mainly involve in-plane ring deformation,whereas modes 7b and 13 designate ring C1―OCH3and ring C3―CH3stretching vibrations,respectively.In-plane ring deformation 6a of the cis rotamer appears at 437 cm-1with low intensity.It has been reported that mode 1 has frequency of 693 cm-1for both cisand trans-m-fluoroanisole12and 626 and 639 cm-1for cis-and trans-m-chloroanisole,31respectively.These data show that the frequency difference of each normal vibration of the two rotamers depends on the nature,vibrational pattern,and relative orientation of the substituents.

    3.2 Cation spectra of selected cis-and transm-methylanisole

    To investigate molecular properties of selected rotamers of mmethylanisole,we have performed the PIE and MATI experiments.When the sum of the photon energies of the pump and probe laser is close to the ionization limit,both the high n Rydberg neutrals and prompt ion are produced simultaneously in the“field free”laser-molecular beam interaction region(region I of our TOF lens system).22After a time delay of about 11.2 μs,the Rydberg molecules are field ionized along with the prompt ions and accelerated in region II of our TOF lens system.22This leads to an abrupt change of the total ion current near the ionization limit in a PIE spectrum.Fig.3 shows the PIE curves of cis-and trans-mmethylanisole,recorded by ionizing via their respective S100levels at 36049 and 36117 cm-1.The first rising step in the PIE of cis-mmethylanisole indicates that the Ipis(64859±10)cm-1.Two more steps clearly appear at 64957 and 65043 cm-1,which are higher than the first one by 98 and 184 cm-1,respectively.They corre-spond to the internal methyl rotations τ(2e)and τ(3a1)of the cism-methylanisole cation.Similarly,the Ipof trans-m-methylanisole is found to be(65110±10)cm-1.Two steps near 65199 and 65262 cm-1result from the CH3torsion τ(2e)and τ(3a1)of the trans-mmethylanisole cation with the respective frequencies of 89 and 152 cm-1.When we performed the MATI experiments which detect only the threshold ions,we observed sharp peaks corresponding to these abruptly rising steps,as seen in Figs.4 and 5.A similar observation of the out-of-plane ring deformation vibration of the benzimidazole32cation has been reported.

    Table 1 Observed bands in the 1C-R2PI spectrum of m-methylanisole in Fig.2

    Fig.3 PIE curves of(a)cis-m-methylanisole and(b)trans-mmethylanisole,recorded by ionizing via their respective S100 levels

    Fig.4 shows the MATI spectra of cis-m-methylanisole,recorded by ionizing via the 00(36049 cm-1),τ(2e)(00+144 cm-1),and 6b1(00+519 cm-1)levels in the S1state.Although some portions have low intensity,the signal-to-noise ratio of these spectra is reasonably good.Consideration of the uncertainty of the laser photon energy,the spectral width,and the Stark effect,the adiabatic Ipof cis-m-methylanisole is determined to be(64859±5)cm-1((8.0415±0.0006)eV),which is in good agreement with that measured by our PIE method and by the ZEKE experiments reported by Fujii and coworkers9.The observed MATI bands resulting from the cation vibrations and their possible assignments are listed in Table 2.As stated previously,the band origin may include the methyl internal rotational levels 0a1and 1e.When the S100state is used as the intermediate level,the pronounced bands at 98,180,248,and 307 cm-1correspond to the CH3torsion τ(2e),τ(3a1),τ(5e),and τ(6a1)of cis-m-methylanisole cation,as reported in the literature.9The weak bands at 648,733,798,and 857 cm-1are caused by the combinational motion of the in-plane ring deformation 6b1vibration and the CH3torsion τ(2e), τ(3a1), τ(5e),and τ(6a1),respectively.Another weak band at 951 cm-1results from the inplane ring deformation 121vibration.When the S1τ(2e)state is used as the intermediate level,the pronounced bands at 249,338,and 416 cm-1correspond to the CH3torsion τ(5e),τ(7e),and τ(8e).This assignment fulfills the selection rule of e?e transition.The weak bands at 803 and 958 cm-1correspond to the combinational motion 6b1τ(5e)and the in-plane ring deformation 121vibration.When the MATI spectrum is recorded by ionizing via the vibronic S16b1state which may contain CH3torsion with the a and e symmetry,the weak bands at 180 and 250 cm-1are assigned to the CH3torsion of τ(3a1)and τ(5e).9The distinct bands at 648,733,796,and 857 cm-1correspond to the combinational motion of vibration 6b1and the CH3torsion of τ(2e),τ(3a1),τ(5e),and τ(6a1).The weak bands at 549 and 1280 cm-1result from vibrations 6b1and 131,respectively.

    Fig.4 MATI spectra of cis-m-methylanisole,recorded by ionizing via the(a)S100,(b)S1τ(2e),and(c)S16b1 intermediate states

    Table 2 Observed bands(cm-1)in the MATI spectra of cis-mmethylanisole in Fig.4a

    Fig.5 MATI spectra of trans-m-methylanisole,recorded by ionizing via the(a)S100,(b)S1τ(3a1),and(c)S16b1 intermediate states

    Fig.5 shows the MATI spectra of trans-m-methylanisole,recorded by ionizing via the 00(36117 cm-1),τ(3a1)(00+149 cm-1),and 6b1(00+529 cm-1)levels in the S1state.The adiabatic Ipis determined to be(65110±5)cm-1((8.0726±0.0006)eV)which is also in excellent agreement with that measured by our PIE method and by the ZEKE experiments.9The observed MATI bands and their possible assignments are listed in Table 3.As seen in Fig.5(a),when the S100state is used as the intermediate state,the lowfrequency bands at 89,152,and 268 cm-1result from the CH3torsion τ(2e),τ(3a1),and τ(6a1)of the trans-m-methylanisole cation,as reported previously.9The weak bands at 600 and 709 cm-1correspond to the combinational motions 151τ(3a1)and 6b1τ(3a1),respectively.Another weak band at 860 cm-1is tentatively assigned to the substituent-sensitive ring C1―OCH3stretching vibration 7b1.It is interesting to note that when the S1τ(3a1)is used as the intermediate level,many weak MATI bands related to inplane ring fundamental vibrations of the cation are observed,as seen in Fig.5(b).The bands at 446,555,959,1085,and 1160 cm-1are related to vibrations 151,6b1,121,18a1,and 9b1,respectively.The band at 708 cm-1corresponds to the combinational motion6b1τ(3a1).When the MATI spectrum is recorded by ionizing via the S16b1vibronic level,distinct bands at 712 and 823 cm-1correspond to the combinational motions 6b1τ(3a1)and 6b1τ(6a1)of the trans-m-methylanisole cation,respectively.The weak bands at 600 and 1269 cm-1result from the combinational motion 151τ(3a1)and the substituent-sensitive ring C3―CH3stretching vibration 131,respectively.

    Table 3 Observed bands(cm-1)in the MATI spectra of trans-mmethylanisole in Fig.5 a

    4 Discussion

    4.1 Optimized structures of m-methylanisole in the S0,S1,and D0states

    Our theoretical calculations predict that in the S0,S1,and D0states m-methylanisole has stable cis and trans configurations(Fig.1)as in the cases of m-fluoroanisole12and m-chloroanisole31.Fig.4(a)and Fig.5(a)show a very weak 0+band of the MATI spectrum recorded by ionizing via the S100intermediate levels of cis-and trans-m-methylanisole.This observation is distinctly different from that of m-fluoroanisole and m-chloroanisole.Previous studies show that molecular geometry and some in-plane vibrations in the D0state resemble those in the S1state for both rotamers of m-fluoroanisole12and m-chloroanisole.31In contrast,the present results may indicate that the geometry of the cis and trans rotamers of m-methylanisole changes drastically upon the D0←S1transition.Here,we present the results from the theoretical calculations to support the experimental findings which imply that interaction of the CH3substituent with the aromatic ring is quite different from that of either F or Cl atom.

    Table 4 lists the optimized structural parameters of cis-and trans-m-methylanisole in the S0,S1,and D0states,predicted by the restricted B3PW91,TD-B3PW91,and unrestricted B3PW91 calculations with the 6-311++G(d,p)basis set.It is clear that the substituent-ring interaction causes the aromatic ring to distort from a regular hexagon.It follows that the bond lengths and bond angles of cis-and trans-m-methylanisole change upon electronic transition.As shown in Table 4,the S1←S0excitation leads to an expansion of the aromatic ring for both rotamers.Here,we use the cis rotamer as an example for discussion.The electronic excitation causes the lengths of the C1―C2,C2―C3,C3―C4,C4―C5,C5―C6,and C6―C1 bonds of cis-m-methylanisole(see Fig.1)to increase from 0.1393,0.1401,0.1391,0.1396,0.1383,and 0.1399 nm to 0.1420,0.1427,0.1420,0.1411,0.1419,and 0.1418 nm,respectively.It is noted that the C1―OCH3and C3―CH3bonds slightly shrink from 0.1361 to 0.1345 nm and 0.1505 to 0.1488 nm,respectively.The shortening of these two substituent related bonds indicates that the interaction of the CH3and OCH3groups with the aromatic ring becomes slightly enhances upon S1←S0transition.The change of bond angles ∠C6C1C2,∠C2C3C4,and ∠C3C4C5 from 120.0o,119.1o,120.2oto 123.2o,118.3o,and 123.2oalso implies that the substituent-ring interaction varies upon the electronic transition.

    The D0←S1transition involves removing one electron from cism-methylanisole in the S1state.The data in Table 4 showed that the lengths of the C2―C3,C5―C6,and C1―OCH3bonds decrease substantially from 0.1427,0.1419,and 0.1345 nm to 0.1376,0.1372,and 0.1304 nm,respectively.This implies that the D0←S1transition leads to double bond characters in the C2―C3,C5―C6,and C1―OCH3bonds.In consideration of the structure in Fig.1,the ring part of cis-m-methylanisole in the cationic D0state is similar to that of quinone.4These results show that the D0←S1transition leads to a significant change in molecular geometry.The predicted structural change of trans-m-methylanisole uponthe S1←S0and D0←S1transitions is similar to that of cis-mmethylanisole,as shown in Table 4.The B3PW91/6-311++G(d,p)calculations predict that the aromatic ring of both rotamers of mmethylanisole expands upon the S1←S0electronic excitation.Furthermore,the ring part changes significantly from a distorted hexagon to a quinone-like structure in the D0←S1transition.These calculated results support the experimental findings of the very weak 0+bands in the MATI spectra of cis-and trans-m-methylanisole,as seen in Fig.4(a)and Fig.5(a).

    Table 4 Bond lengths and angles of cis-and trans-mmethylanisole in the S0,S1and D0states,predicted by the restricted B3PW91,TD-B3PW91,and unrestricted B3PW91 methods with the 6-311++G(d,p)basis set,respectively

    4.2 Configuration and substitution effects on the E1and I p

    The respective E1of cis-and trans-m-methylanisole are measured to be 36049 and 36117 cm-1.The CIS/6-311++G(d,p)calculations predict these values to be 45173 and 45335 cm-1.Moreover,the TD-B3LYP and TD-B3PW91 methods with the same basis set give 37341 and 37717 cm-1for the cis rotamer,and 37371 and 37796 cm-1for the trans rotamer,respectively.These results show that the CIS,TD-B3LYP,and TD-B3PW91 methods overestimate the E1by about 25%,3.5%,and 4.6%,respectively.The adiabatic Ipof the cis and trans rotamers are determined to be 64859 and 65110 cm-1,respectively.9The HF/6-311++G(d,p)calculations predict these values to be 52968 and 53278 cm-1,which are less than the measured values by about 18%.The B3LYP and B3PW91 methods with the same basis set give 63089 and 63263 cm-1for the cis rotamer,and 63415 and 63601 cm-1for the trans rotamer.These results show that the B3LYP and B3PW91 calculated values are less than the measured ones by about 2.7%and 2.4%,respectively.Evidently,these calculations show that the DFT method is better than the HF method in predicting the E1and Ipof both rotamers.In addition,all of these calculations predict that the cis rotamer has a slightly smaller E1and Ipthan the trans rotamer of m-methylanisole.Similar findings have been reported for m-fluoroanisole12and m-chloroanisole.31

    The experimental and calculated results show that the cis is more stable than the trans rotamer in the upper(S1and D0)states than the lower(S0)state.This indicates that the through-space(or roaming)interaction between the CH3and OCH3groups of the cis rotamer is stronger than that of the trans rotamer in the upper state.The difference in the E1and Ipof the two rotamers of mmethylanisole results from different degrees of interaction between the two substituents in various energy states.Similar findings have been reported for m-cresol,3,20m-fluoroanisole,3,12mchloroanisole,31m-fluorophenol,3,33m-chlorophenol,3m-methoxyaniline,15m-aminophenol,34,353,4-difluoroanisole,36and 3,4-difluorophenol.37

    Our restricted B3PW91/6-311++G(d,p)calculations predict that in the S0state the ZPE level of cis-m-methylanisole is higher than that of trans-m-methylanisole by 38 cm-1.With the measured values stated previously,the ZPE level in the S1state of the cis rotamer is calculated to be lower than that of the trans rotamer by 106 cm-1,as shown in Fig.6.Similarly,the adiabatic Ipof the cis and trans rotamers of m-methylanisole are determined to be 64859 and 65110 cm-1by our MATI experiments,respectively.The ZPE level in the cationic D0state of the cis rotamer is then deduced to be lower than that of the trans rotamer by 289 cm-1.These experimental data and calculated results imply that the throughspace interaction between the CH3and OCH3substituents at the meta position of the cis rotamer is stronger than that of the trans rotamer of m-methylanisole.Therefore,the strength of the throughspace substituent-substituent interaction of m-methylanisole in the electronic state follows the order:S0

    It is known that a substituent can interact with an aromatic ring by inductive effect through the σ bond and by the resonant(or mesomeric)effect through the π bond.4The inductive effect,which is related to the electronegativity of the substituent,reflects the ability of donating or accepting electrons from the substituent to the ring.The resonant effect depends on the extent of π orbital overlap of the substituent with the ring.In addition,the hydrogen atoms of an alkyl group can interact with an aromatic group by hyperconjugation.The collective effect of the above mentioned factors can cause a slight change in the nearby electron density of the aromatic ring,leading to a lowering of the ZPE level of the electronic state.If the degree of the lowering of the ZPE level of the upper state is greater than that of the lower one,it gives smaller transition energy.Oppositely,it yields a slightly larger transition energy.26

    Fig.6 Energy level diagram of the cis and trans rotamers of mmethylanisole in the S0,S1,and D0states

    Table 5 lists the measured E1and Ipof anisole and its derivative,on the basis of the LIF,REMPI,ZEKE,and MATI experiments.10,14,15The excitation energy of the D0←S1transition(E2)are also shown in Table 5.These anisole derivatives have a second substituent of CH3,NH2,and OCH3at the meta position with respect to the OCH3group.Previous studies10,14,15show that both m-methylanisole and m-methylaniline have two rotamers,whereas m-dimethoxybenzene has three rotamers involved in the two-photon excitation and ionization processes.As shown in Table 5,the E1and Ipof mmethylanisole,m-methoxyaniline,and m-dimethoxybenzene are less than those of anisole.The observed smaller transition energy of the anisole derivatives indicates that the interaction of the CH3,NH2,and OCH3groups and the aromatic ring is stronger in the upper(i.e.S1or D0)state than that in the lower(i.e.S0)state.Table 6 lists the measured E1and Ipof toluene11and its derivatives.16-19It is evident that substitution of the CH3,NH2,and OCH3groups leads to a smaller E1and Ip.These data support the previous statement that the substituent-ring interaction of these anisole and toluene derivatives is stronger in the upper electronically excited S1(or cationic D0)state than that in the lower ground S0state.

    4.3 Frequencies of observed active vibrations in the S1and D0states

    Figs.2,4,and 5 show that some fundamental in-plane ring and substituent-sensitive vibrations are active in addition to the CH3torsion for both the cis and trans rotamers of m-methylanisole in the S1and D0states.As listed in Table 7,frequencies of modes 6b1,11,7b1,121,and 131are measured to be 519,681,827,952,and 1178 cm-1for cis-m-methylanisole and 529,688,838,961,and 1215 cm-1for trans-m-methylanisole in the S1state.The vibrational frequencies of these modes of the cis rotamer are slightly less than those of the trans rotamer.Furthermore,frequencies of vibrations 6b1,121,and 131are measured to be 549,951,and 1280 cm-1for cis-m-methylanisole and 555,959,and 1269 cm-1for trans-m-methylanisole in the D0state.This indicates that frequencyis slightly different for each mode of the two rotamers.In consideration of the molecular geometry changes upon the D0←S1transition,we propose that the nature,relative orientation of the CH3and OCH3substituents,molecular geometry,and vibrational pattern can influence the frequency of normal modes.

    Table 5 Measured transition energies(cm-1)of anisole and its derivatives

    Table 6 Measured transition energies(cm-1)of toluene and its derivatives

    Table 7 Measured frequencies(cm-1)of active vibrations of m-methylanisole in the S1and D0states

    4.4 Energy barrier of the cis-trans isomerization of mmethylanisole

    Fig.7 One-dimensional potential energy surfaces for the rotation of the C―OCH3bond of m-methylanisole in the(a)D0,(b)S1,and(c)S0states

    As discussed previously,the cis and trans rotamers of mmethylanisole involve in two-photon excitation and ionization processes.We have performed the restricted B3PW91,TDB3PW91,and unrestricted B3PW91 calculations with the 6-311++G(d,p)basis set to investigate the cis-trans isomerization of mmethylanisole in the S0,S1,and D0states,respectively.It was achieved by scanning the one-dimensional potential energy surface on the rotation of the C1―OCH3.As illustrated in Fig.7(c),in the S0state,the trans rotamer has the lowest total electronic energy,whereas the cis configuration lies in an energy level higher by 31 cm-1.In addition,an intermediate species with the orthogonal form(with the C1―O―CH3angle of 90°)has energy higher than that of the trans con?guration by 1136 cm-1.This result predicts that the trans form is the most stable configuration and the energy barrier of the cis-trans isomerization is in the range of 1105-1136 cm-1.Similarly,the most stable structure of mmethylanisole in the S1and D0states also has the trans configuration,as shown in Fig.7(b)and 7(a).However,the isomerization barriers are greatly enhanced to 3011-3038 cm-1and 4828-5118 cm-1in the S1and D0states,respectively.The increase of isomerization barriers is due to the fact that the interaction between the OCH3group and the ring is stronger in the upper(S1or D0)state than that in the lower S0state.As listed in Table 4,these DFT calculations predict the C1―OCH3bond lengths to be 0.1361,0.1345,and 0.1304 nm for cis-m-methylanisole and 0.1361,0.1344,and 0.1302 nm for trans-m-methylanisole in the S0,S1,and D0states,respectively.A shorter length implies a stronger chemical bond.Therefore,the isomerization energy barrier to the C1―OCH3rotation follows the order:S0

    5 Conclusions

    We have applied the 1C-R2PI,2C-R2PI,and MATI techniques to record the 1C-R2PI,PIE,and cation spectra of m-methylanisole.The E1of the cis and trans rotamers are determined to be 36049 and 36117 cm-1,whereas the adiabatic Ipare 64859 and 65110 cm-1,respectively.Our restricted B3PW91/6-311++G(d,p)calculations predict that in the S0state the ZPE level of cis-mmethylanisole is higher than that of trans-m-methylanisole by 38 cm-1.With the measured E1and Ip,the ZPE levels of the cis rotamer in the S1and D0states are calculated to be lower than those of the trans rotamer by 106 and 289 cm-1,respectively.These imply that the through-space(or“roaming”)interaction between the CH3and OCH3substituents of m-methylanisole in the electronic state follows the order:S0

    Analysis of the 1C-R2PI and cation spectra show that several in-plane ring and substituent-sensitive vibrations are active in addition to the CH3torsion for both the cis and trans rotamers of m-methylanisole in the S1and D0states.However,the frequency difference of each vibration may depend on the nature,vibrational pattern,relative orientation,and the extent of the substituents participated in the normal vibration.

    (1)Dian,B.C.;Longarte,A.;Winter,P.R.;Zwier,T.S.J.Chem.Phys.2004,120,133.doi:10.1063/1.1626540

    (2)Pan,C.P.;Barkley,M.D.Biophys.J.2004,86,3828.doi:10.1529/biophysj.103.038901

    (3)Oikawa,A.;Abe,H.;Mikami,N.;Ito,M.Chem.Phys.Lett.1985,116,50.doi:10.1016/0009-2614(85)80123-8

    (4)McMurry,J.Organic Chemistry,7th ed.;Brooke/Cole Publishing Company:Belmont,California,2007.

    (5)Breen,P.J.;Bernstein,E.R.;Secor,H.V.;Seeman,J.I.J.Am.Chem.Soc.1989,111,1958.doi:10.1021/ja00188a002

    (6)Ichimura,T.;Suzuki,T.J.Photochem.Photobiol.C:Photochem.Rev.2000,1,79.doi:10.1016/S1389-5567(00)00006-X

    (7)Kojima,H.;Miyake,K.;Sakeda,K.;Suzuki,T.;Ichimura,T.;Tanaka,N.;Negishi,D.;Takayanagi,M.;Hanazaki,I.J.Mol.Struct.2003,655,185.doi:10.1016/S0022-2860(03)00258-8

    (8)Alvarez-Valtierra,L.;Yi,J.T.;Pratt,D.W.J.Phys.Chem.B 2006,110,19914.doi:10.1021/jp062050h

    (9)Kinoshita,S.;Kojima,H.;Suzuki,T.;Ichimura,T.;Yoshida,K.;Sakai,M.;Fujii,M.Phys.Chem.Chem.Phys.2001,3,4889.doi:10.1039/b105719g

    (10)Pradhan,M.;Li,C.;Lin,J.L.;Tzeng,W.B.Chem.Phys.Lett.2005,407,100.doi:10.1016/j.cplett.2005.03.068

    (11)Lu,K.T.;Eiden,G.C.;Weisshaar,J.C.J.Phys.Chem.1992,96,9742.doi:10.1021/j100203a032

    (12)Shiung,K.S.;Yu,D.;Huang,H.C.;Tzeng,W.B.J.Mol.Spectrosc.2012,274,43.doi:10.1016/j.jms.2012.04.004

    (13)Ullrich,S.;Geppert,W.D.;Dessent,C.E.H.;Müller-Dethlefs,K.J.Phys.Chem.A 2000,104,11864.

    (14)Yang,S.C.;Huang,S.W.;Tzeng,W.B.J.Phys.Chem.A 2010,114,11144.doi:10.1021/jp1026652

    (15)Lin,J.L.;Huang,C.J.;Lin,C.H.;Tzeng,W.B.J.Mol.Spectrosc.2007,244,1.doi:10.1016/j.jms.2007.05.001

    (16)Zhang,S.;Tang,B.F.;Wang,Y.M.;Zhang,B.Chem.Phys.Lett.2004,397,495.doi:10.1016/j.cplett.2004.09.025

    (17)Held,A.;Selzle,H.L.;Schlag,E.W.J.Phys.Chem.A 1998,102,9625.

    (18)Lin,J.L.;Lin,K.C.;Tzeng,W.B.J.Phys.Chem.A 2002,106,6462.doi:10.1021/jp0204713

    (19)Okuyama,K.;Mikami,N.;Ito,M.Laser Chem.1987,7,197.doi:10.1155/LC.7.197

    (20)Huang,J.;Huang,K.;Liu,S.;Luo,Q.;Tzeng,W.B.J.Photochem.Photobiol.A:Chem.2007,188,252.doi:10.1016/j.jphotochem.2006.12.016

    (21)Huang,J.;Lin,J.L.;Tzeng,W.B.Spectrochim.Acta A 2007,67,989.doi:10.1016/j.saa.2006.09.018

    (22)Tzeng,W.B.;Lin,J.L.J.Phys.Chem.A 1999,103,8612.

    (23)Sinclair,W.E.;Pratt,D.W.J.Chem.Phys.1996,105,7942.doi:10.1063/1.472710

    (25)Schlag,E.W.ZEKE Spectroscopy;Cambridge University Press:Cambridge,1998;pp 40-41.

    (26)Zhang,B.;Li,C.;Su,H.;Lin,J.L.;Tzeng,W.B.Chem.Phys.Lett.2004,390,65.doi:10.1016/j.cplett.2004.04.013

    (27)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09,Revision A.02;Gaussian Inc.:Wallingford,CT,2009.

    (28)Varsanyi,G.Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives;Wiley:New York,1974;pp 185,201.

    (29)Varsanyi G.;Szoke,S.Vibrational Spectra of Benzene Derivatives;Academic Press:New York,London,1969.

    (30)Wilson,E.B.Phys.Rev.1934,45,706.doi:10.1103/PhysRev.45.706

    (31)Huang,H.C.;Shiung,K.S.;Jin,B.Y.;Tzeng,W.B.Chem.Phys.2013,425,114.doi:10.1016/j.chemphys.2013.08.013

    (32)Lin,J.L.;Li,Y.C.;Tzeng,W.B.Chem.Phys.2007,334,189.doi:10.1016/j.chemphys.2007.03.002

    (33)Yosida,K.;Suzuki,K.;Ishiuchi,S.;Sakai,M.;Fujii,M.;Dessent,C.E.H.;Müller-Dethlefs,K.Phys.Chem.Chem.Phys.2002,4,2534.doi:10.1039/b201107g

    (34)Shinozaki,M.;Sakai,M.;Yamaguchi,S.;Fujioka,T.;Fujii,M.Phys.Chem.Chem.Phys.2003,5,5044.doi:10.1039/b309461h

    (35)Xie,Y.;Su,H.;Tzeng,W.B.Chem.Phys.Lett.2004,394,182.doi:10.1016/j.cplett.2004.07.005

    (36)Xu,Y.;Tzeng,S.Y.;Tzeng,W.B.Spectrochim.Acta A 2013,102,365.doi:10.1016/j.saa.2012.10.020

    (37)Tsai,C.Y.;Tzeng,W.B.J.Photochem.Photobiol.A 2013,270,53.doi:10.1016/j.jphotochem.2013.07.014

    猜你喜歡
    新疆師范大學(xué)研究所原子
    睡眠研究所·Arch
    原子究竟有多?。?/a>
    原子可以結(jié)合嗎?
    帶你認(rèn)識(shí)原子
    睡眠研究所民宿
    未來(lái)研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    呂蓓佳作品
    屈慧作品
    心力衰竭研究所簡(jiǎn)介
    新疆師范大學(xué)美術(shù)學(xué)院研究生作品選
    美術(shù)界(2013年6期)2013-04-29 13:52:30
    成年免费大片在线观看| 国产精品一区二区三区四区久久| 午夜a级毛片| 国产不卡一卡二| av国产免费在线观看| 国产免费av片在线观看野外av| 久久久久久久久大av| 国产成人福利小说| 日本免费a在线| 很黄的视频免费| 99精品在免费线老司机午夜| 日韩欧美 国产精品| 亚洲片人在线观看| 欧美激情在线99| 国产精品亚洲av一区麻豆| 中文字幕av在线有码专区| 欧美三级亚洲精品| АⅤ资源中文在线天堂| 操出白浆在线播放| 亚洲午夜理论影院| 男女午夜视频在线观看| 国产黄色小视频在线观看| 夜夜夜夜夜久久久久| 日日夜夜操网爽| 色哟哟哟哟哟哟| 久久久久久久久大av| 国产精品 国内视频| 特大巨黑吊av在线直播| 国产精品乱码一区二三区的特点| 国产精品香港三级国产av潘金莲| 两个人视频免费观看高清| 国产69精品久久久久777片| 在线国产一区二区在线| 国产av在哪里看| 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看亚洲国产| 看黄色毛片网站| 国产精品综合久久久久久久免费| 亚洲av成人av| 国产美女午夜福利| 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 国产精品一区二区三区四区久久| 18禁黄网站禁片午夜丰满| 免费观看精品视频网站| 欧美+亚洲+日韩+国产| 变态另类丝袜制服| 午夜激情福利司机影院| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看| 久久久久久久久久黄片| 午夜精品久久久久久毛片777| 欧美一级a爱片免费观看看| 精品国产亚洲在线| 成年女人永久免费观看视频| xxxwww97欧美| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久,| 国内毛片毛片毛片毛片毛片| 久久精品国产99精品国产亚洲性色| 亚洲国产日韩欧美精品在线观看 | a在线观看视频网站| svipshipincom国产片| 欧美激情久久久久久爽电影| 他把我摸到了高潮在线观看| 男人的好看免费观看在线视频| 法律面前人人平等表现在哪些方面| 色老头精品视频在线观看| 亚洲精品日韩av片在线观看 | 国产精品电影一区二区三区| 国产精品影院久久| 亚洲av第一区精品v没综合| 亚洲欧美精品综合久久99| 757午夜福利合集在线观看| 亚洲精品成人久久久久久| а√天堂www在线а√下载| 搡老熟女国产l中国老女人| 国产三级在线视频| 免费搜索国产男女视频| 国产高清三级在线| 日韩人妻高清精品专区| 日本免费a在线| 欧美一级毛片孕妇| 精品不卡国产一区二区三区| 床上黄色一级片| 成人性生交大片免费视频hd| 国产av麻豆久久久久久久| 日本免费一区二区三区高清不卡| 国产精品女同一区二区软件 | 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式 | 久久久国产成人精品二区| 国产探花极品一区二区| 一a级毛片在线观看| 久久亚洲真实| 高潮久久久久久久久久久不卡| 国产高潮美女av| 19禁男女啪啪无遮挡网站| 亚洲人成电影免费在线| 人人妻人人看人人澡| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧美网| 亚洲一区二区三区不卡视频| 婷婷精品国产亚洲av在线| 美女高潮喷水抽搐中文字幕| 日本a在线网址| 国产成人av教育| 亚洲天堂国产精品一区在线| 网址你懂的国产日韩在线| 欧美又色又爽又黄视频| 色综合亚洲欧美另类图片| 精品久久久久久久毛片微露脸| 欧美xxxx黑人xx丫x性爽| 久久精品国产99精品国产亚洲性色| 美女被艹到高潮喷水动态| 日本成人三级电影网站| 村上凉子中文字幕在线| 国产成人福利小说| 嫁个100分男人电影在线观看| 免费看日本二区| 国产伦精品一区二区三区四那| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 国产三级黄色录像| 久久久久九九精品影院| 亚洲av电影不卡..在线观看| 一个人免费在线观看的高清视频| 99久久精品热视频| 天堂√8在线中文| 51午夜福利影视在线观看| bbb黄色大片| 精品人妻一区二区三区麻豆 | 亚洲在线观看片| 成人国产综合亚洲| 神马国产精品三级电影在线观看| 岛国视频午夜一区免费看| 18禁美女被吸乳视频| bbb黄色大片| 精品国内亚洲2022精品成人| 精品不卡国产一区二区三区| 麻豆国产97在线/欧美| 亚洲欧美激情综合另类| 在线观看66精品国产| 波多野结衣高清作品| 无人区码免费观看不卡| 国产精品乱码一区二三区的特点| 一二三四社区在线视频社区8| 久久久久性生活片| 又紧又爽又黄一区二区| a级毛片a级免费在线| 成年女人毛片免费观看观看9| 波野结衣二区三区在线 | 蜜桃久久精品国产亚洲av| 全区人妻精品视频| 香蕉丝袜av| 亚洲国产精品久久男人天堂| 此物有八面人人有两片| 亚洲精品久久国产高清桃花| 日韩欧美在线乱码| 精品国产美女av久久久久小说| 国产精品嫩草影院av在线观看 | 久久久久性生活片| 欧美三级亚洲精品| 91在线精品国自产拍蜜月 | 欧美性猛交黑人性爽| www国产在线视频色| 国产视频一区二区在线看| 国产不卡一卡二| 男人的好看免费观看在线视频| 免费一级毛片在线播放高清视频| 国产伦精品一区二区三区视频9 | 国产午夜福利久久久久久| 国产精品日韩av在线免费观看| 国产亚洲欧美98| 在线观看66精品国产| 国产一区二区激情短视频| 国产日本99.免费观看| 国产精品国产高清国产av| 97超视频在线观看视频| 99久久综合精品五月天人人| 日韩中文字幕欧美一区二区| 久久久久久大精品| 中文字幕人妻熟人妻熟丝袜美 | 精品99又大又爽又粗少妇毛片 | 亚洲色图av天堂| 天堂√8在线中文| 免费看日本二区| 日本黄色视频三级网站网址| 51午夜福利影视在线观看| 国产高清三级在线| avwww免费| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 天堂√8在线中文| 蜜桃亚洲精品一区二区三区| 成年女人看的毛片在线观看| 日韩av在线大香蕉| 18+在线观看网站| 草草在线视频免费看| 午夜精品久久久久久毛片777| 日韩欧美国产在线观看| 午夜福利18| 最后的刺客免费高清国语| 99久久99久久久精品蜜桃| 亚洲美女视频黄频| 美女高潮的动态| 在线天堂最新版资源| a级毛片a级免费在线| 丰满人妻熟妇乱又伦精品不卡| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 久久久久免费精品人妻一区二区| АⅤ资源中文在线天堂| 一本精品99久久精品77| 亚洲乱码一区二区免费版| 久久精品91无色码中文字幕| 又黄又粗又硬又大视频| 久久久久久国产a免费观看| 亚洲第一欧美日韩一区二区三区| 日韩免费av在线播放| 亚洲欧美日韩卡通动漫| 免费av观看视频| 日韩欧美一区二区三区在线观看| 99久久综合精品五月天人人| av中文乱码字幕在线| 一边摸一边抽搐一进一小说| 91九色精品人成在线观看| 97超视频在线观看视频| 日韩欧美在线二视频| 日韩欧美国产一区二区入口| 久9热在线精品视频| 色老头精品视频在线观看| 国产精品日韩av在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播| 在线观看午夜福利视频| 在线十欧美十亚洲十日本专区| 亚洲av成人av| 日本三级黄在线观看| 久久久久久人人人人人| 国产亚洲欧美在线一区二区| 成人av在线播放网站| 国产激情欧美一区二区| 97碰自拍视频| 少妇裸体淫交视频免费看高清| 91麻豆精品激情在线观看国产| 免费看美女性在线毛片视频| 欧美黄色淫秽网站| 香蕉久久夜色| 成人三级黄色视频| 日韩高清综合在线| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看 | 熟女电影av网| 十八禁网站免费在线| 麻豆成人午夜福利视频| 真实男女啪啪啪动态图| 成年女人看的毛片在线观看| 天堂√8在线中文| 少妇人妻精品综合一区二区 | 午夜福利在线观看吧| 国产色爽女视频免费观看| 12—13女人毛片做爰片一| 欧美日韩中文字幕国产精品一区二区三区| 久久久久性生活片| 国内精品一区二区在线观看| 精品国产三级普通话版| 18美女黄网站色大片免费观看| 国产成人a区在线观看| 精品一区二区三区人妻视频| 国产精品三级大全| 最新在线观看一区二区三区| 日本黄大片高清| 日韩av在线大香蕉| 免费av观看视频| 国产精品一区二区三区四区久久| 最近最新中文字幕大全电影3| 亚洲国产精品999在线| 欧美色视频一区免费| 免费无遮挡裸体视频| 中文字幕熟女人妻在线| 天堂av国产一区二区熟女人妻| 91麻豆精品激情在线观看国产| 老司机午夜福利在线观看视频| 国内少妇人妻偷人精品xxx网站| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 国产精品自产拍在线观看55亚洲| 小蜜桃在线观看免费完整版高清| 19禁男女啪啪无遮挡网站| 一本精品99久久精品77| 一进一出好大好爽视频| 丰满人妻熟妇乱又伦精品不卡| 色在线成人网| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| 操出白浆在线播放| 国产高清视频在线播放一区| 国产淫片久久久久久久久 | 日韩免费av在线播放| 男插女下体视频免费在线播放| 757午夜福利合集在线观看| 国产精品自产拍在线观看55亚洲| 色综合婷婷激情| АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| 日本 av在线| 又爽又黄无遮挡网站| 嫩草影视91久久| 久久性视频一级片| 夜夜看夜夜爽夜夜摸| 久久天躁狠狠躁夜夜2o2o| 757午夜福利合集在线观看| 听说在线观看完整版免费高清| 人妻丰满熟妇av一区二区三区| 99久久精品热视频| 精品午夜福利视频在线观看一区| 国内少妇人妻偷人精品xxx网站| 欧美在线一区亚洲| 国产激情欧美一区二区| 女同久久另类99精品国产91| 亚洲专区国产一区二区| 天堂√8在线中文| 成人亚洲精品av一区二区| 中文字幕av成人在线电影| 91久久精品国产一区二区成人 | 精品不卡国产一区二区三区| 欧美性感艳星| 亚洲天堂国产精品一区在线| 亚洲av成人不卡在线观看播放网| 18禁美女被吸乳视频| 午夜精品一区二区三区免费看| 精品久久久久久,| 亚洲人成电影免费在线| 三级男女做爰猛烈吃奶摸视频| 在线观看美女被高潮喷水网站 | 日韩欧美在线二视频| 久久欧美精品欧美久久欧美| 高清毛片免费观看视频网站| 一本综合久久免费| 天堂动漫精品| 国产成人啪精品午夜网站| 精品人妻偷拍中文字幕| 久久精品91无色码中文字幕| 亚洲无线观看免费| 88av欧美| 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 国产三级黄色录像| 亚洲av不卡在线观看| 国产一级毛片七仙女欲春2| 亚洲欧美日韩卡通动漫| 亚洲av日韩精品久久久久久密| bbb黄色大片| 全区人妻精品视频| 性色av乱码一区二区三区2| 啦啦啦观看免费观看视频高清| 日本与韩国留学比较| 18美女黄网站色大片免费观看| 99久久精品一区二区三区| 亚洲精品成人久久久久久| 亚洲国产色片| 少妇高潮的动态图| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播| 麻豆久久精品国产亚洲av| 亚洲av第一区精品v没综合| 中文字幕久久专区| 日韩 欧美 亚洲 中文字幕| 在线观看日韩欧美| 亚洲国产精品合色在线| 国产成人福利小说| 亚洲精品乱码久久久v下载方式 | 一级作爱视频免费观看| 欧美激情久久久久久爽电影| 九九热线精品视视频播放| 色尼玛亚洲综合影院| 欧美日本亚洲视频在线播放| 亚洲成av人片免费观看| 国产精品98久久久久久宅男小说| 欧美xxxx黑人xx丫x性爽| 小说图片视频综合网站| 给我免费播放毛片高清在线观看| 91久久精品电影网| 一进一出抽搐动态| 人人妻人人澡欧美一区二区| 99久国产av精品| 美女免费视频网站| 亚洲国产精品久久男人天堂| 在线免费观看的www视频| 真实男女啪啪啪动态图| 床上黄色一级片| 精品久久久久久久人妻蜜臀av| 久久久久久大精品| 搞女人的毛片| 亚洲黑人精品在线| 日本成人三级电影网站| 久久午夜亚洲精品久久| 久久精品人妻少妇| 国产视频内射| 91久久精品电影网| 一边摸一边抽搐一进一小说| 黑人欧美特级aaaaaa片| 国产 一区 欧美 日韩| 久久欧美精品欧美久久欧美| 69人妻影院| 看黄色毛片网站| 99精品欧美一区二区三区四区| 欧美一级毛片孕妇| 此物有八面人人有两片| 18禁裸乳无遮挡免费网站照片| 亚洲无线观看免费| АⅤ资源中文在线天堂| 国产精品永久免费网站| 亚洲自拍偷在线| 午夜精品久久久久久毛片777| 麻豆成人av在线观看| а√天堂www在线а√下载| 午夜免费男女啪啪视频观看 | 99国产综合亚洲精品| 国产激情欧美一区二区| 色吧在线观看| 精品99又大又爽又粗少妇毛片 | 精品国内亚洲2022精品成人| 亚洲激情在线av| 99久久综合精品五月天人人| 国产精品影院久久| 麻豆国产av国片精品| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 成年免费大片在线观看| 亚洲精品日韩av片在线观看 | 国产野战对白在线观看| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 精品无人区乱码1区二区| 国产爱豆传媒在线观看| 国产三级在线视频| 少妇裸体淫交视频免费看高清| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| 国产精品久久久久久久久免 | 中文在线观看免费www的网站| www日本黄色视频网| 51国产日韩欧美| 亚洲一区二区三区色噜噜| 国产精品久久久久久人妻精品电影| 91九色精品人成在线观看| 国产精品一区二区三区四区久久| 亚洲av不卡在线观看| 99久久久亚洲精品蜜臀av| 露出奶头的视频| 日本一本二区三区精品| 亚洲自拍偷在线| 给我免费播放毛片高清在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 中文字幕久久专区| 国产免费一级a男人的天堂| 精品乱码久久久久久99久播| 国产美女午夜福利| 久久久久久久亚洲中文字幕 | 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 欧美一区二区国产精品久久精品| 亚洲欧美日韩东京热| 嫩草影院入口| 91久久精品电影网| 成年女人毛片免费观看观看9| 草草在线视频免费看| 欧美一级a爱片免费观看看| 国产精品三级大全| 久久精品国产亚洲av涩爱 | 成人亚洲精品av一区二区| 日韩欧美一区二区三区在线观看| 国产久久久一区二区三区| 美女黄网站色视频| 一级毛片高清免费大全| 国产高清有码在线观看视频| 国产老妇女一区| 美女cb高潮喷水在线观看| 嫩草影视91久久| 亚洲av不卡在线观看| 国产精品免费一区二区三区在线| 亚洲国产欧美网| 欧美在线一区亚洲| 悠悠久久av| 国产亚洲欧美98| 国产免费av片在线观看野外av| 一级毛片女人18水好多| 男女之事视频高清在线观看| 久久精品91蜜桃| 免费在线观看成人毛片| 国内揄拍国产精品人妻在线| 99热精品在线国产| 亚洲av第一区精品v没综合| 中文亚洲av片在线观看爽| 在线观看免费午夜福利视频| 美女免费视频网站| 亚洲在线观看片| 舔av片在线| 亚洲精品一卡2卡三卡4卡5卡| 别揉我奶头~嗯~啊~动态视频| 亚洲自拍偷在线| 午夜久久久久精精品| 90打野战视频偷拍视频| 岛国在线观看网站| 国产欧美日韩一区二区精品| 18禁黄网站禁片免费观看直播| 观看免费一级毛片| 黄色视频,在线免费观看| av福利片在线观看| 日本与韩国留学比较| 国产精品永久免费网站| 色综合站精品国产| h日本视频在线播放| av女优亚洲男人天堂| 亚洲国产精品999在线| 欧美大码av| 国产精品自产拍在线观看55亚洲| 小说图片视频综合网站| 久久久久性生活片| 色噜噜av男人的天堂激情| 久久久精品大字幕| 18禁美女被吸乳视频| 精品一区二区三区视频在线观看免费| 久久久久性生活片| 18禁国产床啪视频网站| 欧美日韩国产亚洲二区| 日本一二三区视频观看| 久久国产乱子伦精品免费另类| 亚洲天堂国产精品一区在线| 99国产综合亚洲精品| 亚洲人成网站在线播放欧美日韩| 99热6这里只有精品| 男人舔女人下体高潮全视频| 国产激情偷乱视频一区二区| 母亲3免费完整高清在线观看| 日韩欧美 国产精品| 亚洲av电影不卡..在线观看| 国产国拍精品亚洲av在线观看 | 久久久国产精品麻豆| 婷婷精品国产亚洲av| 美女 人体艺术 gogo| 18禁黄网站禁片免费观看直播| 久久久精品大字幕| av视频在线观看入口| 国产高清视频在线播放一区| 国产精品久久电影中文字幕| 九九热线精品视视频播放| av福利片在线观看| 免费在线观看亚洲国产| 国产精品av视频在线免费观看| 国产aⅴ精品一区二区三区波| 亚洲av成人av| 成年免费大片在线观看| 午夜福利成人在线免费观看| 色噜噜av男人的天堂激情| 法律面前人人平等表现在哪些方面| www.色视频.com| 99久久成人亚洲精品观看| 国产精品久久久人人做人人爽| 精品久久久久久久末码| 欧美中文日本在线观看视频| 精品国产亚洲在线| 麻豆国产av国片精品| 中文字幕av成人在线电影| 99久久精品国产亚洲精品| 久久欧美精品欧美久久欧美| 国产97色在线日韩免费| 精华霜和精华液先用哪个| 校园春色视频在线观看| 欧美午夜高清在线| 脱女人内裤的视频| 90打野战视频偷拍视频| 内射极品少妇av片p| 亚洲精品影视一区二区三区av| 麻豆成人av在线观看| 好男人在线观看高清免费视频| 日韩欧美国产一区二区入口| 蜜桃亚洲精品一区二区三区| 国产蜜桃级精品一区二区三区| 淫妇啪啪啪对白视频| 久久久久久国产a免费观看| 国产成+人综合+亚洲专区| 91久久精品国产一区二区成人 | 亚洲精品日韩av片在线观看 | 亚洲精品在线美女| 一进一出抽搐动态| 精品久久久久久,| 在线播放国产精品三级| 国产高清视频在线观看网站| 国产精品野战在线观看| 综合色av麻豆| 国产真实乱freesex| 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 成人欧美大片| 综合色av麻豆| 国产精品1区2区在线观看.| e午夜精品久久久久久久| 长腿黑丝高跟| 婷婷精品国产亚洲av| 国产视频内射| АⅤ资源中文在线天堂| 在线观看66精品国产| 狂野欧美激情性xxxx| 麻豆国产97在线/欧美| 欧美日韩综合久久久久久 | 国产亚洲av嫩草精品影院| 久久精品国产自在天天线| 精品久久久久久久人妻蜜臀av| 一本久久中文字幕| 久久精品国产自在天天线| 亚洲成av人片在线播放无| 亚洲欧美日韩高清专用|